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An approximate Taylor method for Stochastic
Functional Differential Equations via

polynomial condition

Dušan D. Djordjević and Marija Milošević

Abstract

The subject of this paper is an analytic approximate method for
a class of stochastic functional differential equations with coefficients
that do not necessarily satisfy the Lipschitz condition nor linear growth
condition but they satisfy some polynomial conditions. Also, equations
from the observed class have unique solutions with bounded moments.
Approximate equations are defined on partitions of the time interval and
their drift and diffusion coefficients are Taylor approximations of the co-
efficients of the initial equation. Taylor approximations require Fréchet
derivatives since the coefficients of the initial equation are functionals.
The main results of this paper are the Lp and almost sure convergence
of the sequence of the approximate solutions to the exact solution of the
initial equation. An example that illustrates the theoretical results and
contains the proof of the existence, uniqueness and moment bounded-
ness of the approximate solution is displayed.

1 Introduction and preliminary results

It is well known that most of the stochastic differential equations (SDEs)
cannot be solved explicitly. Even more obvious is that the generalization
of the SDEs, the stochastic functional differential equations (SFDEs) cannot
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be solved explicitly, although some sufficient conditions for the existence and
uniqueness of the solution are satisfied. One analytic method to find their ap-
proximate solutions in an explicit form, or in a form suitable for the application
of numerical methods, is going to be presented.

In many stochastic equations, it is not enough to predict the future solely
on the present but, it is required to know some of the past if the argument
is considered as the time. This way we naturally come across the SFDEs,
especially, SDEs with constant delay, SDEs with time-dependent delay, pe-
riodic SFDEs, etc. There are lots of examples of these equations and some
of them appear in various predator-prey and population growth models in
biology, gene expression, and epidemiology models in medicine, in lots of
models with an aftereffect in mechanics such as particle motion in liquids,
controlled motion of rigid bodies, viscoelasticity and so on (see, for example,
[3, 6, 8, 9, 11, 12, 13, 19, 21, 22, 23]). There are some numerical methods for
SFDEs if the equation is not explicitly solvable, such as those from the papers
[15, 17, 24], among others. However, some problems do not require numer-
ical methods but analytical ones since there may be some properties of the
solutions of equations that should be examined, such as stability, asymptotics,
moment boundedness, etc, (see [10], first of all). That is why sometimes it
is easier to work with approximate solutions if the desired properties are in-
herited from the solutions of initial equations instead of some complicated
numerical methods. This is why our analytical methods have an advantage
over numerical methods.

Essentials of the analytic method considered in this paper go way back
to Atalla [1, 2]. Following Atalla’s papers, Milošević, Jovanović and Janković
constructed approximate solutions to various types of SDEs such as SFDEs
[16], defined on a partition of the time interval. The coefficients of these
equations are approximated by theirs Taylor series up to arbitrary derivatives
and closeness of the exact and approximate solutions is measured in the sense
of the Lp-norm and with probability one.

In most cases, the Lipschitz and linear growth conditions for the drift
and diffusion coefficients are required, which guarantees the existence and
uniqueness of a solution of an equation. This is what we want to avoid,
especially since most of the coefficients of SDEs do not satisfy these conditions.
Our idea is to weaken those conditions in a way that they can satisfy some
other conditions instead (such as one-sided Lipschitz, generalized Khasminskii-
type conditions, for example). The existence and uniqueness of the solution
of the initial equation are assumed throughout the whole paper, but they
can be proven if appropriate conditions are added. It was assumed in [16]
that the derivatives of the following order than the biggest one used in Taylor
approximation of the drift and diffusion coefficients are uniformly bounded and
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that both the drift and diffusion coefficients satisfy the linear growth condition.
This time, only the boundedness in zero of these derivatives and the polynomial
condition for both the drift and diffusion coefficients and their derivatives of
these orders is assumed instead. This different approach considering a different
class of functionals is our main motivation for this work.

Whole consideration in this paper is related to a complete filtered proba-
bility space (Ω,F, {Ft}t≥0, P ) with the filtration {Ft}t≥0 which satisfies usual
conditions, that is, it is non-decreasing, continuous from the right and F0 con-
tains all P−null sets. Some necessary notations are going to be introduced.
For every nonnegative t, let w(t) = [w1(t), . . . , wd1(t)]T , d1 ∈ N, be a standard
d1-dimensional Wiener process, Ft−adapted and independent of F0. Let |·|E or
| · |F represent the Euclidean norm or, more general, Frobenius (trace) norm of

real vectors or matrices, that is, |S|F = (trace(STS))
1
2 = (

∑k
i=1

∑l
j=1 s

2
i,j)

1
2 ,

for S = [si,j ]k×l. Notation | · | will also be used without further emphasizing,
especially for normed space R where the Euclidean norm comes down to the
absolute value. Additionally, 〈·,·〉 represents the standard Euclidean scalar
product of vectors. Marks ∨ and ∧ will represent maximum and minimum of
real numbers, respectively.

Let τ, t0 and T , where τ > 0 and also t0 < T , be fixed real numbers
and let us denote an important class of functions V = C([−τ, 0],Rd), where
V contains all continuous functions ϕ : [−τ, 0] → Rd. It is familiar that
V = (V, ‖ · ‖V ) is a Banach space, where ‖ · ‖V is the supremum norm, that is
‖ϕ‖V = sup[−τ,0] |ϕ(θ)|E for every ϕ ∈ V .

Let us consider SFDE

dx(t) = a(xt, t)dt+ b(xt, t)dw(t), t ∈ [t0, T ], (1)

with the given initial condition

xt0 = η = {η(θ) |θ ∈ [−τ, 0]}. (2)

The appropriate integral form of Eq. (1) is

x(t) = η(0) +

∫ t

t0

a(xu, u)du+

∫ t

t0

b(xu, u)dw(u), t ∈ [t0, T ], (3)

where xt represents the stochastic process {x(t + θ) | θ ∈ [−τ, 0]}, that is
xt(θ) = x(t + θ) for θ ∈ [−τ, 0] and t ∈ [t0, T ], and x(t) is an Rd-valued
random variable for fixed t ∈ [t0 − τ, T ]. Also, η is an Ft0 -measurable, V -
valued random variable. Mappings a and b from V × [t0, T ] to Rd and Rd×d1 ,
respectively, are Borel measurable.

For every positive, big enough integer n let us consider an equidistant
partition of the time interval [t0, T ] of the form

t0 < t1 < · · · < tn = T, (4)
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that is, tk = t0 + k(T − t0)/n, k ∈ {0, . . . , n}. The diameter of this partition
is marked as δn = (T − t0)/n < 1. On this partition, following approximate
equations are going to be considered

xn(t) =xn(tk) +

∫ t

tk

m1∑
i=0

a
(i)
(xn

tk
,s)(

i times︷ ︸︸ ︷
xns − xntk , . . . , x

n
s − xntk)

i!
ds

+

∫ t

tk

m2∑
i=0

b
(i)
(xn

tk
,s)(

i times︷ ︸︸ ︷
xns − xntk , . . . , x

n
s − xntk)

i!
dw(s), t ∈ [tk, tk+1],

(5)

whenever k ∈ {0, 1, . . . , n−1}, with initial condition (2) and initial conditions
xntk = {xn(tk+θ), | θ ∈ [−τ, 0]}, k ∈ {1, . . . , n−1}, derived from the solutions
of the previous equations. Solutions of Eqs. (5) are going to be used for
approximation of the solution x = {x(t) | t ∈ [t0 − τ, T ]} of Eq. (3) with
initial condition (2). The approximate solution xn = {xn(t) | t∈ [t0 − τ, T ]},
constructed by successive connecting of the initial condition (2) and processes
{xn(t) | t ∈ [tk, tk+1]} in points tk, k ∈ {0, 1, . . . , n − 1}, is almost surely
continuous process.

In Eqs. (5), the drift and diffusion coefficients are Taylor approximations

of functionals a and b, respectively. Here a
(i)
(xn

tk
,s) and b

(i)
(xn

tk
,s) represent i-th

Fréchet derivatives of functionals a and b with respect to the first argument,

respectively, in the points (xntk , s), where i ≥ 1. Thereby a
(0)
(xn

tk
,s) = a(xntk , s) ∈

Rd and b
(0)
(xn

tk
,s) = b(xntk , s) ∈ Rd×d1 .

