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On 1-absorbing δ-primary ideals
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Abstract

Let R be a commutative ring with nonzero identity. Let I(R) be the
set of all ideals of R and let δ : I(R) −→ I(R) be a function. Then
δ is called an expansion function of ideals of R if whenever L, I, J are
ideals of R with J ⊆ I, we have L ⊆ δ(L) and δ(J) ⊆ δ(I). Let δ
be an expansion function of ideals of R. In this paper, we introduce
and investigate a new class of ideals that is closely related to the class
of δ-primary ideals. A proper ideal I of R is said to be a 1-absorbing
δ-primary ideal if whenever nonunit elements a, b, c ∈ R and abc ∈ I,
then ab ∈ I or c ∈ δ(I). Moreover, we give some basic properties of
this class of ideals and we study the 1-absorbing δ-primary ideals of
the localization of rings, the direct product of rings and the trivial ring
extensions.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero
identity and all modules are nonzero unital. If R is a ring, then

√
I denotes

the radical of an ideal I of R, in the sense of [12, page 17]. Let also Spec(R)
denotes the set of all prime ideals of R.

The prime ideal, which is an important subject of ideal theory, has been
widely studied by various authors. Among the many recent generalizations of
the notion of prime ideals in the literature, we find the following, due to Badawi
[2]. A proper ideal I of a ring R is said to be a 2-absorbing ideal if whenever
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a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In this case
√
I = P

is a prime ideal with P 2 ⊆ I or
√
I = P1 ∩ P2 where P1, P2 are incomparable

prime ideals with
√
I
2 ⊆ I, cf. [2, Theorem 2.4]. Recently, Badawi and Yetkin

[4] consider a new class of ideals called the class of 1-absorbing primary ideals.
A proper ideal I of a ring R is called a 1-absorbing primary ideal of R if
whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈

√
I.

In [14], A. Yassine et. al introduced the concept of 1-absorbing prime ideals
which is a generalization of prime ideals. A proper ideal I of a ring R is a
1-absorbing prime ideal if whenever we take nonunit elements a, b, c ∈ R with
abc ∈ I, then ab ∈ I or c ∈ I. In this case

√
I = P is a prime ideal, cf. [14,

Theorem 2.3]. If R is a ring in which exists a 1-absorbing prime ideal that is
not prime, then R is a local ring, that is a ring with one maximal ideal.

Let I(R) be the set of all ideals of a ring R. Zhao [15] introduced the
concept of expansion of ideals of R. We recall from [15] that a function δ :
I(R) −→ I(R) is called an expansion function of ideals of R if whenever L, I, J
are ideals of R with J ⊆ I, we have L ⊆ δ(L) and δ(J) ⊆ δ(I). Note that there
are explanatory examples of expansion functions included in [15, Example 1.2]
and [3, Example 1]. In addition, recall from [15] that a proper ideal I of R is
said to be a δ-primary ideal of R if whenever a, b ∈ R with ab ∈ I, we have
a ∈ I or b ∈ δ(I), where δ is an expansion function of ideals of R. Also, recall
from [5] that a proper ideal I of R is called a δ-semiprimary ideal of R if ab ∈ I
implies a ∈ δ(I) or b ∈ δ(I). In this paper, we introduce and investigate a
new concept of ideals that is closely related to the class of δ-primary ideals.
A proper ideal I of R is said to be a 1-absorbing δ-primary ideal if whenever
nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ δ(I). For example,
let δ1 : I(R) −→ I(R) such that δ1(I) =

√
I for each ideal I of R. Then δ1 is

an expansion function of ideals of R, and hence a proper ideal I of R is a 1-
absorbing δ1-primary ideal of R if and only if I is a 1-absorbing primary ideal
of R. Among many results in this paper are given to disclose the relations
between this new class and others that already exist. The reader may find it
helpful to keep in mind the implications noted in the following figure.

1-absorbing prime ideal 1-absorbing δ-primary idealprime ideal - -

Among other things, we give an example of 1-absorbing δ-primary ideal
that is not 1-absorbing prime ideal (Example 2.3). Also, we show (Theorem
2.6) that if a ring R admits a 1-absorbing δ-primary ideal of R that is not
a δ-primary ideal, then R is a local ring. Moreover, we prove that if R is
a chained ring with maximal ideal M , then the only 1-absorbing δ-primary
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ideals of R are M2 and the δ-primary ideals of R (Theorem 2.11). Finally, we
give an idea about 1-absorbing δ-primary ideals of the localization of rings,
the direct product of rings and the trivial ring extensions.

2 Main Results

We start this section by the following definition.

Definition 2.1. A proper ideal I of a ring R is called a 1-absorbing δ-primary
ideal if whenever abc ∈ I for some nonunit elements a, b, c ∈ R, then ab ∈ I
or c ∈ δ(I).

Remark 2.2. Let R be a ring, I a proper ideal of R and δ be an expansion
function of I(R).

(1) If δ(I) = I, then I is a 1-absorbing δ-primary ideal of R if and only if
it is a 1-absorbing prime ideal.

(2) If δ(I) =
√
I, then I is a 1-absorbing δ-primary ideal of R if and only if

it is a 1-absorbing primary ideal.

(3) Every 1-absorbing prime ideal is a 1-absorbing δ-primary ideal.

