DOI: 10.2478/auom-2021-0045 An. Şt. Univ. Ovidius Constanța

\$ sciendo Vol. 29(3),2021, 285–296

1-absorbing primary submodules

Ece Yetkin Celikel

Abstract

Let R be a commutative ring with non-zero identity and M be a unitary R-module. The goal of this paper is to extend the concept of 1absorbing primary ideals to 1-absorbing primary submodules. A proper submodule N of M is said to be a 1-absorbing primary submodule if whenever non-unit elements $a, b \in R$ and $m \in M$ with $abm \in N$, then either $ab \in (N :_R M)$ or $m \in M - rad(N)$. Various properties and chacterizations of this class of submodules are considered. Moreover, 1-absorbing primary avoidance theorem is proved.

1 Introduction

Throughout this paper, we shall assume unless otherwise stated, that all rings are commutative with non-zero identity and all modules are considered to be unitary. A prime (resp. primary) submodule is a proper submodule N of M with the property that for $a \in R$ and $m \in M$, $am \in N$ implies that $m \in N$ or $a \in (N :_R M)$ (resp. $a \in \sqrt{(N :_R M)}$). Since prime and primary ideals (submodules) have an important role in the theory of modules over commutative rings, generalizations of these concepts have been studied by several authors [1]-[8], [14], [15]. For a survey article consisting some of generalizations see [5]. In 2007, Badawi [4] called a non-zero proper ideal I of R a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. As an extension of 2-absorbing primary ideals, the concept of 2-absorbing submodules are introduced by Darani and Soheilnia [8] and studied by Payrovi,

Key Words: 1-absorbing primary submodule, 1-absorbing primary ideal, 2-absorbing primary submodule

²⁰¹⁰ Mathematics Subject Classification: Primary 13C05, Secondary 13C99. Received: 03.01.2021

Accepted: 28.04.2021

Babaei [15]. We recall from [8] that a proper submodule N of M is said to be a 2-absorbing submodule if whenever $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. In 2014, Badawi, Tekir and Yetkin [6] introduced the concept of 2-absorbing primary ideals. A proper ideal I of R is called 2-absorbing primary if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$. After that, the notion of 2-absorbing pimary submodules is introduced and studied in [14]. According to [14], a proper submodule Nof M is said to be 2-absorbing primary provided that $a, b \in R, m \in M$ and $abm \in N$ imply either $ab \in (N :_R M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N). As a recent study, the class of 1-absorbing primary ideals was defined in [7]. According to [7], a proper ideal I of R is said to be a 1-absorbing primary ideal if whenever non-unit elements a, b, c of R and $abc \in I$, then $ab \in I$ or $c \in \sqrt{I}$. Our aim is to extend the notion of 1-absorbing primary ideals to 1-absorbing primary submodules.

For the sake of thoroughness, we give some definitions which we will need throughout this study. Let I be an ideal of a ring R. By \sqrt{I} , we mean the radical of I which is the intersection of all prime ideals containing I, that is $\{r \in R : r^n \in I \text{ for some } n\}$. Let M be an R-module and N be a submodule of M. We will denote by $(N :_R M)$ the residual of N by M, that is, the set of all $r \in R$ such that $rM \subseteq N$. The annihilator of M denoted by $Ann_R(M)$ is $(0 :_R M)$. The M-radical of N, denoted by M-rad(N), is defined to be the intersection of all prime submodules of M containing N. If M is a multiplication R-module, then $M - rad(N) = \{m \in M : m^k \subseteq N \text{ for}$ some $k \ge 0\}$ [1, Theorem 3.13]. If there is no such a prime submodule, then M - rad(N) = M. For the other notations and terminologies that are used in this article, the reader is referred to [10].

We summarize the content of this article as follows. We call a proper submodule N of M a 1-absorbing primary submodule if whenever non-unit elements $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $m \in M - rad(N)$. It is clear that a prime submodule is a 1-absorbing primary submodule, and a 1-absorbing primary submodule is a 2-absorbing primary submodule. In Section 2, we start with examples (Example 1 and Example 2) showing that the inverses of these implications are not true in general. Various characterizations for 1-absorbing primary submodules are given (Theorem 1, Theorem 2 and Theorem 3). Moreover, the behavior of 1-absorbing primary submodules in modules under homomorphism, module localizations and direct product of modules are investigated (Proposition 3, Proposition 4 and Proposition 5). Finally, in Section 3, the 1-absorbing primary avoidance theorem is proved.

