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Bounds for the minimum distance function

Luis Núñez-Betancourt, Yuriko Pitones, and Rafael H. Villarreal

Abstract

Let I be a homogeneous ideal in a polynomial ring S. In this paper, we
extend the study of the asymptotic behavior of the minimum distance
function δI of I and give bounds for its stabilization point, rI , when I
is an F -pure or a square-free monomial ideal. These bounds are related
with the dimension and the Castelnuovo–Mumford regularity of I.
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1 Introduction

In this manuscript we study the minimum distance function δI of a homoge-
neous ideal I contained in a polynomial ring S = K[x1, . . . , xn] over a field
K. This minimum distance function for ideals was introduced by the second-
named and third-named authors together with Mart́ınez-Bernal [MBPV17] to
obtain an algebraic formulation of the minimum distance of projective Reed–
Muller-type codes over finite fields.

If I is an unmixed radical graded ideal and its associate primes are gener-
ated by linear forms, then δI is non-increasing [MBPV17]. In our first result,
we extend this property to any radical ideal.

Theorem A (Theorem 3.4). Suppose that I ⊆ S is a radical ideal. Then,
δI(d) is a non-increasing function.
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The previous result allow us to define the regularity index of δI , rI , as
the value where δI stabilizes. If dim(S/I) = 1, previous work shows that
rI ≤ reg(S/I) [GSRTR02, RMSV11], where reg(S/I) is the Castelnuovo–
Mumford regularity of S/I. This motivated the authors to conjecture that
this relation holds in greater generality.

Conjecture B ([NnBPV18]). Let I ⊆ S be a radical homogeneous ideal
whose associated primes are generated by linear forms. Then, rI ≤ reg(S/I).

This conjecture was previously showed for edge ideals associated to Cohen–
Macaulay bipartite graphs [NnBPV18] and when dim(S/I) = 1 [GSRTR02,
RMSV11]. However, the conjecture does not hold in general. Jaramillo and
the third-named author provided an example of a monomial edge ideal I such
that rI > reg(S/I) [JV21]. In this work, we find bounds for rI for square-free
monomial ideals.

Theorem C (Theorem 4.5 & 5.7 ). Let I ⊆ S be a square-free monomial
ideal. Then, rI ≤ dim(S/I). Moreover, if I is shellable or Gorenstein, then
rI ≤ reg(S/I).

We also prove a similar result for ideals such that S/I is a F -pure ring.
These class of rings play an important role in the study of singularities in
prime characteristic [HR76].

Theorem D (Theorem 5.5 & 5.6). Suppose that K is a field of prime charac-
teristic. Let I ⊆ S be an ideal such that S/I if F -pure. Then, rI ≤ dim(S/I).
Moreover, if I is Gorenstein, then rI ≤ reg(S/I).

2 Preliminaries

In this section we recall some well known notion and results that are needed
throughout this manuscript.

Let S = K[x1, . . . , xn] =
⊕∞

t=0 St be a polynomial ring over a field K with
the standard grading and let I 6= (0) be a homogeneous ideal of S. Let d
denote the Krull dimension of R = S/I.

The Hilbert function of S/I, denoted HI , is given by

HI(t) = dimK(R≤t) = dimK(S≤t/I≤t) = dimK(S≤t)− dimK(I≤t),

where I≤t = I ∩ S≤t. By a classical theorem of Hilbert there is a unique
polynomial hI(t) ∈ Q[t] of degree d such that HI(t) = hI(t) for t� 0.
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The Hilbert-Samuel multiplicity or degree ofR, denoted e(R), is the positive
integer defined by e(R) = d! lim

t→∞
HI(t)/t

d.

Given an integer t ≥ 1, let Ft be the set of all zero-divisors of S/I not in
I of degree t ≥ 1. That is

Ft = { f ∈ St | f 6∈ I, (I : f) 6= I}.

We note that (I : f) 6= I is equivalent to f ∈ p for some p ∈ AssS(S/I),
AssS(S/I) is the set of associated primes of S/I.

