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On the exponential Diophantine equation
mx + (m+ 1)y = (1 +m+m2)z

Murat Alan

Abstract

Let m > 1 be a positive integer. We show that the exponential
Diophantine equation mx + (m + 1)y = (1 + m + m2)z has only the
positive integer solution (x, y, z) = (2, 1, 1) when m ≥ 2.

1 Introduction

Let a, b and c be relatively prime positive integers greater than one. Let us
consider the simple looking exponential Diophantine equation

ax + by = cz (1)

in positive integers x, y, z. Although some results such as finiteness of solutions
of it goes back to 1933 [18], there are some conjectures still remain unproved
related to uniqueness of the solutions (x, y, z) of this equation. One of the
famous conjecture is due to Jeśmanowicz on Pythagorean triples, i.e., positive
integers satisfying a2 + b2 = c2. In 1955, Jeśmanowicz has conjectured that if
a, b, c are any Pythagorean triples then the equation (1) has only the positive
integer solution (x, y, z) = (2, 2, 2) [11]. There exist many positive results on
Jeśmanowicz’ Conjecture with some conditions, see for example [15, 17, 20,
21, 28]. A similar conjecture is due to Terai which states that if a, b, c, p, q, r
are fixed positive integers satisfying ap + bq = cr with r ≥ 2 and gcd(a, b) = 1,
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then the equation (1) has only the positive integer solution (x, y, z) = (p, q, r)
[25, 26]. Terai’s conjecture has a few exceptional cases [30]. Although there
exist many positive results in special cases, for example [1, 3, 6, 8, 7, 12, 13, 19,
22, 24, 27, 29, 31], this conjecture is also an unsolved problem in general yet.
For more detailed information on these two conjectures we refer [16, 23]. In
this paper we consider positive integer solutions of the exponential Diophantine
equation

mx + (m+ 1)y = (1 +m+m2)z (2)

where m > 1 is a positive integer, and we prove the following theorem

Theorem 1.1. Let m > 1 be a positive integer. Then the equation (2) has
only the positive integer solution (x, y, z) = (2, 1, 1).

If m = 1 then the equation (2) turns into the equation 1 + 2y = 3z and
it is easy to see that this equation has only two positive integer solutions
(y, z) = (1, 1) and (y, z) = (3, 2). In Theorem 1.1 we exclude the case m = 1
just for preserving the exponential expression in (2).

The tools to solve this kind of exponential Diophantine equations can be
vary according to specific equation. Although in some cases linear forms in
logarithms can be very effective, see for example [2], in this paper to prove the
above theorem we mainly rely on two results which one is known as classifi-
cation method due to Lee [14] and the other one is famous primitive divisor
theorem [4, 33].

2 Preliminaries

Let h(−4D) be the class number of positive binary quadratic forms of discrim-
inant −4D. There is a bound on the class number h(−4D).

Lemma 2.1 ([10], Theorems 11.4.3, 12.10.1 and 12.14.3).

h(−4D) <
4

π

√
D log(2e

√
D)

Following theorem is simplified and combined version of two results from
[14].

Theorem 2.2 ([14], Theorems 1 and 2). Let D, k be positive integers such
that 2 - k and gcd(D, k) = 1. If D > 1 then every solution (X,Y, Z) of the
equation

X2 +DY 2 = kZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (3)



ON THE EXPONENTIAL DOPHANTINE EQUATION
mx + (m + 1)y = (1 + m + m2)z 25

can be expressed as
Z = Z1t, t ∈ N,

X + Y
√
−D = λ1(X1 + λ2Y1

√
−D)t, λ1, λ2 ∈ { ± 1},

where (X1, Y1, Z1) is a positive integer solution of the above equation (3) such
that Z1 | h(−4D).

Let α, β be algebraic integers. A Lucas pair is a pair (α, β) such that

α + β and αβ are non-zero coprime rational integers and
α

β
is not a root

of unity. Any two Lucas pairs (α1, β1) and (α2, β2) are called equivalent if
α1

α2
=

β1
β2

= ∓1. For any Lucas pair (α, β) the corresponding sequences of

Lucas numbers defined by

Ln(α, β) =
αn − βn

α− β
, n = 0, 1, 2, . . .

An important notion related to Lucas sequences is existence of primitive
divisors of Ln(α, β). A prime number is a primitive divisor of Ln(α, β) if
p | Ln(α, β) and p- (α− β)2L1(α, β) . . . Ln−1(α, β) (n > 1). So for any equiv-
alent Lucas pairs we have that Ln(α1, β1) = ∓Ln(α2, β2). Thus equivalent
Lucas pairs have common corresponding primitive divisors. If Ln(α, β) has no
primitive divisors then the Lucas pair (α, β) is called n−defective Lucas pair.