2 Properties of 1-absorbing primary submodules

Definition 1. Let M be a module over a commutative ring R and N be a proper submodule of M. We call N a 1-absorbing primary submodule if whenever non-unit elements $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $m \in M - rad(N)$.

It is clear that the following implication hold: prime submodule \Rightarrow 1absorbing primary submodule \Rightarrow 2-absorbing primary submodule. The following example shows that a 1-absorbing primary submodule of M needs not to be a primary (prime) submodule; and also there are 2-absorbing primary submodules which are not 1-absorbing primary.

- **Example 1.** 1. Let A = K[x, y], where K is a field, Q = (x, y)A. Consider $R = A_Q$ and M = R as an R-module. Then $N = (x^2, xy)M$ is a 1-absorbing primary submodule of M [7, Example 1]. Observe that $\sqrt{(N:_R M)} = xR$. Since $x \cdot y \in N$, but $x \notin N$ and $y \notin \sqrt{(N:_R M)}$, N is not a primary submodule (so, it is not a prime submodule) of M.
 - Consider the submodule N = p²qZ of Z-module Z where p and q are distinct prime integers. Then N is a 2-absorbing primary submodule of Z by [14, Corollary 2.21]. However it is not 1-absorbing primary as p ⋅ p ⋅ q ∈ N but neither p ⋅ p ∈ (N :_Z Z) = N nor q ∈ M rad(N) = pqZ.

The following example shows that there are some modules of which every proper submodule is 2-absorbing primary but which has no 1-absorbing primary submodule.

Example 2. Let p be a fixed prime integer. Then $E(p) = \{\alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = r/p^n + \mathbb{Z} \text{ for some } r \in \mathbb{Z} \text{ and } n \in \mathbb{N} \cup (0)\}$ is a non-zero submodule of \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} . For each $t \in \mathbb{N}$, set $G_t = \{\alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = r/p^t + Z \text{ for some } r \in \mathbb{Z}\}$. Observe that each proper submodule of E(p) is equal to G_i for some $i \in \mathbb{N}$ and $(G_t :_{\mathbb{Z}} E(p)) = 0$ for every $t \in \mathbb{N}$. It is shown in [3, Example 1] that every submodule G_t is not a primary submodule of E(p). Thus there is no prime submodule in E(p). Thus $E(p) - rad(G_t) = E(p)$. Therefore, each G_t is a 1-absorbing primary submodule of R.

We next give several characterizations of 1-absorbing primary submodules of an R-module.

Theorem 1. Let N be a proper submodule of an R-module M. Then the following statements are equivalent:

1. N is a 1-absorbing primary submodule of M.

- 2. If a, b are non-unit elements of R such that $ab \notin (N :_R M)$, then $(N :_M ab) \subseteq M rad(N)$.
- 3. If a, b are non-unit elements of R, and K is a submodule of M with $abK \subseteq N$, then $ab \in (N :_R M)$ or $K \subseteq M rad(N)$.
- 4. If $I_1I_2K \subseteq N$ for some proper ideals I_1, I_2 of R and some submodule K of M, then either $I_1I_2 \subseteq (N :_R M)$ or $K \subseteq M rad(N)$.

Proof. (1) \Rightarrow (2) Suppose that a, b are non-unit elements of R such that $ab \notin (N :_R M)$. Let $m \in (N :_M ab)$. Hence $abm \in N$. Since N is 1-absorbing primary submodule and $ab \notin (N :_R M)$, we have $m \in M - rad(N)$, and so $(N :_M ab) \subseteq M - rad(N)$.

 $(2) \Rightarrow (3)$ Suppose that $ab \notin (N :_R M)$. Since $abK \subseteq N$, we have $K \subseteq (N :_M ab) \subseteq M - rad(N)$ by (2).

(3) \Rightarrow (4) Assume on the contrary that neither $I_1I_2 \subseteq (N :_R M)$ nor $K \subseteq M - rad(N)$. Then there exist non-unit elements $a \in I_1, b \in I_2$ with $ab \notin (N :_R M)$. Thus $abK \subseteq N$, it contradicts with (3).

 $(4) \Rightarrow (1)$ Let $a, b \in R$ be non-unit elements, $m \in M$ and $abm \in N$. Put $I_1 = aR, I_2 = bR, K = Rm$. Thus the result is clear.