(4) Every δ-primary ideal is a 1-absorbing δ-primary ideal.

(5) Let γ be an expansion function of I(R) such that δ(I) ⊆ γ(I). If I is
a 1-absorbing δ-primary ideal of R, then I is a 1-absorbing γ-primary
ideal of R.

Next, we give an example of a 1-absorbing δ-primary ideal that is not a
1-absorbing prime ideal.

Example 2.3. Let R := K[[X1, X2, X3]] be a ring of formal power series
where K is a field. Consider the expansion function δ : I(R) −→ I(R) defined
by δ(I) = I+M where M = (X1, X2, X3) is the maximal ideal of R. Consider
the ideal I = (X1X2X3) of R. Thus, I is not a 1-absorbing prime ideal of
R since X1X2X3 ∈ I but neither X1X2 ∈ I nor X3 ∈ I. Now, let x, y, z be
nonunit elements of R such that xyz ∈ I. Clearly I is a 1-absorbing δ-primary
because z ∈ δ(I) = M .

Proposition 2.4. (i) Every 1-absorbing δ-primary ideal is also a 2-absorbing
δ-primary ideal of R.

(ii) Let I be a 1-absorbing δ-primary ideal of R and δ(I) be a radical ideal,
that is,

√
δ(I) = δ(I). Then I is a δ-semiprimary ideal of R.



On 1-absorbing δ-primary ideals 138

Proof. (i) Let abc ∈ I for some a, b, c ∈ R. If at least one of a, b, c is a unit
of R, then we are done. So assume that a, b, c are nonunits of R. Since I is
a 1-absorbing δ-primary ideal of R, we get ab ∈ I or c ∈ δ(I), which implies
that ab ∈ I or ac ∈ δ(I) or bc ∈ δ(I). Therefore, I is a 2-absorbing δ-primary
ideal of R.

(ii) Suppose that ab ∈ I for some a, b ∈ R. Then we may assume that a, b
are nonunits. Thus a2b ∈ I implies that a2 ∈ I or b ∈ δ(I). Then we have
a ∈

√
I ⊆

√
δ(I) = δ(I) or b ∈ δ(I). Hence, I is a δ-semiprimary ideal of

R.

The converse of previous proposition (i) is not true in general. See the
following example.

Example 2.5. (2-absorbing δ-primary ideal that is not 1-absorbing
δ-primary ideal)

Let R = Z, I = pqZ, where p 6= q are prime numbers, and δ(I) = I + pZ.
Since I is a 2-absorbing ideal, so is 2-absorbing δ-primary. However, it is
easy to see that ppq ∈ I, p2 /∈ I and q /∈ δ(I). Thus, I is not a 1-absorbing
δ-primary ideal of R.

In the next result, we show that if a ring R admits a 1-absorbing δ-primary
ideal that is not a δ-primary ideal, then R is a local ring.

Theorem 2.6. Let δ be an ideal expansion. Suppose that a ring R admits a
1-absorbing δ-primary ideal that is not a δ-primary ideal. Then R is a local
ring.

Proof. Assume that I is a 1-absorbing δ-primary ideal that is not a δ-primary
ideal of R. Hence there exist nonunit elements a, b ∈ R such that ab ∈ I,
a /∈ I and b /∈ δ(I). Let d be a nonunit element of R. As dab ∈ I, I is a
1-absorbing δ-primary ideal of R and b /∈ δ(I), we conclude that da ∈ I. Let c
be a unit element of R. Suppose that d + c is a nonunit element of R. Since
(d + c)ab ∈ I, I is a 1-absorbing δ-primary ideal of R and b /∈ δ(I), we get
that (d+ c)a = da+ ca ∈ I. Since da ∈ I, we conclude that a ∈ I, which gives
a contradiction. Hence, d + c is a unit element of R. Now, the result follows
from [4, Lemma 1].

Next, we give a method to construct 1-absorbing δ-primary ideals that are
not δ-primary ideals.

Theorem 2.7. Let R be a local ring with maximal ideal M and δ be an ideal
expansion. Let x be a nonzero prime element of R such that δ(xM) ( M .
If x ∈ δ(xM), then xM is a 1-absorbing δ-primary ideal of R that is not a
δ-primary ideal of R.
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Proof. First, we will show that xM is a 1-absorbing δ-primary ideal of R.
Assume that abc ∈ xM for some nonunit elements a, b, c ∈ R. If ab /∈ xM ,
then a /∈ xR and b /∈ xR, so ab /∈ xR because x is a prime element of R.
Moreover, the fact that abc ∈ xR and ab /∈ xR implies that c ∈ xR ⊆ δ(xM).
Now, we prove that xM is not a δ-primary ideal of R. By hypothesis, we can
pick an element a ∈M \ δ(xM), hence xa ∈ xM . However, x /∈ xM since x is
an irreducible element of R by [4, Lemma 2]. Which implies that xM is not a
δ-primary ideal, this completes the proof.

Theorem 2.8. Suppose that I is a 1-absorbing δ-primary ideal of R that
is not a δ-primary ideal of R. Then there exists an irreducible element x ∈
R and a nonunit element y ∈ R such that xy ∈ I, but neither x ∈ I nor
y ∈ δ(I). Furthermore, if ab ∈ I for some nonunit elements a, b ∈ R such that
neither a ∈ I nor b ∈ δ(I), then a is an irreducible element of R.