In the sequel, we introduce the basic notion of the Fréchet derivative (see,
for example, [4, 5]). Let X = (X, ‖·‖1) and Y = (Y, ‖·‖2) be normed spaces over
the same field F and L(X,Y ) represents the space of all bounded (continuous)
linear operators from X to Y . The norm ‖ · ‖L(X,Y ) in L(X,Y ) is defined as
‖A‖L(X,Y ) = sup‖x‖1≤1 ‖Ax‖2 for A ∈ L(X,Y ) and (L(X,Y ), ‖ · ‖L(X,Y )) is a
Banach space over the same field F. Let U be an open subset of X, functional
f : U → Y and x0 ∈ U . If there exists some F ∈ L(X,Y ) such that

lim
‖h‖1→0

‖f(x0 + h)− f(x0)− Fh‖2
‖h‖1

= 0,

then F is the Fréchet derivative of f at x0 and the notation used here is
F = f ′x0

. Previous limit is taken as the vector h tends to zero in X and the
Fréchet derivative is unique in the case when it exists.

Let f : U → Y be a mapping which is Fréchet differentiable at every point
x0 ∈ U . In this case, f ′x0

∈ L(X,Y ). We can consider the mapping u 7→ f ′u
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from U to L(X,Y ). If this mapping is Fréchet differentiable at x0, then the
second Fréchet derivative is f ′′x0

∈ L(X,L(X,Y )). In the case when the second
Fréchet derivative exists in some neighborhood U of the vector x0 ∈ X, we
can define F : U → L(X,Y ) as F (x) = f ′x, for every x ∈ U . Then, we have

lim
‖h‖1→0

∥∥F (x0+h)−F (x0)−F ′x0
h
∥∥
L(X,Y )

‖h‖1

= lim
‖h‖1→0

∥∥f ′x0+h−f ′x0
−f ′′x0

h
∥∥
L(X,Y )

‖h‖1
= 0.

Let X1 = (X1, ||·||1), . . . ,Xn = (Xn, ||·||n),Y = (Y, ||·||Y ) be normed spaces
over the same field F and let B : X1 × · · · ×Xn → Y be a mapping, which is
linear in every argument. Then B is an n-linear operator from X1 × · · · ×Xn

to Y and B is bounded if there exists some constant M ≥ 0 such that, for all
(x1, . . . , xn) ∈ X1 × · · · ×Xn, the following holds

‖B(x1, . . . , xn)‖Y ≤M‖x1‖1 · · · ‖xn‖n. (6)

The set of all bounded n-linear operators from X1×· · ·×Xn to Y is denoted by
T(X1, . . . , Xn;Y ). Shortly, T(X, . . . ,X;Y ) ≡ T(Xn;Y ) and T(X1, . . . , Xn;Y )
is a vector space. Moreover, if we define the norm of B ∈ T(X1, . . . , Xn;Y ) as
the infimum of all admissible M in the inequality (6), then T(X1, . . . , Xn;Y )
is a normed space. The norm of B, obtained in a described way, is denoted
by ‖B‖M,n. This norm is equivalently defined as

‖B‖M,n = sup
h1∈X1,...,hn∈Xn

‖h1‖1=···=‖hn‖n=1

‖B(h1, . . . , hn)‖Y = inf{M ≥ 0 | M satisfies (6)}.

Multi-linear and bounded linear operators are in a close relation in a sense
that T(Xn;Y ) is isometrically isomorphic to L(X,L(X, . . . ,L(X︸ ︷︷ ︸

n times

, Y )...)) with

respect to standard norms on these spaces. So, if x ∈ X, then f ′′x0
(x) ∈

L(X,Y ). If y ∈ X as well, then f ′′x0
(x)(y) = f ′′x0

(x, y) belongs to Y and the
mapping (x, y) 7→ f ′′x0

(x, y) belongs to T(X2;Y ). The norm ‖f ′′x0
‖L(X,L(X,Y ))

= ‖f ′′x0
‖M,2 is the same in the space L(X,L(X,Y )) and in the space T(X2;Y ).

In the same manner higher Fréchet derivatives can be defined, in the case
when they do exist. Thus, the n-th Fréchet derivative of the function f at x0

is
f (n)
x0
∈ L(X,L(X, . . . ,L(X︸ ︷︷ ︸

n times

, Y ) . . . )),

if the function x0 7→ f
(n−1)
x0 is Fréchet differentiable in some neighborhood of

x0.
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Let us recall the Taylor formula [4, 5]. Let X = (X, ||·||1) and Y = (Y, ||·||2)
be normed spaces over the same field F, let U be an open subset of X and let
f : U → Y be (n + 1)-times Fréchet differentiable. Assume that x0, x ∈ U ,
such that the segment [x0, x] ⊂ U (that is, x0 + θ(x − x0) ∈ U for every
0 ≤ θ ≤ 1). Then the following formula holds

f(x)− f(x0) =

n∑
k=1

1

k!
f (k)
x0

(x− x0, . . . , x− x0︸ ︷︷ ︸
k times

)

+
1

(n+ 1)!
f

(n+1)

x0+θ̄(x−x0)
(x− x0, . . . , x− x0︸ ︷︷ ︸

n+1 times

),

for some θ̄ ∈ (0, 1). Notice that the k-th Fréchet derivative is a k-linear ope-

rator, so the notation f
(k)
x0 (x− x0, . . . , x− x0︸ ︷︷ ︸

k times

) ≡ f
(k)
x0 (x − x0)k may also be

used throughout the paper. The residuum of the Taylor approximation can
be estimated as

|R(x0, h)|E ≡
1

(n+ 1)!

∣∣f (n+1)

x0+θ̄h
(h, . . . , h︸ ︷︷ ︸
n+1 times

)
∣∣
E

≤ 1

(n+ 1)!
sup
θ∈[0,1]

∥∥f (n+1)
x0+θh

∥∥
M,n+1

‖h‖n+1,

(7)

for h = x− x0 ∈ X.

For easier managing in future analysis, the following assumptions are cat-
egorically listed.

A1 : There exist Taylor expansions of the functionals a and b in the first
argument up to the m1-th and m2-th Fréchet derivatives, respectively.

A2 : The initial data η satisfies the polynomial condition, that is, there
exist positive constant D′ and a nonnegative integer q′ such that, for every
θ1, θ2 ∈ [−τ, 0],∣∣η(θ1)− η(θ2)

∣∣2
E
≤ D′

(
1 + |θ1|q

′
+ |θ2|q

′)
|θ1 − θ2|2.

A3 : Functions a(0, ·) and b(0, ·) are bounded on [t0, T ], that is, there exist
positive constants Ka and Kb, such that |a(0, t)|E ≤ Ka and |b(0, t)|E ≤ Kb,
for every t0 ≤ t ≤ T .

A4 : Functions a
(m1+1)
(0,·) and b

(m2+1)
(0,·) are bounded on [t0, T ], that is, there

exist positive constants K ′a and K ′b such that, for every t ∈ [t0, T ],∥∥a(m1+1)
(0,t)

∥∥
M,m1+1

≤ K ′a,
∥∥b(m2+1)

(0,t)

∥∥
M,m2+1

≤ K ′b.
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A5 : The functionals a, b and theirs Fréchet derivatives with respect to
the first argument of order m1 + 1 and m2 + 1, respectively, satisfy following
polynomial conditions: there exist positive real numbers Da, Db, D

′
a and D′b

and there exist nonnegative integers qa, qb, q
′
a and q′b such that, for every

x, y ∈ V and t ∈ [t0, T ],∣∣a(x, t)− a(y, t)
∣∣2
E
≤ Da

(
1 + ‖x‖qaV + ‖y‖qaV

)
‖x− y‖2V ,∣∣b(x, t)− b(y, t)∣∣2

E
≤ Db

(
1 + ‖x‖qbV + ‖y‖qbV

)
‖x− y‖2V ,∥∥a(m1+1)

(x,t) − a(m1+1)
(y,t)

∥∥2

M,m1+1
≤ D′a

(
1 + ‖x‖q

′
a

V + ‖y‖q
′
a

V

)
‖x− y‖2V ,∥∥b(m2+1)

(x,t) − b(m2+1)
(y,t)

∥∥2

M,m2+1
≤ D′b

(
1 + ‖x‖q

′
b

V + ‖y‖q
′
b

V

)
‖x− y‖2V .