Theorem 2.3 ([4, 33] ). Every n−th term of any Lucas sequences Ln(α, β)
has a primitive divisors if n > 30. If 4 < n ≤ 30 and n 6= 6 then, up to equiv-

alence, all n−defective Lucas pairs (α, β) are of the form

(
a−
√
b

2
,
a+
√
b

2

)
as follows

n = 5, (a, b) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76),
(12,−1364); n = 7, (a, b) = (1,−7), (1,−19); n = 8, (a, b) = (1,−7), (2,−24);
n = 10, (a, b) = (2,−8), (5,−3), (5,−47); n = 12, (a, b) = (1,−5), (1,−7),
(1,−11), (2,−56), (1,−15), (1,−19); n = 13, 18, 30, (a, b) = (1,−7).

Following theorem is an early version of the primitive divisor theorem for
integers which is known as Zsigmondy’s theorem.

Theorem 2.4 ([36, 5], Zsigmondy’s Theorem). Let a > b ≥ 1 be relatively
prime integers and let {un}n≥1 be the sequence defined as

un = an − bb.

If n > 1 then un has a primitive divisor, that is a prime p such that p | un and
p - um for 1 ≤ m ≤ n−1 except for (a, b, n) = (2, 1, 6) or n = 2 and a+b = 2k

for some positive integer k.
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3 Proof of Theorem 1.1

Through this section (x, y, z) will be a positive integer solution of the equation
(2).

Lemma 3.1. If m > 1, then x is even and y is odd integer. Further if x = 2X
then 3 | X − y.

Proof. First we take (2) modulo m+1 so that we get (−1)x ≡ 1 (mod m+1).
Since m > 1, we see that x is even. Let x = 2X. Again from (2) we get
that m2X + (−m2)y ≡ 0 (mod (1 + m + m2)). So m|2X−2y| + (−1)y ≡ 0
(mod (1 + m + m2)). Let |2X − 2y| = 3q + r for some positive integers q
and r with 0 ≤ r ≤ 2. Since m3 ≡ 1 (mod (1 + m + m2)) we have that
mr +(−1)y ≡ 0 (mod (1+m+m2)). If y is even then we have that mr +1 ≡ 0
(mod (1 +m+m2)) which is a contradiction for 0 ≤ r ≤ 2. So y must be an
odd integer. Thus mr − 1 ≡ 0 (mod (1 +m+m2)). Since 1 +m+m2 - m− 1
and 1+m+m2 - m2−1 we get that r = 0 and hence 3 | 2X−2y and therefore
3 | X − y.

Lemma 3.2. Let m > 1. If z < m + 1 then the equation (2) has only the
positive integer solution (x, y, z) = (2, 1, 1).

Proof. From Lemma 3.1 we know that x ≥ 2. So from (2) we write 1 +my ≡
1 + mz (mod m2) and hence y ≡ z (mod m). Thus |z − y| = mk for some
non negative integer k. If y > z then y ≥ z + mk ≥ z + m ≥ 2z which is a
contradiction since the inequality

(m+ 1)y < (1 +m+m2)z < (1 +m)2z

clearly implies that y < 2z. On the other hand the case z > y also leads
to a contradiction with the hypothesis z < m + 1 since z > y implies that
z = y + mk ≥ m + 1. So we conclude that k = 0 and therefore z = y. Let
z = y = n. Then from (2) we write

mx = (1 +m+m2)n − (m+ 1)n. (4)

Now we use Zsigmondy’s theorem. Since m > 1, from (4), we see that the
sequence un = (1 + m + m2)n − (m + 1)n, n ≥ 1 has no primitive divisors.
Further if y = z = n > 1 from Zsigmondy’s Theorem we have two possibilities:
either 1 +m+m2 = 2 and 1 +m = 1 or m2 + 2m+ 2 = 2k for some positive
integer k, but both of them clearly false. So we have that n = y = z = 1,
and therefore x = 2. So (x, y, z) = (2, 1, 1) is the only solution of (2) when
z < m+ 1.
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Lemma 3.3. Let 3 | z and 3 | m + 1. If y > 1 then the equation (2) has no
positive integer solution.

Proof. Let y > 1. Since 1 + m + m2 ≡ −m (mod (m + 1)2), by taking (2)
modulo (m+ 1)2 we write

mx ≡ (−m)z (mod (m+ 1)2)

m|x−z| ≡ (−1)z (mod (m+ 1)2)

(−1)|x−z| + (−1)|x−z−1|(m+ 1)|x− z| ≡ (−1)z (mod (m+ 1)2).

Taking into account x is even, by 3.1, we get that

|x− z| ≡ 0 (mod (m+ 1)).

In particular x ≡ z (mod 3) ⇒ x ≡ 0 (mod 3). Thus by Lemma 3.1, all
x, y and z are divisible by 3. Hence equation (2) is of the form A3 +B3 = C3,
which is famous Fermat’s Last Theorem and it is proved that it has no positive
integer solutions [35].