Definition 2.1. The minimum distance function of I is the function δI : N+ →
Z given by

δI(t) =

{
e(S/I)−max{e(S/(I, f))| f ∈ Ft} if Ft 6= ∅,
e(S/I) if Ft = ∅.

Definition 2.2. Let I ⊆ S be a graded ideal and let F? be the minimal graded
free resolution of S/I as an S-module:

F? : 0→
⊕
j

S(−j)βgj → · · · →
⊕
j

S(−j)β1j → S → S/I → 0.

The Castelnuovo–Mumford regularity of S/I, regularity of S/I for short, is
defined as

reg(S/I) = max{j − i|βij 6= 0}.

The following result shows the asymptotic behavior of δI for a particular
case of graded ideals.

An ideal I ⊆ S is called unmixed if all its associated primes have the same
height, in other case I is mixed.

Theorem 2.3 ([MBPV17, Theorem 3.8]). Let I ⊆ S be an unmixed radical
homogeneous ideal. If all the associated primes of I are generated by linear
forms, then there is an integer r0 ≥ 1 such that

δI(1) > δI(2) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

The integer r0 where the stabilization occurs is called the regularity index
of δI and is denoted by rI . In Section 3, we show that one can define this
index for any radical ideal.
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Local cohomology Let R be a commutative Noetherian ring with identity
and let I be a homogeneous ideal generated by the forms f1, . . . , f` ∈ R.
Consider the Čech complex, Č?(f̄ ;R):

0→ R→
⊕
i

Rfi →
⊕
i,j

Rfifj → · · · → Rf1,...,f` → 0.

where Či(f̄ ;R) =
⊕

1≤j1≤...≤ji≤`Rfj1 ,...,fji and the homomorphism in every
summand is a localization map with appropriate sign.

Definition 2.4. Let M be a graded R-modue. The i-th local cohomology of
M with support in I is defined as

Hi
I(M) = Hi(Č?(f̄ ;R)⊗RM).

Remark 2.5. Since M is a graded R-module and I is homogeneous the local
cohomology module Hi

I(M) is graded.

Remark 2.6. If φ : M → N is a homogeneous R-module homomorphism of
degree t, then the induced R-module map Hi

I(M) → Hi
I(N) is homogeneous

of degree t.

Theorem 2.7 (Grothendieck’s Vanishing Theorem). Let M be an R-module
of dimension d. Then, Hi

I(M) = 0 for all i > d.

Theorem 2.8 (Grothendieck’s Non-Vanishing Theorem). Let M be a finitely
generated R-module of dimension d. Then, Hd

I (M) 6= 0.

Definition 2.9. Let M be an R-module with dimension d. The ai-invariants,
ai(M), for i = 0, . . . , d are defined as follows. If Hi

m(M) 6= 0,

ai(M) = max{α | Hi
m(M)α 6= 0},

for 0 ≤ i ≤ d, where Hi
m(M) denotes the local cohomology module with

support in the maximal ideal m. If Hi
m(M) = 0, we set ai(M) = −∞.

If d = dim(M), then, ad(M), is often just called the a-invariant of M .

The a-invariant, is a classical invariant [GW78], and is closely related to
the Castelnuovo-Mumford regularity.

Definition 2.10. Let R be a positively graded ring and let M be a finitely
generated R-module. The Castelnuovo–Mumford regularity of M , reg(M), is
defined as

reg(M) = max{ai(M) + i | 1 ≤ i ≤ d}.
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Remark 2.11. If M is a standard graded module of dimension d, then the a-
invariant is related to the Castelnuovo–Mumford regularity, via the inequeality
a(M) + d ≤ reg(M) which is equality in the case Cohen–Macaulay.

Definition 2.12. Suppose that R has prime characteristic p. The Frobenius
map F : R→ R is defined by r 7→ rp.

Remark 2.13. If R is reduced, R1/pe the ring of the pe-th roots of R is well
defined, and R ⊆ R1/pe .

3 Asymptotic behavior of the minimum distance func-
tion

In this section we prove that the minimum distance function δI is non-increasing.
Then, the notion of regularity index of δI is well defined. We also find what
is the stable value of the minimum distance function. We start this section
establishing notation.