An *R*-module *M* is called a *multiplication module* if every submodule *N* of *M* has the form *IM* for some ideal *I* of *R*. Equivalently, $N = (N :_R M)M$ [9]. Let *M* be a multiplication *R*-module and let N = IM and K = JM for some ideals *I* and *J* of *R*. The product of *N* and *K* is denoted by *NK* is defined by *IJM*. Clearly, *NK* is a submodule of *M* and contained in $N \cap K$. It is shown in [1, Theorem 3.4] that the product of *N* and *K* is independent of presentations of *N* and *K*. It is shown in [9, Theorem 2.12] that if *N* is a proper submodule of a multiplication *R*-module *M*, then *M*-rad(*N*) = $\sqrt{(N :_R M)}M$. If *M* is a finitely generated multiplication *R*-module, then $(M\text{-rad}(N) : M) = \sqrt{(N :_R M)}$ by [14, Lemma 2.4]. Now, we are ready for characterizing 1-absorbing primary submodules of *M*.

Theorem 2. Let M be a finitely generated multiplication R-module and N be a proper submodule of M. Then the following statements are equivalent:

- 1. N is a 1-absorbing primary submodule of M.
- 2. If $N_1N_2N_3 \subseteq N$ for some submodules N_1, N_2, N_3 of M, then either $N_1N_2 \subseteq N$ or $N_3 \subseteq M rad(N)$.

Proof. (1) \Rightarrow (2) Suppose that N is a 1-absorbing primary submodule of M, $N_1N_2N_3 \subseteq N$ and $N_3 \notin M - rad(N)$. Since M is a finitely generated multiplication module, $N_1 = I_1M$ and $N_2 = I_2M$ for some ideals I_1, I_2 of R. Hence

 $I_1I_2N_3 \subseteq N$. Since $N_3 \notin M - rad(N)$, we have $I_1I_2 \subseteq (N :_R M)$ by Theorem 1. Thus we conclude $N_1N_2 \subseteq (N : M)M = N$.

 $(2) \Rightarrow (1)$ Let $I_1I_2K \subseteq N$. Then there exists an ideal I_3 of R such that $I_1I_2I_3M \subseteq N$ which gives $I_1I_2M \subseteq N$ or $I_3M \subseteq M - rad(N)$. By [16, p.231 Corollary], we have $I_1I_2 \subseteq (N :_R M) + Ann_R(M) = (N :_R M)$ or $K \subseteq M - rad(N)$. Hence, we are done from Theorem 1.

Lemma 1. [16, Theorem 10]Let M be a finitely generated faithful multiplication R-module, then (IM : M) = I for all ideals I of R.

In [3, Corollary 2], for a proper submodule N of a multiplication R-module M, it is shown that N is primary submodule of M if and only if $(N :_R M)$ is primary ideal of R. Analogous with this result, we have the following.

Theorem 3. Let I be an ideal of a ring R and N be a submodule of a finitely generated faithful multiplication R-module M. Then

- 1. I is a 1-absorbing primary ideal of R if and only if IM is a 1-absorbing primary submodule of M.
- 2. N is a 1-absorbing primary submodule of M if and only if (N:M) is a 1-absorbing primary ideal of R.
- 3. N is a 1-absorbing primary submodule of M if and only if N = IM for some 1-absorbing primary ideal of R.

Proof. (1) Suppose *I* is a 1-absorbing primary ideal of *R*. If IM = M, then I = (IM : M) = R by Lemma 1, a contradiction. Thus, IM is proper in *M*. Now, let $a, b \in R$ be non-unit elements and $m \in M$ such that $abm \in IM$ and $ab \notin (IM : M) = I$. Then $ab((m) : M) = ((abm) : M) \subseteq (IM : M) \subseteq (\sqrt{I}M : M) = \sqrt{I}$. Since *I* is a 1-absorbing primary ideal, we conclude that $((m) : M) \subseteq \sqrt{I}$. Thus, $m \in ((m) : M)M \subseteq \sqrt{I}M = M$ -rad(IM). Conversely, suppose *IM* is 1-absorbing primary submodule of *M*. Then clearly *I* is proper in *R*. Let $a, b, c \in R$ be non-unit elements with $abc \in I$ and $ab \notin (IM : M) = I$. Since $abM \in IM$ and IM is a 1-absorbing primary submodule, then $cM \subseteq M$ -rad $(IM) = \sqrt{I}M$. Therefore, $c \in (\sqrt{I}M : M) = \sqrt{I}$ and *I* is a 1-absorbing primary ideal of *R*.