Proof of Theorem 1.1. From Lemma 3.1 we know that x is even and y is odd.
Let x = 2X. So we rewrite (2) as

(mX)2 + (m+ 1)((m+ 1)
y−1
2 )2 = (1 +m+m2)z. (5)

Thus (U, V, Z) = (mX , (m + 1)
y−1
2 , z) is a positive integer solution of the

equation
U2 + (m+ 1)V 2 = (1 +m+m2)Z . (6)

Thus from Theorem 3, there exist a positive integer solution (u1, v1, z1) of (6)
such that

z = z1t, t ∈ N, (7)

mX + (m+ 1)
y−1
2

√
−(m+ 1) = λ1(u1 + λ2v1

√
−(m+ 1))t, (8)

where gcd(u1, v1) = 1, λ1, λ2 ∈ {±1} and z1 | h(−4D). By taking the complex
conjugate of (8) and subtracting it from (8) we get that

(m+ 1)(
y−1
2 ) = v1

∣∣∣∣αt − βt

α− β

∣∣∣∣ = v1|Lt| (9)

where
α = u1 + v1

√
−(m+ 1), β = u1 − v1

√
−(m+ 1).

Note that gcd(α + β, αβ) = gcd
(
2u1, (1 +m+m2)z1

)
= 1 since 1 + m +

m2 is odd and gcd(u1, v1) = 1. Let r :=
α

β
. Then r satisfies the equation
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(1 + m + m2)z1r2 − 2(u21 − (m + 1)v21)r + (1 + m + m2)z1 = 0 and neither

2(u21− (m+ 1)v21) = 0 nor
2(u21 − (m+ 1)v21)

(1 +m+m2)z1
= ±1. So r :=

α

β
is not a root of

unity. Thus Lt is a Lucas sequence. From (9) we see that Lt has no primitive
divisors. For t ≥ 5 and t 6= 6, one can easily check that

(α, β) =

(
2u1 +

√
−4v21(m+ 1)

2
,

2u1 −
√
−4v21(m+ 1)

2

)

does not match with any pair given in Theorem 2.3 by taking into account u1
and v1 are relatively prime and u21 + (m + 1)v21 = (1 + m + m2)z1 . Thus it
remains to check the equation (8) for the cases t = 2, 3, 4, 6 and t = 1. If 2 | t,
then from (8) we write that

mX + (m+ 1)
y−1
2

√
−(m+ 1) = λ1(U2 + V2

√
−(m+ 1))2 (10)

where
(u1 + λ2v1

√
−(m+ 1))

t
2 = (U2 + V2

√
−(m+ 1)). (11)

From (10) we have that

mX = λ1(U2
2 − (m+ 1)V 2

2 ) and (m+ 1)
y−1
2 = 2λ1U2V2 (12)

Since gcd(mX , (m + 1)
y−1
2 ) = 1, from (12) we see that |U2| = 1, and hence

|V2| = 1
2 (m+ 1)

y−1
2 . So it follows that

mX =
1

4
(m+ 1)y − 1, (13)

that is 4mX +4 = (1+m)y. Taking this equation modulo m we get that 4 ≡ 1
(mod m), that is m = 3. For m = 3, the equation (2) turns into the equation
3x + 4y = 13z which is proved that it has only the positive integer solution
(x, y, z) = (2, 1, 1) [9], but it leads a contradiction with choose of t as even and
z = z1t. So we have 2 - t. Thus either t = 3 or t = 1. If t = 3 then from (8) we
get that

mX = λ1u1(u21 − 3v21(m+ 1)) and (14)

(m+ 1)
y−1
2 = λ1λ2v1(3u21 − v21(m+ 1)). (15)

Assume that y > 1. By Lemma 3.3 we need to check only the case 3 - m+ 1.
So from (14) we see that gcd(3u1,m+ 1) = 1. Thus from (15) we have that

3u21 − v21(m+ 1) = ±1 (16)
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and hence v1 = (m+1)
y−1
2 . Then, since u21 ≡ 1 (mod m+1) by (6), by taking

(16) modulo m+1 we find that 3 ≡ ±1 (mod m+1) which implies m = 3. For
m = 3, we have already mentioned that this equation 3x + 4y = 13z has only
positive integer solution (x, y, z) = (2, 1, 1) which also gives a contradiction
since 3 | z. So y = 1. But y = 1 also implies that 3u21− v21(m+ 1) = ±1 which
leads to same contradiction as before. Thus 3 - t and so we arrive at t = 1.
Hence from (7) and Lemma 2.1 we find that

z <
4

π

√
(m+ 1) log (2e

√
(m+ 1)).

If z < m + 1 then the result follows from Lemma 3.2. So we take m + 1 ≤ z
and therefore from the inequality

m+ 1 ≤ z < 4

π

√
(m+ 1) log (2e

√
(m+ 1))

we find thatm < 17. Thus all variables are bounded as x, y < z. So with a short
computer program in Maple we check all variables in the range 2 ≤ m ≤ 17
and we find that (2) has no solutions other than (x, y, z) = (2, 1, 1). This
completes the proof.

Discussion: After seeing x is even from Lemma 3.1 the equation (2) can
be viewed as

aX + by = (a+ b)z.

It seems that, despite its benign appearance, it is not proved yet that this
equation has only the positive integer solution (X, y, z) = (1, 1, 1) with some
exceptional case. In fact this is the context of Conjecture 1.3 in [34].
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