Notation 3.1. Given an ideal I ⊆ S, we set

A(I) = {p ∈ AssS(S/I) | dim(S/I) = dim(S/p)};
V(I) = {p ∈ Spec(S) | I ⊆ p};
D(I) = Spec(S) \ V(I).

Remark 3.2. For an ideal I ⊆ S, we have

e(S/I) =
∑

p∈A(I)

λSp
(Sp/ISp) e(S/p),

where λSp
(Sp/ISp) denotes the length of Sp/ISp as Sp-module, by the addi-

tivity formula (see for instance [HS06, Theorem 11.2.4]). In particular, if I
is radical, then

e(S/I) =
∑

p∈A(I)

e(S/p).

Lemma 3.3. Suppose that I is a radical ideal. Let f ∈ Ft such that dim(S/(I, f))
= dim(S/I). Then, A((I, f)) = A(I) ∩ V(f). Furthermore,

e(S/(I, f)) =
∑

p∈A(I)∩V(f)

e(S/p).

Proof. Let J = (I, f). Let Q be an associated prime of J . Since I ⊆ J , there
exists an associated prime p of I such that p ⊆ Q. If dim(S/Q) = dim(S/J) =
dim(S/I), then p = Q. Thus, A(J) ⊆ A(I) ∩ V(f).
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Let Q ∈ A(I) ∩ V(f). Then, J ⊆ Q and dim(S/Q) = dim(S/J). Then, Q
is a minimal prime of S/J . Thus, Q ∈ AssS(S/J), and so, Q ∈ A(J).

We note that J is not necessarily radical. However, JSp = ISp for every
p ∈ A(I) ∩ V(f). Thus, λSp

(Sp/ISp) = 1 for every p ∈ A(I) ∩ V(f). Then,

e(S/(I, f)) =
∑

p∈A(I)∩V(f)

e(S/p)

by the additivity formula.

We now show that the minimum distance function is non-increasing.

Theorem 3.4. Suppose that I is a radical ideal. Then, δI(d) is a non-
increasing function.

Proof. If Ft = ∅ for every t ≥ 1, then δI(t) = e(S/I), which is the maximum
value. We note that this case is equivalent to I being a prime ideal.

We now assume that Ft 6= ∅ for some t ∈ N. We note that in this case
dim(S/I) 6= 0, otherwise, I = m and so Ft = ∅. Let f ∈ Ft such that
δI(t) = e(S/I)− e(S/(I, f)). Then,

δI(t) = e(S/I)− e(S/(I, f))

=
∑

p∈A(I)

e(S/p)−
∑

p∈A((I,f))

e(S/p)

=
∑

p∈A(I)

e(S/p)−
∑

p∈A(I)∩V(f)

e(S/p)

=
∑

p∈A(I)∩D(f)

e(S/p).

Since I is radical and dim(S/I) > 0, we have that m is not an associated prime.
Then, mf 6⊆ I because f 6∈ I. We conclude that there exists i = 1, . . . , n such
that xif 6∈ I. In particular, xif ∈ Ft+1 and Ft+1 6= ∅. Then,

δI(t+ 1) ≤
∑

p∈A(I)∩D(xif)

e(S/p)

=
∑

p∈A(I)∩D(xi)∩D(f)

e(S/p)

≤
∑

p∈A(I)∩D(f)

e(S/p) = δI(t).
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Thanks to the previous theorem we have that the minimum distance func-
tion eventually stabilizes, and it has a regularity index.

Definition 3.5. Suppose that I is a radical ideal. The regularity index of δI ,
denoted by rI , is defined by

rI = min{s ∈ N | δI(s) = lim
t→∞

δI(t)}.

Proposition 3.6. Suppose that I is a radical ideal. Then,

δI(t) = min{ e(S/p) | p ∈ AssS(S/I) }

for t� 0 if I is unmixed and δI(t) = 0 for t� 0 otherwise.