A6 : There exist unique solutions x and xn of Eqs. (3) and (5), respectively,
such that for p ≥ 2,

E sup
t∈[t0−τ,T ]

∣∣x(t)
∣∣2p(1∨q)
E

≤ Q <∞,

E sup
t∈[t0−τ,T ]

∣∣xn(t)
∣∣2p[1+(M∨(q/2))][2+M+(M∨(q/2))]

E
≤ Q <∞,

where Q is a positive constant, independent of n, q = qa ∨ qb ∨ q′a ∨ q′b and
M=m1 ∨m2.

The existence and uniqueness of solutions of Eqs. (3) and (5) are assumed
without considering any conditions which are satisfied by their coefficients.
However, the example will illustrate that the class of SFDEs which satisfy the
existence and uniqueness conditions, as well as the assumptions A1 − A6 is
not empty. All Lebesgue and Itô integrals are supposed to be well defined.

In this paper, some known inequalities, such as Hölder and Burkholder-
Davis-Gundy inequality are used in subsequent proofs. Likewise, the elemen-
tary inequality is used in the sequel: for every r≥0, normed space (N, | · |N )
and ai ∈ N , i ∈ {1, 2, . . . , n}, n ∈ N,∣∣∣ n∑

i=1

ai

∣∣∣r
N
≤ (nr−1 ∨ 1) ·

n∑
i=1

∣∣ai∣∣rN . (8)

Following theorem plays an important part in the further analysis and it rep-
resents one of the integral Bihari-type inequalities from [18].

Theorem 1.1. Let G be the class of functions ϕ : R+ → R+ which satisfy the
following conditions:

1) ϕ is nondecreasing and continuous in R+ and ϕ(u) > 0 for u > 0;
2) 1

αϕ(u) ≤ ϕ( uα ), u ≥ 0, α ≥ 1.
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Let f = f(x), u = u(x) be a real-valued nonnegative continuous functions on U ,
where U is any bounded open set in R. If g = g(x) is a positive, nondecreasing
continuous function on U and ϕ belongs to the class G for which the following
inequality

u(x) ≤ g(x) +

∫ x

x0

f(t)ϕ
(
u(t)

)
dt (9)

holds for all x ∈ U with x ≥ x0 ∈ U , then for x0 ≤ x ≤ x∗,

u(x) ≤ g(x)G−1
(
G(1) +

∫ x

x0

f(t)dt
)
,

where

G(z) =

∫ z

z0

ds

ϕ(s)
, z ≥ z0 > 0

and G−1 is the inverse function of G, where x∗ is chosen so that

G(1) +

∫ x

x0

f(t)dt ∈ Dom(G−1).

2 Main results

Our main goal in this section and in whole paper is to prove the Lp and almost
sure convergence of the processes xn = {xn(s) | s ∈ [t0− τ, T ]}, which are the
solutions of Eqs. (5), to the process x = {x(s) | s ∈ [t0 − τ, T ]} which is
the solution to Eq. (3) with initial condition (2). In order to do that, we
established two necessary propositions.

Proposition 1. Let {xn(t) | t ∈ [tk − τ, tk+1]}, k ∈ {0, . . . , n − 1} represent
the solutions of Eqs. (5) with the initial condition (2) and let us assume that
the conditions A1,A3 − A6 are satisfied. Then, for every 0 < r ≤

(
M + 2 +

[M ∨ q
2 ]
)
p,

E sup
s∈[tk,t]

∣∣xn(s)− xn(tk)
∣∣r
E
≤ Cδr/2n , t ∈ [tk, tk+1], k ∈ {0, . . . , n− 1},

where C is a generic constant independent of both n and δn.

Proof. Let us introduce

A(xnt , t;x
n
tk

) =

m1∑
i=0

a
(i)
(xn

tk
,t)

(
xnt − xntk , . . . , x

n
t − xntk

)
i!

,

B(xnt , t;x
n
tk

) =

m2∑
i=0

b
(i)
(xn

tk
,t)

(
xnt − xntk , . . . , x

n
t − xntk

)
i!
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for simplicity.
Afterward, only the case where r ≥ 2 is considered. The case 0 < r < 2

can be then easily proved by using the Hölder inequality with the conjugate
exponents (2/r, 2/(2− r)).

Using the inequality (8), Hölder inequality for the appropriate Lebesgue
integral with the conjugate exponents (r, r/(r− 1)), Burkholder-Davis-Gundy
and Hölder inequality with the conjugate exponents (r/2, r/(r−2)) (for r > 2),
Itô isometry, Doob martingale inequality (for r = 2) and Fubini theorem for
the appropriate stochastic integral, it is easy to obtain

E sup
s∈[tk,t]

∣∣xn(s)−xn(tk)
∣∣r
E
≤ 2r−1(t− tk)

r
2−1
[
(t− tk)r/2J1(t) + crJ2(t)

]
, (10)

where

J1(t) =

∫ t

tk

E
∣∣A(xns , s;x

n
tk

)
∣∣r
E
ds, J2(t) =

∫ t

tk

E
∣∣B(xns , s;x

n
tk

)
∣∣r
E
ds

and the constant cr > 0 is obtained from the Burkholder-Davis-Gundy in-
equality.

Let us now estimate J1(t) using the assumption A1 and inequality (8).
For simplicity, let us introduce a new mark ∆n

s = xns − xntk , for s ∈ [tk, tk+1],
k ∈ {0, 1, . . . , n− 1}. There exists θ̄ ∈ (0, 1) such that

J1(t)

=

∫ t

tk

E
∣∣∣a(xns , s)−

[
a(xns , s) +A(xns , s;x

n
tk

)
]∣∣∣r
E
ds

=

∫ t

tk

E

∣∣∣∣∣a(xns , s)−
a

(m1+1)

(xn
tk

+θ̄∆n
s ,s)

(∆n
s , . . . ,∆

n
s )

(m1 + 1)!

∣∣∣∣∣
r

E

ds

≤2r−1

[∫ t

tk

E
∣∣a(xns , s)

∣∣r
E
ds+

1

[(m1+1)!]r

∫ t

tk

E
∣∣a(m1+1)

(xn
tk

+θ̄∆n
s ,s)

(∆n
s , . . . ,∆

n
s )
∣∣r
E
ds

]
. (11)

Following part will be proved using the relation (8) and A3,A5 and A6,
such that∫ t

tk

E
∣∣a(xns , s)

∣∣r
E
ds

=

∫ t

tk

E
∣∣a(xns , s)− a(0, s) + a(0, s)

∣∣r
E
ds

≤ 2r−1

[ ∫ t

tk

E
(∣∣a(xns , s)− a(0, s)

∣∣2
E

)r/2
ds+Kr

a(t− tk)

]
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≤ 2r−1

[
Dr/2
a

∫ t

tk

E
(
1 +

∥∥xns ∥∥qaV )r/2∥∥xns ∥∥rV ds+Kr
a(t− tk)

]
≤ 2r−1

[
Dr/2
a 2r/2−1

(∫ t

tk

E
∥∥xns ∥∥rV ds+

∫ t

tk

E
∥∥xns ∥∥r(1+qa/2)

V
ds
)
+Kr

a(t− tk)

]
≤ 2r−1

[
Dr/2
a 2r/2(1 +Q)(t− tk) +Kr

a(t− tk)

]
= K ′(t− tk), (12)

where
K ′ = 2r−1

(
Dr/2
a 2r/2(1 +Q) +Kr

a

)
is a constant independent of n and δn.

By applying (7), the assumptions A4 −A6 as well as (8), we get∣∣a(m1+1)

(xn
tk

+θ̄∆n
s ,s)

(∆n
s , . . . ,∆

n
s )
∣∣r
E

≤
∥∥a(m1+1)

(xn
tk

+θ̄∆n
s ,s)
− a(m1+1)

(0,s) + a
(m1+1)
(0,s)

∥∥r
M,m1+1

·
∥∥∆n

s

∥∥r(m1+1)

V

≤2r−1
[(
D′a
(
1+
∥∥xntk + θ̄∆n

s

∥∥q′a
V

)∥∥xntk + θ̄∆n
s

∥∥2

V

)r/2
+ (K ′a)r

]∥∥∆n
s

∥∥r(m1+1)

V

≤23r/2−2(D′a)r/2
[(∥∥xntk + θ̄∆n

s

∥∥r
V

+
∥∥xntk + θ̄∆n

s

∥∥r(1+q′a/2)

V

)∥∥∆n
s

∥∥r(m1+1)

V

]
+ 2r−1(K ′a)r

∥∥∆n
s

∥∥r(m1+1)

V
.