- (2) Since N = (N : M)M, it follows by (1).
- (3) Putting I = (N : M) in (2), the claim is clear.

The following example shows that if $(N :_R M)$ is a 1-absorbing primary ideal of R, then N is not needed to be a 1-absorbing primary submodule in general.

Example 3. Let $R = \mathbb{Z}$ and $M = \mathbb{Z} \times \mathbb{Z}$ be an R-module and p a prime integer. Consider the submodule $N = p^n \mathbb{Z} \times \{0\}$ of M for $n \ge 2$. Then $(N :_R M) = \{0\}$ is a 1-absorbing primary ideal of R. However, N is not a 1-absorbing primary submodule of M since $p \cdot p^{n-1} \cdot (1,0) \in N$ but neither $p \cdot p^{n-1} = p^n \in (N :_R M) = \{0\}$ nor $(1,0) \in M - rad(N) = p\mathbb{Z} \times \{0\}$.

In view of Theorem 3, we conclude the following result.

Proposition 1. Let M be a finitely generated multiplication R-module and N be a 1-absorbing primary submodule of M. Then the following are satisfied:

- 1. $\sqrt{(N:_R M)}$ is a prime ideal of R.
- 2. $\sqrt{(N:_R m)}$ is a prime ideal of R containing $\sqrt{(N:_R M)} = P$ for every $m \notin M rad(N)$.
- 3. M rad(N) is a prime submodule of M.

Proof. (1) Let N be a 1-absorbing primary submodule of M. Then $(N :_R M)$ is 1-absorbing primary ideal of R by Theorem 3. From [7, Theorem 2], we conclude that $\sqrt{(N :_R M)}$ is a prime ideal of R.

(2) Since N is a 1-absorbing primary ideal, $\sqrt{(N:_R M)} = P$ is a prime ideal of R by (1). Suppose that $a, b \in R$ such that $ab \in \sqrt{(N:_R m)}$. Without loss of generality we may assume that a and b are non-unit elements of R. Then there exists a positive integer n such that $a^n b^n m \in N$. Since N is 1absorbing primary submodule, and $m \notin M - rad(N)$, it implies that either $(ab)^n \in (N:_R M)$. Since P is prime and $ab \in P$, we conclude either $a \in P = \sqrt{(N:_R M)} \subseteq \sqrt{(N:_R m)}$ or $b \in P = \sqrt{(N:_R M)} \subseteq \sqrt{(N:_R m)}$.

(3) Suppose that N is a 1-absorbing primary submodule. Since $\sqrt{(N:_R M)}$ is a prime ideal of R by (1), we conclude that $M - rad(N) = \sqrt{(N:_R M)}M$ is a prime submodule of M by [9, Corollary 2.11].

Note that the intersection of two distinct non-zero 1-absorbing primary submodules need not be a 1-absorbing primary submodule. Consider \mathbb{Z} module \mathbb{Z} . Then $2\mathbb{Z}$ and $3\mathbb{Z}$ are clearly 1-absorbing primary submodules but $2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$ is not. Indeed, $2 \cdot 2 \cdot 3 \in 6\mathbb{Z}$ but neither $2 \cdot 2 \in (\mathbb{Z} : 6\mathbb{Z}) = 6\mathbb{Z}$ nor $3 \in \mathbb{Z} - rad(6\mathbb{Z}) = 6\mathbb{Z}$. We call a proper submodule N of M a P-1absorbing submodule of M if $\sqrt{(N:_R M)} = P$ is a prime submodule of R. In the next theorem, we show that if N_i 's are P-1-absorbing primary submodules of a multiplication module M, then the intersection of these submodules is a P-1-absorbing primary submodule of M. **Proposition 2.** Let M be a multiplication R-module. If $\{N_i\}_{i=1}^k$ is a family of P-1-absorbing primary submodules of M, then so is $\bigcap_{i=1}^k N_i$.

Proof. Suppose that $abm \in \bigcap_{i=1}^{k} N_i$ but $ab \notin \left(\bigcap_{i=1}^{k} N_i :_R M\right)$ for non-unit elements $a, b \in R$ and $m \in M$. Then $ab \notin (N_j :_R M)$ for some $j \in \{1, ..., k\}$. Since N_j is 1-absorbing primary and $abm \in N_j$, we have $m \in M - rad(N_j)$. Now, since $M - rad\left(\bigcap_{i=1}^{k} N_i\right) = \bigcap_{i=1}^{k} M - rad(N_i) = PM$ by [14, Proposition 2.14 (3)], we are done.