Proof. We first assume that I is mixed. Let J1 be the intersection of the
minimal primes of I of dimension dim(S/I) and let J2 be the intersection of the
minimal primes of I of dimension smaller than dim(S/I). Let f ∈ J1 \ I. Let
α = deg(f). In particular, f ∈ Fα. We note that dim(S/I) = dim(S/(I, f))
and A(I) = A(I, f), and so, e(S/(I, f)) = e(S/I). We conclude that δI(t) = 0.
Since δI is nondecresing by Theorem 3.4, we obtain that δI(t) = 0 for t ≥ α.

We now assume that I is unmixed. Then, A(I) = AssS(S/I). If I is a
prime ideal, then δI(t) = e(S/I) for every t ∈ N, and our claim follows. We
assume that dim(S/I) > 0 and that I is not a prime ideal. For every f ∈ Ft,
there exists a prime ideal p such that f 6∈ p. Then,

e(S/I)− e(S/(I, f)) ≥ e(S/p) ≥ min{ e(S/p) | p ∈ AssS(S/I) }.

We conclude that δI(t) ≥ min{ e(S/p) | p ∈ AssS(S/I) }. Let p1, . . . , p` denote
the associated primes of I in an order such that e(S/pi) ≤ e(S/pj) for i ≤ j.
Let f ∈ p2 ∩ . . . ∩ p` \ I. Let α = deg(f). We have that f ∈ Fα. Then,
δI(α) ≤ e(S/I) − e(S/(I, f)) = e(S/p1). Since δ is nondecresing by Theorem
3.4, we obtain that δI(t) ≤ e(S/p1) for t ≥ α.We conclude that δI(t) = e(S/p1)
for t ≥ α.

Proposition 3.7. Let I be a mixed radical ideal. Let J1 be the intersection of
the minimal primes of I of dimension dim(S/I) and let J2 be the intersection
of the minimal primes of I of dimension smaller than dim(S/I). Then, rI =
min{t | [J1/I]t 6= 0}.

Proof. As in the proof of Proposition 3.6, we have that δI(t) = 0 for t ≥
min{t | [J1/I]t 6= 0}. We conclude that rI ≤ min{t | [J1/I]t 6= 0}.

Let f ∈
(⋃

p∈AssS(S/I) p
)
\ I of degree strictly less than min{t | [J1/I]t 6=

0}. Then, f 6∈ J1, and so, there exists a prime ideal p such that f 6∈ p and
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dim(S/p) = dim(S/I). Then, e(S/I) − e(S/(I, f)) ≥ e(S/p). We conclude
that δI(t) > 0. Then, rI ≥ min{t | [J1/I]t 6= 0}.

Proposition 3.8. Suppose that I ⊂ S is an unmixed radical ideal with asso-
ciated primes p1, . . . , pr and q1, . . . , qs such that e(S/pi) = min{e(S/Q) | Q ∈
AssS(S/I)}. And let Ji =

(⋂
j 6=i pj

)⋂(⋂s
j=1 qj

)
. Then, rI = min{t | ∃i

such that [Ji/I]t 6= 0}.

Proof. Set e = e(S/pi). We have that δI(t) = e, for t ≥ min{t | ∃i such
that [Ji/I]t 6= 0}, as in the proof of Proposition 3.6. We conclude that rI ≤
min{t | ∃i such that [Ji/I]t 6= 0}.

Let f ∈
(⋃

p∈AssS(S/I) p
)
\ I of degree strictly less than min{t | ∃i such

that [Ji/I]t 6= 0}. Then, f 6∈ Ji for every i, and so, either f 6∈ qj or f
does not belong to two different primes pi and pj . In both cases, dim(S/I) =
dim(S/(I, f)). In the first case, e(S/I) − e(S/(I, f)) ≥ e(S/qj) > e. In the
second case, e(S/I)−e(S/(I, f)) ≥ 2 e > e . We conclude that δI(t) > e . Then,
rI ≥ min{t | ∃i such that [Ji/I]t 6= 0}.

4 Stanley–Reisner ideals associated to a shellable simpli-
cial complex

In this section we use the shellability condition to relate the regularity in-
dex of a Stanley–Reisner ideal of a shellable simplicial complex, I∆, with the
Castelnuovo–Mumford regularity.