Proof. Suppose that I is not a δ-primary ideal of R. Hence neither x ∈ I nor
y ∈ δ(I) for some nonunit elements x, y ∈ R with xy ∈ I. Assume on the
contrary that x is not an irreducible element of R. Then x = cd for some
nonunit elements c, d ∈ R. Since xy = cdy ∈ I and I is a 1-absorbing δ-
primary ideal of R and y /∈ δ(I), we conclude that cd = x ∈ I, a contradiction.
Hence, x is an irreducible element of R.

Theorem 2.9. Let I be a 1-absorbing δ-primary ideal of a ring R where δ
is an ideal expansion and let d ∈ R \ I be a nonunit element of R. Then
(I : d) = {x ∈ R | dx ∈ I} is a δ-primary ideal of R. In particular, for every
proper ideal J of R with J * I, (I : J) is a δ-primary ideal of R.

Proof. Suppose that ab ∈ (I : d) for some elements a, b ∈ R. Without loss of
generality, we may assume that a and b are nonunit elements of R. Suppose
that a /∈ (I : d). Since dab ∈ I and I is a 1-absorbing δ-primary ideal of R, we
conclude that b ∈ δ(I). So, b ∈ δ((I : d)) and this completes the proof. The
rest is similar.

Theorem 2.1. Let δ be an expansion function of I(R), I a proper ideal of R
and (I : x) = (I : x2) for each x ∈ R − δ(I). If I is an irreducible ideal, then
I is a 1-absorbing δ-primary ideal of R.

Proof. Assume on the contrary that I is not a 1-absorbing δ-primary ideal
of R. Then there exist nonunit elements a, b, c ∈ R with abc ∈ I and neither
ab ∈ I nor c ∈ δ(I). Consider (I+Rab)∩(I+Rc). It is clear that I ⊆ (I+Rab)∩
(I+Rc). Let z ∈ (I+Rab)∩ (I+Rc). Then there are i1, i2 ∈ I and r1, r2 ∈ R
such that z = i1+r1ab = i2+r2c. Then zc = i1c+r1abc = i2c+r2c

2 ∈ I. Hence
r2c

2 ∈ I; and so we have r2 ∈ (I : c2) = (I : c) by the assumption. So
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z = i2 + r2c ∈ I. Thus we conclude that I = (I + Rab) ∩ (I + Rc) which is a
contradiction. Therefore, I is a 1-absorbing δ-primary ideal of R.

Proposition 2.10. Let R be a ring, δ an ideal expansion and I be a proper
ideal of R. If I is a 1-absorbing δ-primary ideal of R, then either I is a δ-
semiprimary ideal of R or R is local, say with maximal ideal M , such that
M2 ⊆ I.

Proof. If R is not local, then Theorem 2.6 implies that I is δ-primary and so I
is a δ-semiprimary ideal of R. Now, assume that R is local with maximal ideal
M such that I is not a δ-semiprimary ideal of R. Since I is proper, we infer
that I ⊆ M . Observe that δ(I) 6= M. Indeed, otherwise from Proposition 2.4
(ii), we conclude that I is a δ-semiprimary ideal which contradicts with our
assumption. Moreover, there are a, b ∈ M \ δ(I) such that ab ∈ I. To prove
that M2 ⊆ I, it suffices to show that xy ∈ I for all x, y ∈ M . Let x, y ∈ M .
Then xyab ∈ I. Since xy, a, b ∈M , b 6∈ δ(I) and I is a 1-absorbing δ-primary
ideal, we conclude that xya ∈ I. Again, since x, y, a ∈M , a 6∈ δ(I) and I is a
1-absorbing δ-primary ideal, we have that xy ∈ I.

Recall that a ring R is a chained ring if the set of all ideals of R is linearly
ordered by inclusion. Moreover, R is said to be an arithmetical ring if RM
is a chained ring for each maximal ideal M of R. We next determine the
1-absorbing δ-primary ideals of a chained ring.

Theorem 2.11. Let R be a chained ring with maximal ideal M , δ an ideal
expansion and I be a proper ideal of R such that I 6= M2. Then I is a 1-
absorbing δ-primary ideal of R if and only if I is a δ-primary ideal of R.

Proof. We need only prove the “only if” assertion. Let I be a 1-absorbing
δ-primary ideal. Thus, Proposition 2.10 gives that either I is a δ-semiprimary
ideal of R or M2 ⊆ I. First, assume that I is a δ-semiprimary ideal of R and
ab ∈ I for some nonunit elements a, b ∈ R such that b /∈ δ(I). Hence, a ∈ δ(I).
Now, since R is a chained ring, we conclude that a ∈ bR and thus a = br for
some nonunit element r ∈ R. As brb ∈ I, b /∈ δ(I) and I is a 1-absorbing
δ-primary ideal of R, we conclude that a = br ∈ I. Which gives that I is a
δ-primary ideal of R. Now, we suppose that M2 ⊆ I. We may assume that
M 6= I. Thus, we can pick a ∈M \ I and b ∈ I \M2. Then b ∈ aR since R is
a chained ring. So, b = ar for some nonunit element r ∈ R and thus b ∈ M2,
a contradiction. This completes the proof.