Lemma 2. [12]Let $\varphi: M_1 \longrightarrow M_2$ be an *R*-module epimorphism. Then

- 1. If N is a submodule of M_1 and ker $(\varphi) \subseteq N$, then $\varphi(M_1 \operatorname{-rad}(N)) = M_2 \operatorname{-rad}(\varphi(N))$.
- 2. If K is a submodule of M_2 , then $\varphi^{-1}(M_2 \operatorname{-rad}(K)) = M_1 \operatorname{-rad}(\varphi^{-1}(K))$.

Proposition 3. Let M_1 and M_2 be *R*-modules and $f: M_1 \to M_2$ be a module homomorphism. Then the following statements hold:

- 1. If N_2 is a 1-absorbing primary submodule of M_2 , then $f^{-1}(N_2)$ is a 1-absorbing primary submodule of M_1 .
- 2. Let f be an epimorphism. If N_1 is a 1-absorbing primary submodule of M_1 containing Ker(f), then $f(N_1)$ is a 1-absorbing primary submodule of M_2 .

Proof. (1) Suppose that a, b are non-unit elements of $R, m_1 \in M_1$ and $abm_1 \in f^{-1}(N_2)$. Then $abf(m_1) \in N_2$. Since N_2 is 1-absorbing primary, we have either $ab \in (N_2 :_R M_2)$ or $f(m_1) \in M_2 - rad(N_2)$. Here, we show that $(N_2 :_R M_2) \subseteq (f^{-1}(N_2) :_R M_1)$. Let $r \in (N_2 :_R M_2)$. Then $rM_2 \subseteq N_2$ which implies that $rf^{-1}(M_2) \subseteq f^{-1}(N_2)$; i.e. $rM_1 \subseteq f^{-1}(N_2)$. Thus $r \in (f^{-1}(N_2) :_R M_1)$. Hence $ab \in (f^{-1}(N_2) :_R M_1)$ or $m_1 \in f^{-1}(M_2 - rad(N_2))$. Since $f^{-1}(M_2 - rad(N_2)) = M_1 - rad(f^{-1}(N_2))$ by Lemma 2 (2) and $f^{-1}(N_2)$ is a 1-absorbing primary submodule of M_1 .

(2) Suppose that a,b are non-unit elements of $R, m_2 \in M_2$ and $abm_2 \in f(N_1)$. Since f is an epimorphism, there exists $m_1 \in M_1$ such that $f(m_1) = m_2$. Since $Kerf \subseteq N_1, abm_1 \in N_1$. Hence $ab \in (N_1 :_R M_1)$ or $m_1 \in M_1 - rad(N_1)$. Here, we show that $(N_1 :_R M_1) \subseteq (f(N_1) :_R M_2)$. Let $r \in (N_1 :_R M_1)$. Then $rM_1 \subseteq N_1$ which implies that $rf(M_1) \subseteq f(N_1)$. Since f is

onto, we conclude that $rM_2 \subseteq f(N_1)$, that is, $r \in (f(N_1) :_R M_2)$. Thus $ab \in (f(N_1) :_R M_2)$ or $m_2 = f(m_1) \in f(M_1 - rad(N_1)) = M_2 - rad(f(N_1))$ by Lemma 2 (1), as desired.

As a consequence of Theorem 3, we have the following result.

Corollary 1. Let M be an R-module and N_1 , N_2 be submodules of M with $N_2 \subseteq N_1$. Then N_1 is a 1-absorbing primary submodule of M if and only if N_1/N_2 is a 1-absorbing primary submodule of M/N_2 .

Proof. Suppose that N_1 is a 1-absorbing primary submodule of M. Consider the canonical epimorphism $f: M \to M/N_2$ in Proposition 3. Then N_1/N_2 is a 1-absorbing primary submodule of M/N_2 . Conversely, let a and b are nonunit elements of $R, m \in M$ such that $abm \in N_1$. Hence $ab(m + N_2) \in N_1/N_2$. Since N_1/N_2 is a 1-absorbing primary submodule of M/N_2 , it implies either $ab \in (N_1/N_2:_R M/N_2)$ or $m + N_2 \in M/N_2 - rad(N_1/N_2) = M - rad(N_1)/N_2$. Therefore $ab \in (N_1:_R M)$ or $m \in M - rad(N_1)$. Thus N_1 is a 1-absorbing primary submodule of M.