(13)

The second summand on the right-hand side of (11) can now be estimated
based on (13) via the inequality (8). Thus,∫ t

tk

E
∣∣a(m1+1)

(xn
tk

+θ̄∆n
s ,s)

(∆n
s , . . . ,∆

n
s )
∣∣r
E
ds

≤ 23r/2−2(D′a)r/2
[ ∫ t

tk

E
∥∥xntk + θ̄∆n

s

∥∥r
V

∥∥∆n
s

∥∥r(m1+1)

V
ds

+

∫ t

tk

E
∥∥xntk + θ̄∆n

s

∥∥r(1+q′a/2)

V

∥∥∆n
s

∥∥r(m1+1)

V
ds

]
+ 2r−1(K ′a)r

∫ t

tk

E
∥∥∆n

s

∥∥r(m1+1)

V
ds

≤ (D′a)r/22r(m1+7/2)−4{∫ t

tk

E
(
|1− θ̄|r

∥∥xntk∥∥rV +|θ̄|r
∥∥xns ∥∥rV )(∥∥xns ∥∥r(m1+1)

V
+
∥∥xntk∥∥r(m1+1)

V

)
ds
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+2rq
′
a/2

∫ t

tk

E
[(
|1−θ̄|r(1+q′a/2)

∥∥xntk∥∥r(1+q′a/2)

V
+|θ̄|r(1+q′a/2)

∥∥xns ∥∥r(1+q′a/2)

V

)
·
(∥∥xns ∥∥r(m1+1)

V
+
∥∥xntk∥∥r(m1+1)

V

)]
ds

}
+ (K ′a)r2r(m1+2)−2

∫ t

tk

E
(∥∥xns ∥∥r(m1+1)

V
+
∥∥xntk∥∥r(m1+1)

V

)
ds.

Applying the Hölder inequality with the conjugate exponents (2, 2) for the

terms of the form E
(
‖xns ‖αV ‖xntk‖

β
V

)
in the previous estimates, that is, the

Cauchy-Schwarz-Bunyakovsky inequality, recalling that 0 < θ < 1 and finally
applying the assumption A6, we can attain∫ t

tk

E
∣∣a(m1+1)

(xn
tk

+θ̄∆n
s ,s)

(∆n
s , . . . ,∆

n
s )
∣∣r
E
ds

≤ 2r(m1+7/2)−4(D′a)r/2

·

{[
(1−θ̄)r

(∫ t

tk

(
E‖xntk‖

2r
V

)1/2(
E‖xns ‖

2r(m1+1)
V

)1/2
ds+

∫ t

tk

E‖xntk‖
r(m1+2)
V ds

)
+ θ̄r

(∫ t

tk

E‖xns ‖
r(m1+2)
V ds+

∫ t

tk

(
E‖xns ‖2rV

)1/2(
E‖xntk‖

2r(m1+1)
V

)1/2
ds

)]
+2rq

′
a/2

[
(1−θ̄)r(1+q′a/2)

(∫ t

tk

(
E‖xntk‖

2r(1+q′a/2)
V

)1/2(
E‖xns ‖

2r(m1+1)
V

)1/2
ds

+

∫ t

tk

E‖xntk‖
r(m1+2+q′a/2)
V ds

)

+ θ̄r(1+q′a/2)

(∫ t

tk

E‖xns ‖
r(m1+2+q′a/2)
V ds

+

∫ t

tk

(
E‖xns ‖

2r(1+q′a/2)
V

)1/2(
E‖xntk‖

2r(m1+1)
V

)1/2
ds

)]}

+ 2r(m1+2)−2(K ′a)r
∫ t

tk

(
E‖xns ‖

r(m1+1)
V + E‖xntk‖

r(m1+1)
V

)
ds

≤ 2r(m1+2)−1(1 +Q)(t− tk)

·
{
(K ′a)r+(D′a)r/223r/2−2

[(
(1−θ̄)r+θ̄r

)
+2rq

′
a/2
(
(1−θ̄)r(1+q′a/2)+θ̄r(1+q′a/2)

)]}
≤ K ′′(t− tk),

(14)
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where

K ′′ = 2r(m1+2)−1(1 +Q)
[
(D′a)r/223r/2−1(1 + 2rq

′
a/2) + (K ′a)r

]
.

Putting (12) and (14) into (11), we compute

J1(t) ≤ 2r−1
[
K ′ +

[
(m1 + 1)!

]−r
K ′′
]
(t− tk). (15)

Analogous procedure for J2(t) gives

J2(t) ≤ 2r−1
[
L′ +

[
(m2 + 1)!

]−r
L′′
]
(t− tk), (16)

where

L′ = 2r−1
(
D
r/2
b 2r/2(1 +Q) +Kr

b

)
,

L′′ = 2r(m2+2)−1(1 +Q)
[
(D′b)

r/223r/2−1(1 + 2rq
′
b/2) + (K ′b)

r
]
.

The application of (15) and (16) to (10) finishes the proof, where

C = 22r−2
{

(T − t0)r/2
[
K ′ + [(m1 + 1)!]−rK ′′

]
+ cr

[
L′ + [(m2 + 1)!]−rL′′

]}
is constant independent of both n and δn. ♦

Note that in the previous proof the fact that the partition (4) is equidis-
tant does not play any role. This, however, is not the case in the following
proposition.

Proposition 2. Let the conditions of Proposition 1 and assumption A2 be
satisfied. Then, for every 0 < r ≤

(
M + 2 + [M ∨ q

2 ]
)
p,

E
∥∥xnt − xntk∥∥rV ≤ B̄δr/2n , t ∈ [tk, tk+1], k ∈ {0, . . . , n− 1},

where B̄ is a positive generic constant independent of both n and δn.

Proof. The proof is going to be represented for r ≥ 2 and, for 0 < r < 2, the
analogous analysis holds as in the proof of Proposition 1.

Let t ∈ [tk, tk+1] for a fixed k ∈ {0, . . . , n−1}. Define the sets S1 and S2 as
S1 = {t ∈ [t0− τ, T ] | t− τ < t0} and S2 = {t ∈ [t0− τ, T ] | tk− τ < t0 ≤ t− τ}.
If we denote by χS the characteristic function of the set S, S ⊂ [t0 − τ, T ],
that is χS(y) = 1 if y ∈ S and χS(y) = 0 if y /∈ S, then

E
∥∥xnt − xntk∥∥rV ≤ E1 + E2 + E3, (17)
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where

E1 = E sup
u∈[tk−τ,t0+tk−t]

∣∣η(u+ t− tk − t0)− η(u− t0)
∣∣r
E
· χS1

(t),

E2 = E sup
u∈[t0+tk−t,t0]

∣∣xn(u+ t− tk)− η(u− t0)
∣∣r
E
· χS1∪S2

(t),

E3 = E sup
u∈[t0,tk]

∣∣xn(u+ t− tk)− xn(u)
∣∣r
E
.

For completeness of the proof we will emphasize some pats of the proof
of Proposition 2 from [16]. Almost sure continuity of the process xn and
compactness of the segment [t0, tk] implies that there exist i ∈{0, . . . , k −1}
and v ∈[ti, ti+1] such that supu∈[t0,tk] |xn(u + t − tk) − xn(u)|r = |xn(v + t −
tk) + xn(v)|r. Differentiating the cases where v + t − tk belongs to [ti, ti+1]
or [ti+1, ti+2], by adding and subtracting the terms xn(ti), that is, xn(ti) and
xn(ti+1), respectively, by applying (8) and Proposition 1, it follows that

E3 ≤ 3rCδr/2n . (18)

Since

E2 ≤ 2r−1
[
E sup
u∈[t0+tk−t,t0]

∣∣xn(u+ t− tk)− xn(t0)
∣∣r
E

+ E sup
u∈[t0+tk−t,t0]

∣∣η(0)− η(u− t0)
∣∣r
E

]
,

by applying the assumption A2 it follows that∣∣η(0)− η(u− t0)
∣∣r
E
≤ D′r/2(1 + |u− t0|q

′
)r/2|u− t0|r,

where u−t0 belongs to the segment [−τ, 0], more precisely, u− t0 ∈ [tk − t, 0].
Because of that∣∣η(0)− η(u− t0)

∣∣r
E
≤ D′r/2(1 + τ q

′
)r/2

(
1 ∧ τ

)r/2
δr/2n .