In view of Theorem 2.11, we have the following result.

Corollary 2.12. Let R be an arithmetical ring with Jacobson radical M and
I be a proper ideal of R such that I 6= M2. Then I is a 1-absorbing δ-primary
ideal of R if and only if I is a δ-primary ideal of R.
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Proof. Assume that R is local with maximal ideal M . Since R is an arith-
metical ring, we conclude that R = RM is a chained ring and thus the claim
follows from Theorem 2.11. In the remaining case, suppose that R is not a
local ring. Then the result follows by Theorem 2.6.

Proposition 2.13. Let R be a local ring with principal maximal ideal M , δ
an ideal expansion and I be a proper ideal of R. Then I is a 1-absorbing δ-
primary ideal of R if and only if either I is a δ-primary ideal of R or M2 ⊆ I.
In addition, if

√
I ⊆ δ(I) then I is a 1-absorbing δ-primary ideal of R if and

only if I is a δ-primary ideal of R.

Proof. By Remark 2.2(4) and Proposition 2.10, we need only prove that if I is
a 1-absorbing δ-primary ideal of R which is a δ-semiprimary ideal then I is a δ-
primary ideal (along with the hypothesis that R be a local ring with principal
maximal ideal M). Also, we may assume that δ(I) 6= R. Set M = xR and
let a and b be nonunit elements of R such that b /∈ δ(I) and ab ∈ I. Since
I is a δ-semiprimary ideal of R, we get that a ∈ δ(I). Moreover, a = rx
for some r ∈ R. If r is a unit element of R then M = δ(I) and thus I is
a δ-primary ideal. If r is a nonunit element of R then rxb = ab ∈ I. That
implies a = rx ∈ I since I is a 1-absorbing δ-primary ideal. This completes
the proof. The in addition statement is clear.

Proposition 2.14. Let {Ji | i ∈ D} be a directed set of 1-absorbing δ-primary
ideals of R, where δ is an ideal expansion. Then the ideal J = ∪i∈DJi is a
1-absorbing δ-primary ideal of R.

Proof. Let abc ∈ J for some nonunits a, b, c ∈ R, then abc ∈ Ji for some i ∈ D.
Since Ji is a 1-absorbing δ-primary ideal of R, ab ∈ Ji or c ∈ δ(Ji) ⊆ δ(J).
Hence, J is a 1-absorbing δ-primary ideal of R.

Proposition 2.15. Let I be a 1-absorbing δ-primary ideal of R such that√
δ(I) ⊆ δ(

√
I), where δ is an ideal expansion. Then,

√
I is a δ-primary ideal

of R.

Proof. Let ab ∈
√
I such that a /∈

√
I. Hence, there exists a positive integer n

such that (ab)n ∈ I. So, amambn ∈ I for some positive integer m. Since I is
a 1-absorbing δ-primary ideal of R and a2m /∈ I, we conclude that bn ∈ δ(I).
That implies b ∈

√
δ(I) ⊆ δ(

√
I) and so

√
I is a δ-primary ideal of R.

Proposition 2.16. Let I be a proper ideal of a ring R and δ be an ideal ex-
pansion such that δ(δ(I)) = δ(I). Then the following statements are satisfied.

(1) If I is a 1-absorbing δ-primary ideal and a, b are nonunit elements with
ab /∈ I, then δ(I : ab) = δ(I).

(2) δ(I) is a 1-absorbing δ-primary ideal of R if and only if δ(I) is a
1-absorbing prime ideal of R
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Proof. (1) Let I be a 1-absorbing δ-primary ideal and ab /∈ I. Note that
I ⊆ (I : ab) and so δ(I) ⊆ δ(I : ab). Let c ∈ (I : ab). Then c ∈ δ(I) since
abc ∈ I and ab /∈ I. Thus (I : ab) ⊆ δ(I). We get δ(I : ab) ⊆ δ(δ(I)) = δ(I).
Hence we conclude the equality.

(2) By Remark 2.2(3), we need only prove the “only if” assertion. Let
abc ∈ δ(I) for some nonunit elements a, b, c ∈ R. Hence ab ∈ δ(I) or c ∈
δ(δ(I)) = δ(I). Thus δ(I) is a 1-absorbing prime ideal of R.

Proposition 2.17. Let R be a ring, I a proper ideal of R and δ be an ideal
expansion. Then I is a 1-absorbing δ-primary ideal if and only if whenever
I1I2I3 ⊆ I for some proper ideals I1, I2 and I3 of R, then I1I2 ⊆ I or
I3 ⊆ δ(I).

Proof. It suffices to prove the “if” assertion. Suppose that I is a 1-absorbing
δ-primary ideal and let I1, I2 and I3 be proper ideals of R such that I1I2I3 ⊆ I
and I3 6⊆ δ(I). Thus abc ∈ I for every a ∈ I1, b ∈ I2 and c ∈ I3 \ δ(I). Since I
is a 1-absorbing δ-primary ideal, we then have I1I2 ⊆ I, as desired.

Recall from [15] that an ideal expansion δ is said to be intersection pre-
serving if δ(I1 ∩ I2 ∩ ...∩ In) = δ(I1)∩ δ(I2)∩ ...∩ δ(In) for any ideals I1, ..., In
of R.