Let M_1 be R_1 -module and M_2 be R_2 -module where R_1 and R_2 are commutative rings with identity. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$. Then Mis an R-module and every submodule of M is of the form $N = N_1 \times N_2$ for some submodules N_1, N_2 of M_1, M_2 , respectively. Also, $M - rad(N_1 \times N_2) =$ $M_1 - rad(N_1) \times M_2 - rad(N_2)$ by [2, Lemma 2.3 (ii)].

Proposition 4. Let M_1 be an R_1 -module and M_2 be an R_2 -module, where R_1 , R_2 are commutative rings with identity, $R = R_1 \times R_2$ and $M = M_1 \times M_2$. Suppose that N_1 is a proper submodule of M_1 . If $N = N_1 \times M_2$ is a 1-absorbing primary submodule of R-module M, then N_1 is a 1-absorbing primary submodule of R_1 .

Proof. Suppose that $N = N_1 \times M_2$ is a 1-absorbing primary submodule of M. Put $M' = M/\{0\} \times M_2$ and $N' = N/\{0\} \times N_2$. From Corollary 1, N' is a 1-absorbing primary submodule of M'. Since $M' \cong M_1$ and $N' \cong N_1$, we conclude the result.

Proposition 5. Let S be a multiplicatively closed subset of a commutative ring R and M be an R-module. If N is a 1-absorbing primary submodule of M and $S^{-1}N \neq S^{-1}M$, then $S^{-1}N$ is a 1-absorbing primary submodule of $S^{-1}R$ -module $S^{-1}M$.

Proof. Let $\frac{a}{s_1}$ and $\frac{b}{s_2}$ be non-unit elements of $S^{-1}R$, $\frac{m}{s_3} \in S^{-1}M$ with $\frac{a}{s_1} \frac{b}{s_2} \frac{m}{s_3} \in S^{-1}N$. Hence $tabm \in N$ for some $t \in S$. Since N is 1-absorbing primary, we have either $tm \in M - rad(N)$ or $ab \in (N :_R M)$. Thus we conclude either

$$\frac{m}{s_3} = \frac{tm}{ts_3} \in S^{-1}(M - rad(N)) \subseteq S^{-1}M - rad(S^{-1}N) \text{ or } \frac{ab}{s_1s_2} \in S^{-1}(N :_R M) \subseteq (S^{-1}N :_{S^{-1}R} S^{-1}M).$$

Let R be a ring and M be an R-module. The idealization of M is denoted by R(M) = R(+)M is a commutative ring with identity with coordinate-wise addition and multiplication defined by $(a, m_1)(b, m_2) = (ab, am_2 + bm_1)$. An ideal H is called homogeneous if H = I(+)N for some ideal I of R and some submodule N of M such that $IM \subseteq N$.

Proposition 6. Let M be an R-module and I(+)N be a homogeneous ideal of R(M). If I(+)N is a 1-absorbing primary ideal of R(M), then I is a 1-absorbing primary ideal of R.

Proof. Suppose that a, b, c are non-unit elements of R such that $abc \in I$ and $c \notin \sqrt{I}$. Then $(a, 0_M) \cdot (b, 0_M) \cdot (c, 0_M) \in I(+)N$. Note that $\sqrt{I(+)N} = \sqrt{I}(+)M$ by [10, Theorem 25.1 (5)]. Then $(c, 0_M) \notin \sqrt{I(+)N}$. Since I(+)N is 1-absorbing primary, we conclude that $(a, 0_M) \cdot (b, 0_M) \in I(+)N$. Thus $ab \in I$, we are done.

3 The 1-absorbing primary avoidance theorem

In this section, we prove the 1-absorbing primary avoidance theorem. Throughout this section, let M be a finitely generated multiplication R-module and $N, N_1, ..., N_n$ be submodules of M. Recall from [11] that a covering $N \subseteq$ $N_1 \cup N_2 \cup \cdots \cup N_n$ is said to be efficient if no N_k is superfluous. Also, $N = N_1 \cup N_2 \cup \cdots \cup N_n$ is an efficient union if none of the N_k may be excluded. A covering of a submodule by two submodules is never efficient.