Combining the previous relation with Proposition 1 leads to

E2 ≤ 2r−1
[
C +D′r/2(1 + τ q

′
)r/2

(
1 ∧ τ

)r/2]
δr/2n . (19)

Similarly, for estimating the expression E1, we get∣∣η(u+ t− tk − t0)− η(u− t0)
∣∣r
E

≤ D′r/2(1 + |u+ t− tk − t0|q
′
+ |u− t0|q

′
)r/2|t− tk|r.
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Both u+ t− tk − t0 and u− t0 belong to the segment [−τ, 0], so

E1 ≤ D′r/2(1 + 2τ q
′
)r/2

(
1 ∧ τ

)r/2
δr/2n . (20)

Finally, the relations (18), (19) and (20), together with (17), imply straight-
forward the proof of this proposition with the positive constant

B̄=3rC+2r−1
[
C+D′r/2(1 + τ q

′
)r/2

(
1 ∧ τ

)r/2]
+D′r/2(1 + 2τ q

′
)r/2

(
1 ∧ τ

)r/2
,

independent of n and δn. ♦

In the next theorem, the rate of convergence for the analytic method under
consideration is established. It is shown that if the degrees of the Taylor
approximations of the functionals a and b increase, the rate of the closeness
between solutions x and xn increases as well in the sense of Lp-norm.

Theorem 2.1. Let us assume that all assumptions of Proposition 2 hold, let x
be the solution of Eq. (3) with the initial condition (2) and xn be the solutions
of Eqs. (5). Then, for p > 0

E sup
t∈[t0−τ,T ]

∣∣x(t)− xn(t)
∣∣p
E
≤ Hδ(m+1)p/2

n ,

where m = m1 ∧m2 and H is a generic constant independent of n and δn.

Proof. Analogously to the proofs of Propositions 1 and 2, only the case when
p ≥ 2 is going to be considered.

Let j be the biggest integer such that t ∈ [tj , T ]. Using elementary inequal-
ities such as Hölder inequality with the conjugate exponents (p, p/(p− 1)) for
the appropriate Lebesgue integral, Hölder inequality with the conjugate expo-
nents (p/2, p/(p − 2)), Burkholder-Davis-Gundy inequality (for p > 2), Itô
isometry, Doob martingale inequality (for p = 2) for the appropriate Itô inte-
gral and Fubini theorem, we get

E sup
s∈[t0−τ,t]

∣∣x(s)− xn(s)
∣∣p
E

≤ 2p−1(T − t0)p−1

j−1∑
k=0

∫ tk+1

tk

E
∣∣a(xu, u)−A(xnu, u;xntk)

∣∣p
E
du

+ 2p−1(T − t0)p−1

∫ t

tj

E
∣∣a(xu, u)−A(xnu, u;xntk)

∣∣p
E
du

+ 2p−1cp(T − t0)p/2−1

j−1∑
k=0

∫ tk+1

tk

E
∣∣b(xu, u)−B(xnu, u;xntk)

∣∣p
E
du

+ 2p−1cp(T − t0)p/2−1

∫ t

tj

E
∣∣b(xu, u)−B(xnu, u;xntk)

∣∣p
E
du.

(21)
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It is easy to see that, for every t ∈ [tk, tk+1], k ∈ {0, 1, . . . , j},∫ t

tk

E
∣∣a(xu, u)−A(xnu, u;xntk)

∣∣p
E
du

=

∫ t

tk

E
∣∣a(xu, u)− a(xnu, u) + a(xnu, u)−A(xnu, u;xntk)

∣∣p
E
du

≤2p−1

(∫ t

tk

E
∣∣a(xu, u)−a(xnu, u)

∣∣p
E
du+

∫ t

tk

E
∣∣a(xnu, u)−A(xnu, u;xntk)

∣∣p
E
du

)
. (22)

For the first summand in (22), the polynomial condition A5 and Cauchy-
Schwarz-Bunyakovsky inequality imply∫ t

tk

E
∣∣a(xu, u)− a(xnu, u)

∣∣p
E
du

≤
∫ t

tk

E
[
Da

(
1 + ‖xu‖qaV + ‖xnu‖

qa
V

)
‖xu − xnu‖2V

]p/2
du

≤Dp/2
a

∫ t

tk

{
E
[(

1+‖xu‖qaV +‖xnu‖
qa
V

)
‖xu − xnu‖V

]p}1/2{
E‖xu − xnu‖

p
V

}1/2
du. (23)

By using the inequality (8), Cauchy-Schwarz-Bunyakovsky inequality and A6,
we compute

E
[(

1 + ‖xu‖qaV + ‖xnu‖
qa
V

)
‖xu − xnu‖V

]p
≤ 3p−12p−1E

[(
1 + ‖xu‖pqaV + ‖xnu‖

pqa
V

)(
‖xu‖pV + ‖xnu‖

p
V

)]
≤ 6p−1

[
E‖xu‖pV + E‖xnu‖

p
V + E‖xu‖p(1+qa)

V + E‖xnu‖
p(1+qa)
V

+
(
E‖xu‖2pV

)1/2(
E‖xnu‖

2pqa
V

)1/2
+
(
E‖xu‖2pqaV

)1/2(
E‖xnu‖

2p
V

)1/2]
≤ 6p(1 +Q).

Then, (23) becomes∫ t

tk

E
∣∣a(xu, u)−a(xnu, u)

∣∣p
E
du ≤ Dp/2

a

(
6p(1+Q)

)1/2∫ t

tk

(
E‖xu−xnu‖

p
V

)1/2
du. (24)

The second summand in (22) is estimated applying the condition A1 and
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relation (7), such that∫ t

tk

E
∣∣a(xnu, u)−A(xnu, u;xntk)

∣∣p
E
du

≡
∫ t

tk

E

∣∣∣∣∣a
(m1+1)

(xn
tk

+θ̄∆n
u,u)

(∆n
u, . . . ,∆

n
u)

(m1 + 1)!

∣∣∣∣∣
p

E

du

≤
[
(m1 + 1)!

]−p ∫ t

tk

E
(

sup
θ̄∈[0,1]

‖a(m1+1)

(xn
tk

+θ̄∆n
u,u)
‖pM,m1+1‖∆

n
u‖

(m1+1)p
V

)
du,

(25)

where ∆n
u = xns − xntk , as in Proposition 2. The application of the relation (8)

multiple times, A4 and A5, yields

sup
θ̄∈[0,1]

∥∥a(m1+1)

(xn
tk

+θ̄∆n
u,u)

∥∥p
M,m1+1

≤ 2p−1
{∥∥a(m1+1)

(0,u)

∥∥p
M,m1+1

+ sup
θ∈[0,1]

∥∥a(m1+1)

(xn
tk

+θ̄∆n
u,u)
− a(m1+1)

(0,u)

∥∥p
M,m1+1

}
≤ 2p−1

{
(K ′a)p + sup

θ∈[0,1]

[
D′a
(
1 + ‖xntk + θ̄∆n

u‖
q′a
V

)
‖xntk + θ̄∆n

u‖2V
]p/2}

≤ 2p−1

{
(K ′a)p + (D′a)p/223p/2−2

[
sup
θ̄∈[0,1]

(
‖xntk‖

p
V + θ̄p‖∆n

u‖
p
V

)
+ 2pq

′
a/2 sup
θ̄∈[0,1]

(
‖xntk‖

p(1+q′a/2)
V + θ̄p(1+q′a/2)‖∆n

u‖
p(1+q′a/2)
V

)]}
≤ 2p−1

{
(K ′a)p + (D′a)p/223p/2−2

[
‖xntk‖

p
V + ‖∆n

u‖
p
V

+ 2pq
′
a/2
(
‖xntk‖

p(1+q′a/2)
V + ‖∆n

u‖
p(1+q′a/2)
V

)]}
.

Then, (25) becomes∫ t

tk

E
∣∣a(xnu, u)−A(xnu, u;xntk)

∣∣p
E
du

≤ 2p−1[
(m1 + 1)!