Proposition 2.18. Let δ be an intersection preserving ideal expansion. If
I1, I2, ..., In are 1-absorbing δ-primary ideals of R, and δ(Ii) = P for some
ideal P of R and all i ∈ {1, 2, ..., n}, then I1 ∩ I2 ∩ ... ∩ In is a 1-absorbing
δ-primary ideal of R.

Proof. Let abc ∈ J = I1 ∩ I2 ∩ ... ∩ In such that ab /∈ J . Let i ∈ {1, 2, ..., n}
such that ab /∈ Ii. Since abc ∈ Ii and Ii is a 1-absorbing δ-primary ideal, we
conclude that c ∈ δ(Ii) = δ(J). Therefore, J is a 1-absorbing δ-primary ideal
of R.

Proposition 2.19. Let R be a ring and δ be an expansion function of I(R).
Then the following statements are equivalent.

(1) Every proper principal ideal is a 1-absorbing δ-primary ideal of R.

(2) Every proper ideal is a 1-absorbing δ-primary ideal of R.

Proof. Assume that (1) holds and let I be a proper ideal of R. Let a, b, c be
nonunit elements of R such that abc ∈ I. Hence abc ∈ abcR which implies that
ab ∈ abcR ⊆ I or c ∈ δ(abcR) ⊆ δ(I). Therefore I is a 1-absorbing δ-primary
ideal of R. The converse is clear.
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An expansion function δ of I(R) is said to satisfy condition (∗) if δ(I) 6= R
for each proper ideal I of R. Note that the identity function and the radical
operation are examples of expansion functions satisfying condition (∗).

Theorem 2.20. Let R be a ring and δ an expansion function of I(R) satisfying
condition (∗) and δ(Jac(R)) = Jac(R). Suppose that δ(xI) = xδ(I) for every
proper ideal I of R and every x ∈ R. The following statements are equivalent.

(i) Every proper principal ideal is a 1-absorbing δ-primary ideal of R.
(ii) Every proper ideal is a 1-absorbing δ-primary ideal of R.
(iii) R is local with Jac(R)2 = (0).

Proof. (i)⇔ (ii) Follows from Proposition 2.19.
(ii) ⇒ (iii) Assume that every proper ideal is a 1-absorbing δ-primary

ideal R. Choose x, y ∈ Jac(R). Now, we will show that xy = 0. If x or
y is zero, then we are done. Assume that x, y 6= 0. Since x2y ∈ (x2y)
and (x2y) is a 1-absorbing δ-primary ideal, we conclude that x2 ∈ (x2y) or
y ∈ δ((x2y)) = yδ((x2)). Suppose that y ∈ yδ((x2)). Then there exists
a ∈ δ((x2)) ⊆ δ(Jac(R)) = Jac(R) such that y = ya. Which implies that
y(1 − a) = 0. Since 1 − a is unit, we have y = 0, which is a contradiction.
Thus we have, x2 ∈ (x2y). Then we can write x2 = rx2y for some r ∈ R. This
implies that x2(1− ry) = 0. Since 1− ry is unit, we have x2 = 0. Likewise, we
get y2 = 0. Now, choose another z ∈ Jac(R). Since xyz ∈ (xyz) and (xyz)
is a 1-absorbing δ-primary, we get xy ∈ (xyz) or z ∈ δ((xyz)) = zδ((xy)).
First, assume that xy ∈ (xyz). Then there exists r ∈ R such that xy = rxyz,
which implies that xy(1− rz) = 0. Since 1− rz is unit, we have xy = 0 which
completes the proof. Now, assume that xy /∈ (xyz), that is, z ∈ δ((xyz)) =
zδ((xy)). Then there exists a ∈ δ((xy)) ⊆ Jac(R) such that z = za. This
implies that z(1−a) = 0 so that z = 0. Now, choose z = x+y. Then by above
argument, we have either xy = 0 or z = x + y = 0. If z = x + y = 0, then
we have x = −y and so xy = −y2 = 0 which completes the proof. Therefore,
Jac(R)2 = (0).

Now, we will show that R is a local ring. Choose maximal ideals M1,M2

of R. Now, put I = M1 ∩M2. Since M2
1M2 ⊆ I and I is a 1-absorbing δ-

primary ideal, we have either M2
1 ⊆ I ⊆M2 or M2 ⊆ δ(I) ⊆ δ(M1). Case 1:

Suppose that M2
1 ⊆ M2. Since M2 is prime, clearly we have M1 ⊆ M2 which

implies that M1 = M2. Case 2: Suppose that M2 ⊆ δ(M1). Since δ satisfies
condition (∗), δ(M1) is proper. As M1 ⊆ δ(M1) and M1 is a maximal ideal,
we have M1 = δ(M1). Then we get M2 ⊆ M1, which implies that M1 = M2.
Therefore, R is a local ring.

(iii) ⇒ (i) Suppose that R is a local ring with Jac(R)2 = (0). Let I
be a proper ideal of R and abc ∈ I for some nonunits a, b, c ∈ R. Then
a, b, c ∈ Jac(R) since R is local. As Jac(R)2 = (0), we have ab = 0 ∈ I.



On 1-absorbing δ-primary ideals 144

Therefore, I is a 1-absorbing δ-primary ideal of R.