Theorem 4. Let $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ be an efficient covering of submodules $N_1, N_2, ..., N_n$ of M where n > 2. If $\sqrt{(N_i :_R M)} \notin \sqrt{(N_j :_R m)}$ for all $m \in M \setminus M - rad(N_j)$ whenever $i \neq j$, then no N_i $(1 \leq i \leq n)$ is a 1-absorbing primary submodule of M.

Proof. Assume on the contrary that N_k is a 1-absorbing primary submodule of M for some $1 \leq k \leq n$. Since $N \subseteq \bigcup N_i$ is an efficient covering, $N \subseteq \bigcup (N_i \cap N)$ is also an efficient covering. From [11, Lemma 2.1], $\left(\bigcap_{i \neq k} N_i\right) \cap$

 $N \subseteq N_k \cap N$. Here, observe that $\sqrt{(N_i :_R M)}$ is a proper ideal of R for all $1 \leq i \leq n$. Also, from our assumption, there is a non-unit element $a_i \in \sqrt{(N_i :_R M)} \sqrt{(N_k :_R m)}$ for all $i \neq k$ and for all $m \in M \setminus M - rad(N_k)$. Then there is a positive integer n_i such that $a_i^{n_i} \in (N_i :_R M)$ for each $i \neq k$. Put

 $a = \prod_{i=1}^{k-1} a_i, b = \prod_{i=k+1}^n a_i \text{ and } n = \max\{n_1, \dots, n_{k-1}, n_{k+1}, \dots, n_n\}. \text{ Now, we show}$ that $a^n b^n m \in \left(\left(\bigcap_{i \neq k} N_i\right) \cap N\right) \setminus (N_k \cap N).$ Suppose that $a^n b^n m \in N_k \cap N.$ Then $a^n b^n \in (N_k :_R m) \subseteq \sqrt{(N_k :_R m)}.$ By Theorem 1 (2), $\sqrt{(N_k :_R m)}$ is a prime ideal. It implies that $a \in \sqrt{(N_k :_R m)}$ or $b \in \sqrt{(N_k :_R m)}.$ Thus $a_i \in \sqrt{(N_k :_R m)}$ for some $i \neq k$, a contradiction. Therefore $a^n b^n m \in$ $\left(\left(\bigcap_{i \neq k} N_i\right) \cap N\right) \setminus (N_k \cap N)$ which is a contradiction. Thus N_k is not a 1absorbing primary submodule.

Theorem 5. (1-absorbing Primary Avoidance Theorem) Let $N, N_1, N_2, ..., N_n$ $(n \ge 2)$ be submodules of M such that at most two of $N_1, N_2, ..., N_n$ are not 1absorbing primary with $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$. If $\sqrt{(N_i :_R M)} \not\subseteq \sqrt{(N_j :_R m)}$ for all $m \in M \setminus M - rad(N_j)$ whenever $i \ne j$, then $N \subseteq N_k$ for some $1 \le k \le n$.

Proof. Since it is clear for $n \leq 2$, suppose that n > 2. Since any cover consisting submodules of M can be reduced to an efficient one by deleting any unnecessary terms, we may assume that $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ is an efficient covering of submodules of M. From Theorem 4, it implies that no N_k is a 1-absorbing primary submodule which contradicts with the hypothesis. Thus $N \subseteq N_k$ for some $1 \leq k \leq n$.

Corollary 2. Let N be a proper submodule of M. If 1-absorbing primary avoidance theorem holds for M, then the 1-absorbing primary avoidance theorem holds for M/N.

Proof. Let K/N, N_1/N , N_2/N , ..., N_n/N $(n \ge 2)$ be submodules of M/N such that at most two of N_1/N , N_2/N , ..., N_n/N are not 1-absorbing primary and $K/N \subseteq N_1/N \cup N_2/N \cup \cdots \cup N_n/N$. Hence, $K \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ and at most two of N_1 , N_2 , ..., N_n are not 1-absorbing primary by Corollary 1. Suppose that

 $\sqrt{(N_i/N:_R M/N)} \not\subseteq \sqrt{(N_j/N:_R m+N)} \text{ for all } m+N \in (M/N) \setminus (M-rad(N_j/N)) \text{ whenever } i \neq j. \text{ It is easy to verify that if } \sqrt{(N_i:_R M)} \subseteq \sqrt{(N_j:_R m)} \text{ for some } m \in M, \text{ then } \sqrt{(N_i/N:_R M/N)} \subseteq \sqrt{(N_j/N:_R m+N)} \text{ for some } m+N \in M/N. \text{ Also observe that if } m+N \in (M/N) \setminus (M/N-rad(N_j/N)) = (M/N) \setminus (M-rad(N_j)/N), \text{ then } m \in M \setminus M-rad(N_j). \text{ Thus, from our assumption } \sqrt{(N_i/N:_R M/N)} \not\subseteq \sqrt{(N_j/N:_R m+N)} \text{ for all } m+N \in (M/N) \setminus (M/N-rad(N_j/N)) \text{ whenever } i \neq j, \text{ we conclude that } M \in (M/N) \setminus (M/N-rad(N_j/N)) \text{ whenever } i \neq j.$