]p
·
∫ t

tk

E

{[
(K ′a)p + (D′a)p/223p/2−2

(
‖xntk‖

p + ‖∆n
u‖p

+2pq
′
a/2
(
‖xntk‖

p(1+q′a/2)+ ‖∆n
u‖p(1+q′a/2)

))]
‖∆n

u‖(m1+1)p

}
du
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≡
∫ t

tk

E
[
K1‖∆n

u‖(m1+1)p +K2‖∆n
u‖(m1+2)p +K3‖∆n

u‖(m1+2+q′a/2)p

+K4‖xntk‖
p‖∆n

u‖(m1+1)p +K5‖xntk‖
p(1+q′a/2)‖∆n

u‖(m1+1)p
]
du,

(26)

where

K1 =
2p−1(K ′a)p[
(m1 + 1)!

]p , K2 = K4 =
25p/2−3(D′a)p/2[

(m1 + 1)!
]p ,

K3 = K5 =
2p(5/2+q′a/2)−3(D′a)p/2[

(m1 + 1)!
]p .

(27)

Finally, via (8), the Cauchy-Schwarz-Bunyakovsky inequality, assumption A6

and Proposition 2, (26) implies∫ t

tk

E
∣∣a(xnu, u)−A(xnu, u;xntk)

∣∣p
E
du

≤
∫ t

tk

{
E
[
K1‖∆n

u‖(m1+1)p +K2‖∆n
u‖(m1+2)p +K3‖∆n

u‖(m1+2+q′a/2)p
]

+K4

(
E‖xntk‖

2p
)1/2(

E‖∆n
u‖2(m1+1)p

)1/2
+K5

(
E‖xntk‖

2p(1+q′a/2)
)1/2(

E‖∆n
u‖2(m1+1)p

)1/2}
du

≤
∫ t

tk

{
E
[
K1‖∆n

u‖(m1+1)p +K2‖∆n
u‖(m1+2)p +K3‖∆n

u‖(m1+2+q′a/2)p
]

+(1+Q)1/2
[
K4

(
E‖∆n

u‖2(m1+1)p
)1/2

+K5

(
E‖∆n

u‖2(m1+1)p
)1/2]}

du

≤
[
B̄
(
K1δ

(m1+1)p/2
n +K2δ

(m1+2)p/2
n +K3δ

(m1+2+q′a/2)p/2
n

)
+ (K4 +K5)

(
(1 +Q)B̄

)1/2
δ(m1+1)p/2
n

]
(t− tk).

Since (m1 + 1)p/2 =
[
(m1 + 1)p/2

]
∧
[
(m1 + 2)p/2

]
∧
[
(m1 + 2 + q′a/2)p/2

]
and δn is less than 1, then∫ t

tk

E
∣∣a(xnu, u)−A(xnu, u;xntk)

∣∣p
E
du

≤
[
B̄(K1 +K2 +K3) + ((1 +Q)B̄)1/2(K4 +K5)

]
δ(m1+1)p/2
n (t− tk).

(28)
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In view of (24) and (28), from the inequality (22) we get∫ t

tk

E
∣∣a(xu, u)−A(xnu, u;xntk)

∣∣p
E
du

≤2p−1
[
Dp/2
a

(
6p(1 +Q)

)1/2 ∫ t

tk

(
E‖xu − xnu‖

p
V

)1/2
du

+
[
B̄(K1+K2+K3)+

(
(1+Q)B̄

)1/2
(K4+K5)

]
δ(m1+1)p/2
n (t−tk)

]
.

(29)

Analogously, we can show similar results for functionals b and B for every
k ∈ {0, 1, . . . , j} and t ∈ [tk, tk+1], that is,∫ t

tk

E
∣∣b(xu, u)−B(xnu, u;xntk)

∣∣p
E
du

≤ 2p−1
[
D
p/2
b

(
6p(1 +Q)

)1/2 ∫ t

tk

(
E‖xu − xnu‖

p
V

)1/2
du

+
[
B̄(K ′1+K ′2+K ′3)+

(
(1+Q)B̄

)1/2
(K ′4+K ′5)

]
δ(m2+1)p/2
n (t−tk)

]
,

(30)

where the constants K ′i have the same form as Ki, i = 1, 2, . . . , 5 in (27), but
m1, K ′a, D′a and q′a are replaced by m2, K ′b, D

′
b and q′b, respectively.

Inequalities (29) and (30) applied to (21) give

E sup
s∈[t0−τ,t]

∣∣x(s)− xn(s)
∣∣p
E

≤ 25p/2−23p/2(1 +Q)1/2(T − t0)p/2−1
[
(T − t0)p/2Dp/2

a + cpD
p/2
b

]
·
∫ t

t0

(
E‖xu − xnu‖

p
V

)1/2
du

+ 22p−2(T − t0)p/2−1
[
(T − t0)p/2 + cp

]
B̄1/2(t− t0)

·
{[
B̄1/2(K1 +K2 +K3) + (1 +Q)1/2(K4 +K5)

]
δ(m1+1)p/2
n

+
[
B̄1/2(K ′1 +K ′2 +K ′3) + (1 +Q)1/2(K ′4 +K ′5)

]
δ(m2+1)p/2
n

}
≤ L1

∫ t

t0

(
E‖xu − xnu‖

p
V

)1/2
du+ L2δ

(m+1)p/2
n

≤ L1

∫ t

t0

(
E sup
s∈[t0−τ,u]

|x(s)− xn(s)|pE
)1/2

du+ L2δ
(m+1)p/2
n ,

(31)
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since δn is less than 1, where

L1 = 25/2p−23p/2(1 +Q)1/2(T − t0)p/2−1
[
(T − t0)p/2Dp/2

a + cpD
p/2
b

]
,

L2 = 22p−2(T − t0)p/2
[
(T − t0)p/2 + cp

]
B̄1/2

·
[
B̄1/2(K1 +K2 +K3) + (1 +Q)1/2(K4 +K5)

+ B̄1/2(K ′1 +K ′2 +K ′3) + (1 +Q)1/2(K ′4 +K ′5)
]
.

The relation (31) has the form (9) and the Bihari-type inequality (Theorem
1.1) applied to (31) finishes the proof if all of its assumptions hold. Indeed, let
the function ϕ : R+→R+ be defined as ϕ(y) = y1/2 and it is nondecreasing,
positive for positive arguments and satisfies the relation ϕ(y) ≤ αϕ(y/α), for
every y ∈ [0,∞) and α ≥ 1. Also, E sups∈[t0−τ,t]

∣∣x(s) − xn(s)
∣∣p
E

, considered
as the function of the argument t, t ∈ [t0, T ], is a nonnegative and continuous
function. Then, from the application of Theorem 1.1 it follows that

E sup
s∈[t0−τ,t]

∣∣x(s)− xn(s)
∣∣p
E
≤ L2δ

(m+1)p/2
n

1

4

(
2 + L1T

)2
= Hδ(m+1)p/2

n ,

where G(y) =
∫ y

0
ds
ϕ(s)ds= 2y1/2, for y>0, and its inverse function is G−1(y) =

1
4y

2. The constant H = L2

4

(
2 + L1T

)2
is independent of δn and n. ♦

The following theorem is proved analogously to Theorem 2 from [16]. The
proof is based on the application of the Borel–Cantelli lemma. Almost sure
convergence of the sequence of the solutions to approximate Eqs. (5) to the
solution of the initial Eq. (3) is established.

Theorem 2.2. Let the assumptions of Theorem 1 be satisfied. Then, the
sequence (xn)n∈N of the solutions of Eqs. (5) converges almost surely to the
solution x of Eq. (3).

3 Example

The next example illustrates the previous theoretical findings.
Let us consider an one-dimensional (d = 1) SFDE

dx(t) =

[
− α(t)C(x(t)) + 0.5β(t) sin

(
2

∫ 0

−τ
K(θ)xt(θ)dθ

)]
dt

+ a1(t) sin
(∫ 0

−τ
K(θ)xt(θ)dθ

)
dw(t), t ∈ [t0, T ],

(32)

with the initial condition x0 = η = {θ | θ ∈ [−τ, 0]} independent of the one-

dimensional (d1 = 1) Brownian motion w, where C(x) = 1
2

∫ x2

0
cos y√
y dy, x ∈ R
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is Fresnel integral and α, β, a1 are nonnegative, continuous functions from
[0, T ] to R, and, therefore, bounded. Let us introduce those boundaries: for
every t ∈ [t0, T ], α(t) ≤ ᾱ, β(t) ≤ β̄ and a1(t) ≤ ā1.