It can be easily seen that, in Theorem 2.20, (iii) always implies (i) without
any assumption on δ. But we give some examples showing that the converse
is not true if we drop the aforementioned assumptions on δ.

Example 2.21. Let R = Zp3 , where p is a prime number and δ(I) = R for
every proper ideal I of R. Note that δ does not satisfy condition (∗) and note
that every ideal I of R is 1-absorbing δ-primary. Thus Jac(R)2 6= (0), while
R is a local ring.

Example 2.22. Let k be a field and consider the formal power series ring
R = k[[X]]. Then R is a local ring with unique maximal ideal m = (X).
Define expansion function δ as δ(I) =

√
I for every ideal I of R. Then it is

easy to see that every ideal of R is a 1-absorbing δ-primary ideal. Also, it is
clear that δ satisfies condition (∗) and δ(Jac(R)) = Jac(R) but not satisfy the
condition δ(xI) = xδ(I). Furthermore, Jac(R)2 6= (0). Thus Theorem 2.20
fails without assumption δ(xI) = xδ(I).

Corollary 2.23. Let R be a ring. The following statements are equivalent.
(i) Every proper ideal is a 1-absorbing prime ideal of R.
(ii) Every proper principal ideal is a 1-absorbing prime ideal of R.
(iii) R is local with Jac(R)2 = (0).

Proof. (i)⇔ (ii) Follows from Proposition 2.19.
(ii) ⇒ (iii) Let δ be the identity expansion function, that is, δ(I) = I for

every ideal I of R. Note that δ satisfies all axioms in Theorem 2.20. Then R
is a local ring with Jac(R)2 = (0).

(iii)⇒ (i) It is similar to Theorem 2.20 (iii)⇒ (i).

An ideal expansion δ is called a prime expansion if for any 1-absorbing
primary ideal I of R, δ(I) is a prime ideal of R.

Proposition 2.24. Let R be a local ring with maximal ideal M and δ be a
prime expansion function of I(R). Assume that one of the following conditions
holds:

(1) Spec(R) = {δ(0)}.

(2) Spec(R) = {δ(0),M} and δ(0)M = 0.

Then every proper ideal of R is 1-absorbing δ-primary.
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Proof. Let I be a proper ideal of R and assume that (1) holds. Since δ(0) is
maximal ideal and δ(I) ⊇ δ(0), we conclude that δ(I) = R or δ(I) = δ(0).
Clearly I is a 1-absorbing δ-primary ideal of R. Now, assume that Spec(R) =
{δ(0),M} and δ(0)M = 0. Since δ(0) ⊆ M, we have

√
I = M or

√
I =

δ(0). First assume that
√
I = M. Then I is 1-absorbing primary ideal so that

δ(I) = M or δ(I) = δ(0). If δ(I) = M , we have then I is 1-absorbing δ-
primary. So assume that δ(I) = δ(0). Let abc ∈ I for some nonunit elements
a, b, c ∈ R such that c /∈ δ(0). As I ⊆ δ(0), we get that either a ∈ δ(0) or
b ∈ δ(0). Thus ab = 0 ∈ I which gives that I is a 1-absorbing δ-primary ideal
of R. In the remaining case, I ⊆

√
I = δ(0) ⊆ δ(I). A similar argument shows

that I is a 1-absorbing δ-primary ideal of R.

Let f : R → S be a ring homomorphism and δ, γ expansion functions of
I(R) and I(S) respectively. Recall from [3] that f is called a δγ-homomorphism
if δ(f−1(I)) = f−1(γ(I)) for each ideal I of S. Also note that if f is a δγ-
epimorphism and I is an ideal of R containing ker(f), then γ(f(I)) = f(δ(I)).

Theorem 2.25. Let f : R → S be a ring δγ-homomorphism where δ, γ are
expansion functions of I(R) and I(S) respectively. Suppose that f(a) is nonunit
in S for every nonunit element a in R. Then the following statements hold.

(1) If J is a 1-absorbing γ-primary ideal of S, then f−1(J) is a 1-absorbing
δ-primary ideal of R.

(2) If f is an epimorphism and I is a proper ideal of R containing ker(f),
then I is a 1-absorbing δ-primary ideal of R if and only if f(I) is a
1-absorbing γ-primary ideal of S.

Proof. (1) Assume that abc ∈ f−1(J), for some nonunit elements a, b, c ∈ R.
Then f(a)f(b)f(c) ∈ J . Thus f(a)f(b) ∈ J or f(c) ∈ γ(J), which implies
that ab ∈ f−1(J) or c ∈ f−1(γ(J)) = δ(f−1(J)). Therefore, f−1(J) is a 1-
absorbing δ-primary ideal of R.
(2) Suppose that f(I) is 1-absorbing γ-primary ideal of S. Since I = f−1(f(I)),
we conclude that I is a 1-absorbing δ-primary ideal of R by (1). Conversely, let
x, y, z be nonunit elements of S with xyz ∈ f(I). Then there exist a, b, c ∈ R
such that x = f(a), y = f(b) and z = f(c) with f(abc) = xyz ∈ f(I). Since
ker(f) ⊆ I, we then have abc ∈ I. Since I is a 1-absorbing δ-primary ideal of
R and abc ∈ I, we conclude that ab ∈ I or c ∈ δ(I) which gives that xy ∈ f(I)
or z ∈ f(δ(I)) = γ(f(I)). Thus f(I) is a 1-absorbing δ-primary ideal of S.