 $\sqrt{(N_i:_R M)} \notin \sqrt{(N_j:_R m)}$ for all $m \in M \setminus M - rad(N_j)$ whenever $i \neq j$. From our hypothesis and Theorem 5, we have $K \subseteq N_k$ for some $1 \leq k \leq n$. Consequently, $K/N \subseteq N_k/N$ for some $1 \leq k \leq n$; so we are done.

In view of Theorem 4 and Theorem 5, we conclude 1-absorbing primary avoidance theorem for rings.

Corollary 3. Let $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$ be an efficient covering of ideals I_1, I_2, \ldots, I_n of a ring R where n > 2. If $\sqrt{I_i} \notin \sqrt{(I_j : x)}$ for all $x \in R \setminus \sqrt{I_j}$ whenever $i \neq j$, then no I_i $(1 \leq i \leq n)$ is a 1-absorbing primary ideal of R.

Corollary 4. (1-absorbing Primary Avoidance Theorem for Rings) Let $I, I_1, I_2, ..., I_n$ $(n \ge 2)$ be ideals of a ring R such that at most two of $I_1, I_2, ..., I_n$ are not 1-absorbing primary with $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$. If $\sqrt{I_i} \notin \sqrt{(I_j : x)}$ for all $x \in R \setminus \sqrt{I_j}$ whenever $i \ne j$, then $I \subseteq I_k$ for some $1 \le k \le n$.

References

- R. Ameri, On the prime submodules of multiplication modules. International journal of Mathematics and mathematical Sciences, 27 (2003), 1715-1724. DOI: 10.1155/S0161171203202180.
- [2] M. Alkan, Y. Tiraş, On prime submodules. The Rocky Mountain Journal of Mathematics, 37(3) (2007) 709-722.
- [3] S.E. Atani, F. Calhalp , U. Tekir , A Short Note on the Primary Submodules of Multiplication Modules, International Journal of Algebra, 8 (1) (2007), 381-384.
- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417–429.
- [5] A. Badawi, n-absorbing ideals of commutative rings and recent progress on three conjectures: a survey, Rings, Polynomials, and Modules, (2017), 33-52. DOI: 10.1007/978-3-319-65874-2_3
- [6] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51 (4) (2014), 1163–1173.
- [7] A. Badawi, E. Yetkin Celikel, On 1-absorbing primary ideals of commutative rings, Journal of Algebra and Applications, 19 (6) (2020), 2050111.
 DOI: 10.1142/S021949882050111X.
- [8] A. Yousefian Darani and F. Soheilnia, On 2-absorbing and weakly 2absorbing submodules, Thai J. Math., 9 (2011), 577-584

- [9] Z. A. El-Bast and P.F. Smith, Multiplication modules. Comm. in Algebra, 16 (1988), 755-799.
- [10] J. Huckaba, Rings with zero-divisors, Marcel Dekker, NewYork/ Basil,1988.
- [11] C. P. Lu, Unions of prime submodules. Houston J. Math, 23 (2) (1997), 203-213.
- [12] C. P. Lu, M-radicals of submodules in modules, Math. Japonica, 34 (2) (1989), 211-219.
- [13] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29 (1986), 37–39.
- [14] H. Mostafanasab, E. Yetkin, U. Tekir, A. Y. Darani, On 2-absorbing primary submodules of modules over comutative rings, An. S t. Univ. Ovidius Constanta, 24 (1) (2016), 335-351.
- [15] S. Payrovi, B. Babaei, On 2-absorbing submodules, Algebra Colloquium, 19 (1) (2012), 913-920.
- [16] P. F. Smith, Some remarks on multiplication modules, Archiv der Mathematik 50 (3) (1988), 223-235.

Ece YETKIN CELIKEL, Department of Electrical Electronics Engineering, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, Turkey. Email: ece.celikel@hku.edu.tr, yetkinece@gmail.com.