The drift coefficient

a(xt, t) = −α(t)C(x(t)) + 0.5β(t) sin
(

2

∫ 0

−τ
K(θ)xt(θ)dθ

)
(33)

and diffusion coefficient

b(xt, t) = a1(t) sin
(∫ 0

−τ
K(θ)xt(θ)dθ

)
(34)

are considered for an arbitrary but fixed argument t ∈ [t0, T ]. In other words,
these drift and diffusion coefficients could be represented as the functionals
at ≡ a = f ◦h+A1 : V → R and bt ≡ b = g ◦h : V → R, where the functional
h : V → R is defined as

h(v) =

∫ 0

−τ
K(θ)v(θ)dθ, v ∈ V,

where the continuous function K : [−τ, 0]→ R+ satisfies
∫ 0

−τ K(θ)dθ=1, func-
tions f, g : R→ R are defined as f(x) = 0.5β(t) sin(2x) and g(x) = a1(t) sinx,
x ∈ R and functional A1 : V → R is defined as A1(v) = α(t)C(v(0)), v ∈ V .
For the purposes of this example, we choose

K(θ) =
1

τ
, θ ∈ [−τ, 0].

Both the drift and diffusion coefficients from (32) are continuously-diffe-
rentiable (in the first argument) and globally Lipschitz continuous. More
precisely, there exist positive constants La = 2(ᾱ2 + β̄2) and Lb = ā2

1 such
that, for every u, v ∈ V and t ∈ [t0, T ],

|a(u, t)− a(v, t)|2 ≤ La‖u− v‖2V , |b(u, t)− b(v, t)|2 ≤ Lb‖u− v‖2V .

Let us consider the first Fréchet derivatives of the coefficients a ≡ at and
b ≡ bt. It can be easily seen that the real functions of real argument f and
g are differentiable arbitrary many times in any real point x, so, there exist
Fréchet derivatives f ′x and g′x in L(R,R) of the functions f and g, respectively,
in the point x. It is easy to verify (see [4, 5], for example) that for any y ∈ R,
f ′x(y) = f ′(x) · y ∈ R and g′x(y) = g′(x) · y ∈ R, where the derivatives on
the left side of these equalities represent the Fréchet derivatives and the ones
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on the right side represent the ordinary derivatives of real functions with real
arguments.

It is obvious that h belongs to the space L(V,R), that is, it is bounded
linear operator, such that, for every u ∈ V , there exists the first Fréchet
derivative h′u = h ∈ L(V,R) in the point u. Also, there exists the second
Fréchet derivative in u, h′′u = 0 ∈ L(V,L(V,R)) ∼= T(V 2,R), which is not
difficult to prove (see [4, 5]).

Let u ∈ V be arbitrary. To find A′1u explicitly, if it exists, we make the
difference

A1(u+ h)−A1(u) = LA1
h+RA1

(u, h), h ∈ V.

If we can make this decomposition such that |RA1
(u, h)|/‖h‖V → 0 as ‖h‖V →

0 and LA1
∈ L(V,R), then LA1

= A′1u. It is easy to verify that there exists first
Fréchet derivative A′1u ∈ L(V,R) of A1 in arbitrary u ∈ V and it is defined as
A′1u(v) = −α(t) cos(u2(0))v(0) for every v ∈ V .

In a view of the chain rule ([5], p. 171, for example) there exists first Fréchet
derivative a′u = (f ◦ h + A1)′u = f ′h(u)h

′
u + A′1u = f ′h(u)h + A′1u ∈ L(V,R) in

any point u ∈ V . This means that, for every v ∈ V

a′u(v)=f ′(h(u))h(v) +A′1u(v)

=−α(t) cos
(
u2(0)

)
v(0)+β(t) cos

(
2

∫ 0

−τ
K(θ)u(θ)dθ

)∫ 0

−τ
K(θ)v(θ)dθ.

(35)

Also, b′u = g′h(u)h ∈ L(V,R) in every u ∈ V . In other words,

b′u(v) = g′(h(u))h(v) = a1(t) cos
(∫ 0

−τ
K(θ)u(θ)dθ

)∫ 0

−τ
K(θ)v(θ)dθ. (36)

If there exists the second Fréchet derivative of a : V → R in u ∈ V , then
a′′u ∈ L(V,L(V,R)). The second Fréchet derivative of a in u is actually the
first Fréchet derivative of v 7→ a′v in u ∈ V , that is, the first Fréchet derivative
of the function c : V → L(V,R) defined as c(v) = a′v, since the first Fréchet
derivative of a exists in every point of the vector space V . To find a′′u explicitly,
we make the difference

c(u+ h)− c(u) = Lch+Rc(u, h), h ∈ V.

If we can make this decomposition such that ‖Rc(u, h)‖L (V,R)/‖h‖V → 0 as
‖h‖V → 0 and Lc ∈ L(V,L(V,R)), then Lc = c′u = a′′u ∈ L(V,L(V,R)).

It turns out that for every v1, v2 ∈ V

a′′u(v1)(v2) = 2α(t)u(0) sinu2(0)v1(0)v2(0)− 2β(t) sin
(
2h(u)

)
h(v1)h(v2) ∈ R.
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Similarly can be done for b′′u and we get for every v1, v2 ∈ V ,

b′′u(v1)(v2) = −a1(t) sin
(
h(u)

)
h(v1)h(v2) ∈ R.

The polynomial condition A5 holds for functionals a, b, a′′ and b′′ with the
constants

q′a = 4, D′a = 16[(ᾱ2 + 2β̄2) ∨ 3ᾱ2]; q′b = 0, D′b = ā2
1;

qa = 0, Da = 2(ᾱ2 + β̄2); qb = 0, Db = ā2
1.

It is easy to see that conditions A3 and A4 hold for arbitrary Ka,Kb,K
′
a,K

′
b >

0 since a(0, t) = b(0, t) = a′′(0, t) = b′′(0, t) = 0 for every t ∈ [t0, T ]. The
polynomial condition A2 for initial data η is satisfied with the constants D′ = 1
and q′ = 0. Condition A6 holds for the solution x of Eq. (32) on the basis of
[14] (see Theorem 2.2, pp. 150 and Theorem 4.1, pp. 160).

It should be pointed out that the second derivative of the drift coefficient of
this equation is not uniformly bounded, such that the Lp and a.s. convergence
results from [16] can not be applied. Moreover, in the sequel, we will prove
the existence, uniqueness and p-th moment boundedness (for any p ≥ 2) of
the corresponding approximate solution of this equation.

Using the Taylor expansion of the first order (m1 = m2 = 1) near the
points xn(tk) for k ∈ {0, . . . , n− 1}, Eqs. (5) become

xn(t) = xn(tk) +

∫ t

tk

A(xns , s;x
n
tk

)ds+

∫ t

tk

B(xns , s;x
n
tk

)dw(s), (37)

t ∈ [tk, tk+1], k ∈ {0, 1, . . . , n − 1}, where the drift and diffusion coefficients
are

A(xnt , t;x
n
tk

) = −α(t)C(xn(tk)) + 0.5β(t) sin
(
2h(xntk)

)
− α(t) cos

(
xn(tk)

)2[
xn(t)− xn(tk)

]
+ β(t) cos

(
2h(xntk)

)[
h(xnt )− h(xntk)

]
,

B(xnt , t;x
n
tk

) = a1(t) sinh(xntk) + a1(t) cosh(xntk)
[
h(xnt )− h(xntk)

]
.

(38)

For convenience, let us introduce processes

zn(t+ θ) =

n−1∑
k=0

I[tk,tk+1)(t)x
n(tk + θ), θ ∈ [−τ, 0], (39)

zn(t) =

n−1∑
k=0

I[tk,tk+1)(t)x
n(tk) (40)
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and observe from (39) that znt = xntk , t ∈ [tk, tk+1). Thus, Eqs. (37) can be
represented as

xn(t) = η(0) +

∫ t

t0

A(s, xns , z
n
s )ds+

∫ t

t0

B(s, xns , z
n
s )dw(s), t ∈ [t0, T ], (41)

where, for any s ∈ [t0, T ],

A(s, xns , z
n
s ) = −α(s)C(zn(s))− α(s) cos

(
zn(s)

)2
(xn(s)− zn(s)) (42)

+
1

2
β(s) sin(2h(zns )) + β(s) cos(2h(zns ))(h(xns )− h(zns )),

B(s, xns , z
n
s ) = a1(s) sin(h(zns )) + a1(s) cos(h(zns ))(h(xns )− h(zns )). (43)

In the sequel, we will use the Khasminskii approach to prove the existence,
uniqueness and moment boundedness of the solution to Eq. (41). This ap-
proach is successfully applied in many papers, such as, for example, [20] in the
context of SFDEs. Bearing in mind that coefficients of Eq. (41) satisfy the
local Lipschitz condition, it follows that for the initial condition η there exists
a unique local solution {x(t), t ∈ [t0 − τ, τe)}, where τe is the explosion time.
Based on the definition of the initial condition η, we find that there exists an
integer r0 such that

‖η‖ = sup
θ∈[−τ,0]

|η(θ)| = τ < r0.