Let δ be an expansion function of I(R) and I an ideal of R. Then the

function δ̄ : RI −→
R
I defined by δ̄(JI ) = δ(J)

I for all ideals I ⊆ J , becomes an

expansion function of R
I . Then, we have the following result.



On 1-absorbing δ-primary ideals 146

Corollary 2.26. Let R be a ring, δ an expansion function of I(R) and I ⊆ J
be proper ideals of R. Assume that a+ I is a nonunit element of R

I for every
nonunit element a ∈ R. Then J is a 1-absorbing δ-primary ideal of R if and
only if J

I is a 1-absorbing δ̄-primary ideal of R
I .

Proposition 2.27. Let S be a multiplicatively closed subset of a ring R and
δS an expansion function of I(S−1R) such that δS(S−1I) = S−1(δ(I)) for each
ideal I of R. If I is a 1-absorbing δ-primary ideal of R such that I ∩ S = ∅,
then S−1I is a 1-absorbing δS-primary ideal of S−1R.

Proof. Let I be a 1-absorbing δ-primary ideal of R such that I ∩ S = ∅ and
a
s
b
t
c
r ∈ S

−1I for some nonunit elements a, b, c ∈ R and s, t, r ∈ S such that
a
s
b
t /∈ S

−1I. Then xabc ∈ I for some x ∈ S. Since I is a 1-absorbing δ-primary
and xab /∈ I, we conclude that c ∈ δ(I). Thus c

r ∈ S−1(δ(I)) = δS(S−1I)
which completes the proof.

Let S be a multiplicatively closed subset of a ring R and I an ideal of
R. The next example shows that if S−1I is a 1-absorbing δS-primary ideal of
S−1R, then I need not to be a 1-absorbing δ-primary ideal of R.

Example 2.28. Let p 6= q be two prime numbers. Set I = pqZ and δ be an
ideal expansion such that δ(I) = I + qZ for each ideal I of Z. Clearly, I is
not a 1-absorbing δ-primary ideal of Z as it is shown in Example 2.5. Now,
let S = Z \ pZ and note that S−1I = S−1(pZ). Let a

r1
b
r2

c
r3
∈ S−1I for some

nonunit elements a
r1
, br2 ,

c
r3
∈ S−1Z. Note that x

r ∈ S
−1Z is nonunit if and

only if x ∈ pZ. Thus a ∈ pZ and b ∈ pZ. Which gives that a
r1

b
r2
∈ S−1I and

hence S−1I is a 1-absorbing δS-primary ideal.

Let R1 and R2 be two rings, let δi be an expansion function of I(Ri) for
each i ∈ {1, 2} and R = R1 × R2. For a proper ideal I1 × I2, the function δ×
defined by δ×(I1× I2) = δ1(I1)× δ2(I2) is an expansion function of I(R). The
following result characterizes the 1-absorbing δ-primary ideals of the direct
product of rings.

Theorem 2.29. Let R1 and R2 be rings, R = R1 × R2 and let δi be an
expansion function of I(Ri) for i = 1, 2. Then the following statements are
equivalent:

(1) I is a 1-absorbing δ×-primary ideal of R.

(2) I is a δ×-primary ideal of R.

(3) Either I = I1×R2, where I1 is a δ1-primary ideal of R1 or I = R1× I2,
where I2 is a δ2-primary ideal of R2 or I = I1 × I2, where I1 and I2 are
proper ideals of R1, R2, respectively with δ1(I1) = R1 and δ2(I2) = R2.
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Proof. (1)⇔ (2). This follows from Theorem 2.6.
(2)⇔ (3) Let I be a δ×-primary ideal of R. Hence I has the form I = I1 × I2
where I1 and I2 are ideals ofR1 andR2 respectively. Without loss of generality,
we may assume that I = I1 × R2 for some proper ideal I1 of R1. We show
that I1 is a δ1-primary ideal of R1. Deny. Then there are a, b ∈ R1 such that
ab ∈ I1, a /∈ I1 and b /∈ δ1(I1). Hence (a, 1)(b, 1) ∈ I1 × R2. Which implies
that (a, 1) ∈ I1 × R2 or (b, 1) ∈ δ×(I1 × R2) and so a ∈ I1 or b ∈ δ1(I1),
which gives a contradiction. Now suppose that both I1 and I2 are proper.
As (1, 0)(0, 1) ∈ I1 × I2 and (1, 0), (0, 1) /∈ I1 × I2, we have (1, 0), (0, 1) ∈
δ×(I1 × I2) = δ1(I1) × δ2(I2). Therefore δ1(I1) = R1 and δ2(I2) = R2. The
converse is clear.

The following example proves that the condition “δ(Ii) = P for all i ∈
{1, 2, ..., n}” is necessary in Proposition 2.18.

Example 2.30. Let R = R1×R2 where R1 = R2 = Z and δ1 = δ2 = δ where
δ(I) =

√
I + 2Z for every ideal I of Z. Consider the ideals K = 4Z × Z

and L = Z× 9Z of R. Thus δ×(K) = δ1(4Z)× δ2(Z) = 2Z× Z and δ×(L) =
δ1(Z)×δ2(9Z) = Z×Z. Moreover, K and L are 1-absorbing δ×-primary ideal.
But K ∩L = 4Z× 9Z is not a 1-absorbing δ×-primary ideal by Theorem 2.29.