For each integer r ≥ r0, define the stopping time

τr = T ∧ inf{t ∈ [t0, τe) : |xn(t)| ≥ r}, (44)

and inf ∅ = ∞. Obviously, τr increases as r → ∞. Define τ∞ = limr→∞ τr,
while τ∞ ≤ τe a.s. Our goal is to prove that τ∞ = T a.s., which implies that
τe = T, that is, the solution {x(t), t ∈ [t0 − τ, T ]} does not explode in finite
time.

Let us assume that p ≥ 2. Using the Ito formula, we obtain

E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p

≤ E‖η‖p+pE

∫ t∧τr

t0

|xn(s)|p−1|A(s, xns , z
n
s )|ds

+
p(p− 1)

2
E

∫ t∧τr

t0

|xn(s)|p−2|B(s, xns , z
n
s )|2ds

+ pE sup
s∈[t0,t]

∣∣∣ ∫ s∧τr

t0

(xn(u))p−1B(u, xnu, z
n
u)dw(u)

∣∣∣.
(45)
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Applying the Burkholder-Davis-Gundy inequality, we get

pE sup
s∈[t0,t]

∣∣∣ ∫ s∧τr

t0

(xn(u))p−1B(u, xnu, z
n
u)dw(u)

∣∣∣
≤
√

32pE

[∫ t∧τr

t0

|xn(s)|2p−2|B(s, xns , z
n
s )|2ds

] 1
2

≤
√

32pE

[(
sup

s∈[t0,t∧τr]

|xn(s)|p
) 1

2

(∫ t∧τr

t0

|xn(s)|p−2|B(s, xns , z
n
s )|2ds

) 1
2
]

≤ 1

2
E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p + 16p2E

∫ t∧τr

t0

|xn(s)|p−2|B(s, xns , z
n
s )|2ds.

(46)

Substituting (46) into (45), we find that

E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p

≤ 2E‖η‖p + 2pE

∫ t∧τr

t0

|xn(s)|p−1|A(s, xns , z
n
s )|ds

+ [p(p− 1) + 32p2]E

∫ t∧τr

t0

|xn(s)|p−2|B(s, xns , z
n
s )|2ds.

(47)

The application of the Young inequality yields

|xn(s)|p−1|A(s, xns , z
n
s )| ≤ p− 1

p
|xn(s)|p +

1

p
|A(s, xns , z

n
s )|p, (48)

|xn(s)|p−2|B(s, xns , z
n
s )|2 ≤ p− 2

p
|xn(s)|p +

2

p
|B(s, xns , z

n
s )|p. (49)

On the basis of (48) and (49), the estimate (47) becomes

E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p

≤ 2E‖η‖p + 3p(11p− 21)

∫ t

t0

E sup
u∈[t0−τ,s]

|xn(u ∧ τr)|pds

+ 2E

∫ t∧τr

t0

|A(s, xns , z
n
s )|pds+ 2(33p− 1)E

∫ t∧τr

t0

|B(s, xns , z
n
s )|pds.

(50)

Bearing in mind (42) and the fact that the Fresnel integral is bounded by the
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constant 0.977451424 (approximately 1), we have that

|A(s, xns , z
n
s )|p ≤4p−1

[
ᾱp +

(
β̄

2

)p]
+4p−1ᾱp|xn(s)− zn(s)|p

+ 4p−1β̄p|h(xns )− h(zns )|p.

So, there exists C1 > 0, such that

Cp1 ≥ 4p−1 max

{
ᾱp +

(
β̄

2

)p
, β̄p
}

and
|A(s, xns , z

n
s )|p ≤ Cp1 [1+|xn(s)−zn(s)|p + |h(xns )−h(zns )|p] . (51)

In a view of (43), we observe that

|B(s, xns , z
n
s )|p ≤ 2p−1 [āp1 + āp1|h(xns )−h(zns )|p] .

Thus, there exists C2 > 0, such that Cp2 ≥ 2p−1āp1 and

|B(s, xns , z
n
s )|p ≤ Cp2 [1 + |h(xns )− h(zns )|p] . (52)

Substituting (51) and (52) into (50), we have that, for all t ∈ [t0, T ],

E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p ≤2E‖η‖p+2
[
Cp1 +(33p− 1)Cp2

]
(T−t0)

+3p(11p− 21)

∫ t

t0

E sup
u∈[t0−τ,s]

|xn(u ∧ τr)|pds

+2Cp1E

∫ t∧τr

t0

|xn(s)−zn(s)|pds

+2
[
Cp1 + (33p− 1)Cp2

]
E

∫ t∧τr

t0

|h(xns )−h(zns )|pds.

(53)

We will estimate the term

|h(xns )− h(zns )|p = |h(xns )− h(xntk)|p, s ∈ [tk, tk+1 ∧ t], k ∈ {0, 1, . . . , n− 1}.

The application of the Hölder inequality yields

|h(xns )− h(xntk)|p =

∣∣∣∣∫ 0

−τ

1

τ

(
xn(s+ θ)− xn(tk + θ)

)
dθ

∣∣∣∣p
≤ 1

τ

∫ 0

−τ
|xn(s+ θ)− xn(tk + θ)|pdθ

≤ 2p−1 sup
u∈[t0−τ,s]

|xn(u)|p.

(54)
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On the basis of (54), the expression (53) can be estimated as

E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p

≤ H1(p) +H2(p)

∫ t

t0

E sup
u∈[t0−τ,s]

|xn(u ∧ τr)|pds, (55)

where

H1(p) = 2E‖η‖p + 2
[
Cp1 + (33p− 1)Cp2

]
(T − t0),

H2(p) = 3p(11p− 21) + 2p+1Cp1 + 2p(33p− 1)Cp2 .

Then, the application of the Gronwall–Bellman lema yields

E sup
s∈[t0−τ,t]

|xn(s ∧ τr)|p ≤ H1(p)eH2(p)(T−t0), r ≥ r0, t ∈ [t0, T ].

Particularly, we have that

E sup
s∈[t0−τ,T ]

|xn(s ∧ τr)|p ≤ H1(p)eH2(p)(T−t0), r ≥ r0. (56)

In a view of (44) and (56), we have that

rpP{τr ≤ T} ≤ E

[
sup

s∈[t0−τ,t]
|xn(s ∧ τr)|pI{τr≤T}

]
≤ E sup

s∈[t0−τ,t]
|xn(s ∧ τr)|p

≤ H1(p)eH2(p)(T−t0), r ≥ r0.

(57)

Thus, letting r → ∞ in the last inequality we obtain that P{τ∞ ≤ T} = 0,
that is P{τ∞ > T} = 1. On the other hand, letting r →∞ in (56), we get

E sup
s∈[t0−τ,T ]

|xn(s)|p ≤ H1(p)eH2(p)(T−t0).

So, we conclude that there exists a unique solution of Eq. (41) with
bounded p-th moment, for any p ≥ 2, which yields A6.

Theorem 2.1 gives the rate of the closeness in the Lp sense, that is

E sup
t∈[t0−τ,T ]

∣∣x(t)− xn(t)
∣∣p ≤ Hδpn.
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4 Conclusions

In this paper, an analytic approximate method based on the application of the
Taylor formula is considered for a class of SFDEs with coefficients satisfying
polynomial conditions. The main results are the Lp and a.s. convergence of
the sequence of the approximate solutions to the exact solution of the ini-
tial equation. It should be emphasized that the rate of the Lp-convergence
increases as the number of derivatives in the Taylor expansions of the coeffi-
cients of the initial equation increase. Besides the polynomial condition, the
initial assumptions under which the main results are obtained include the ex-
istence, uniqueness and moment boundedness of both exact and approximate
solutions. Through the example, all assumptions are verified by direct com-
putation or using the existing results except the mentioned properties of the
approximate solution, which are proved.
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