In view of Theorem 2.29, we have the following result.

Theorem 2.31. Let R1, R2, . . . , Rn be commutative rings with nonzero iden-
tity and R = R1×R2× · · · ×Rn where n ≥ 2. Let δi be an expansion function
of I(Ri) for each i = 1, 2, . . . , n. Then the following statements are equivalent.

(1) I is a 1-absorbing δ×-primary ideal of R.
(2) I = I1 × I2 × · · · × In and either for some k ∈ {1, 2, . . . , n} such

that Ik is a 1-absorbing δk-primary ideal of Rk and Ij = Rj for each j ∈
{1, 2, . . . , n}\{k} or Iαi

’s are proper ideals of Rαi
for {α1, α2, . . . , αk} ⊆

{1, 2, . . . , n} and |{α1, α2, . . . , αk}| ≥ 2 with δαi(Iαi) = Rαi , and Ij = Rj
for all j ∈ {1, 2, . . . , n}\{α1, α2, . . . , αk}.

Proof. It can be obtained by using mathematical induction on n.

Let A be a ring and E an A-module. Then A n E, the trivial (ring)
extension of A by E, is the ring whose additive structure is that of the external
direct sum A⊕E and whose multiplication is defined by (a, e)(b, f) := (ab, af+
be) for all a, b ∈ A and all e, f ∈ E. (This construction is also known by
other terminology and other notation, such as the idealization A(+)E.) The
basic properties of trivial ring extensions are summarized in the books [10],
[9]. Trivial ring extensions have been studied or generalized extensively, often
because of their usefulness in constructing new classes of examples of rings
satisfying various properties (cf. [1, 6, 7, 11] ). In addition, for an ideal I of
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A and a submodule F of E, I n F is an ideal of AnE if and only if IE ⊆ F .
Moreover, for an expansion function δ of A, it is clear that δn defined as
δn(I n F ) = δ(I) n E is an expansion function of A n E. Also as usual, if
c ∈ A then (F : c) = {e ∈ E | ce ∈ F}.

Theorem 2.32. Let A be a ring, E an A-module and δ be an expansion
function of I(A). Let I be an ideal of A and F a submodule of E such that
IE ⊆ F . Then the following statement hold:

(1) If I n F is a 1-absorbing δn-primary ideal of A n E, then I is a 1-
absorbing δ-primary ideal of A.

(2) Assume that (F : c) = F for every c ∈ A\I. Then InF is a 1-absorbing
δn-primary ideal of A n E if and only if I is a 1-absorbing δ-primary
ideal of A.

Proof. (1) Assume that I nF is a 1-absorbing δn-primary ideal of AnE and
let a, b, c be nonunit elements of A such that abc ∈ I. Thus (a, 0)(b, 0)(c, 0) =
(abc, 0) ∈ I nF which implies that (a, 0)(b, 0) ∈ I nF or (c, 0) ∈ δn(I nF ) =
δ(I) n E. Therefore ab ∈ I or c ∈ δ(I) and so (1) holds.
(2) By (1), it suffices to prove the ”if” assertion. Let (a, s), (b, t), (c, r) be
nonunit elements of AnE such that (a, s)(b, t)(c, r) = (abc, bcs+ act+ abr) ∈
I n F . Clearly, abc ∈ I and so ab ∈ I or c ∈ δ(I) since I is a 1-absorbing
δ-primary ideal of A. If c ∈ δ(I), then (c, r) ∈ δ(I) n E = δn(I n F ). Hence,
we may assume that c /∈ δ(I). Then ab ∈ I. As bcs + act + abr ∈ F and
abr ∈ F , we get that bcs+ act ∈ F . This implies bs+ at ∈ (F : c) = F and so
(a, s)(b, t) = (ab, at+bs) ∈ InF . Therefore InF is a 1-absorbing δn-primary
ideal of An E.

Corollary 2.33. Let A be a ring, E an A-module and δ be an expansion
function of I(A). Let I be a proper ideal of A. Then I n E is a 1-absorbing
δn-primary ideal of AnE if and only if I is a 1-absorbing δ-primary ideal of
A.
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[13] Ulucak, G., Tekir, Ü., Koc, S., On n-absorbing δ-primary ideals. Turkish
Journal of Mathematics, 42 (4) (2018), 1833-1844.

[14] Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals
of commutative rings. J. Algebra Appl., (2020), 2150175.

[15] Zhao, D., δ-primary ideals of commutative rings. Kyungpook Math. J.,
41 (1) (2001), 17-22



On 1-absorbing δ-primary ideals 150

Abdelhaq El Khalfi,
Laboratory of Modelling and Mathematical Structures
Department of Mathematic, Faculty of Science and Technology of Fez, Box
2202, University S.M. Ben Abdellah Fez, Morocco.
Email: abdelhaq.elkhalfi@usmba.ac.ma

Najib Mahdou,
Laboratory of Modelling and Mathematical Structures
Department of Mathematics, Faculty of Science and Technology of Fez, Box
2202, University S.M. Ben Abdellah Fez, Morocco.
Email: mahdou@hotmail.com
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