Definition 4.1. A simplicial complex on a vertex set X = {x1, x2, . . . , xn} is
a collection of subsets of X, called faces, satisfying that {xi} ∈ ∆ for every
i ∈ [n] and, if σ ∈ ∆ and θ ⊆ σ then θ ∈ ∆. A face of ∆ not properly
contained in another face of ∆ is called a facet .

A face σ ∈ ∆ of cardinality | σ |= i + 1 has dimension i and is called an
i-face of ∆. The dimension of ∆ is dim ∆ = max{dimσ | σ ∈ ∆}, or if ∆ = {}
is the void complex, which has no faces. We say that ∆ is pure if all its facets
have the same dimension.

Let ∆ be a simplicial complex of dimension d with the vertex set [n] =
{1, 2, . . . , n}, and let K be a field. The square-free monomial ideal I∆ in the

polynomial ring S = K[x1, . . . , xn] is generated by the monomials xσ =
∏
i∈σ

xi

which σ is a non-face in ∆.
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The simplicial complex ∆ is said Cohen-Macaulay when the quotient ring
K[∆] = S/I∆, called Stanley–Reisner ring of ∆, is Cohen-Macaulay.

Definition 4.2. A pure simplicial complex ∆ of dimension d is shellable if
the facets of ∆ can be order σ1, . . . , σs such that

σ̄i
⋂i−1⋃

j=1

σ̄j


is pure of dimension d − 1 for all i ≥ 2. Here σ̄i = {σ ∈ ∆ | σ ⊆ σi}. If ∆ is
pure shellable, σ1, . . . , σs is called a shelling.

Theorem 4.3 ([Vil15, Theorem 6.3.23]). Let ∆ be a simplicial complex. If ∆
is pure shellable, then ∆ is Cohen–Macaulay over any field K.

Remark 4.4. Let ∆ be a simplicial complex. Suppose that ∆ is pure shellable
with ordered facets σ1, . . . , σs. We have that σ1, . . . , σi is a shelling for the
simplicial complex associated to σ1 ∪ . . . ∪ σi. Let Pσj

= (xt | t 6∈ σj). Then,

S/Pσ1
∩ . . . ∩ Pσi

,

is Cohen.Macaulay for every i = 1, . . . s by Theorem 4.3.

We are now able to show one of our main results.

Theorem 4.5. Let I = I∆ be the Stanley–Reisner ideal of a shellable simpli-
cial complex, with dim(S/I∆) = d. Then rI ≤ reg(S/I).

Proof. Let d = dim(S/I∆). Since ∆ is shellable, S/I∆ is a Cohen-Macaulay
ring by Theorem 4.3. Let p1, . . . , p` denote the associate primes of I. For
1 ≤ i ≤ `, we set Ri = S/p1 ∩ p2 ∩ · · · ∩ pi and Ji = p1 ∩ · · · ∩ pi. We have that
Ri is Cohen-Macaulay of dimension d, because Ji is a shelling of I∆.

We have the following short exact sequence;

0 −→ Ji−1/Ji −→ Ri −→ Ri−1 −→ 0

for 2 ≤ i ≤ `.
We note that dim(Ri−1) = d, and so, Hj

m(Ri−1) = 0 for all j > d. Then,
the short exact sequence induces a long exact sequence as follows:

0→ H0
m(Ji−1/Ji)→ H0

m(Ri)→ H0
m(Ri−1)→ · · ·

→ Hd
m(Ji−1/Ji)→ Hd

m(Ri)→ Hd
m(Ri−1)→ 0.
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Since Ri−1 and Ri are Cohen-Macaulay rings, we have that a short exact
sequence reduces to

0→ Hd
m(Ji−1/Ji)→ Hd

m(Ri)→ Hd
m(Ri−1)→ 0,

because all the other local cohomology modules vanish. Then, Ji−1/Ji is also
Cohen-Macaulay of dimension d. We have that ad(Ji−1/Ji) ≤ ad(Ri), and

reg(Ji−1/Ji) = ad(Ji−1/Ji) + d ≤ ad(Ri) + d = reg(Ri).

for 2 ≤ i ≤ `. By Proposition 3.8,

rI ≤ min{t | [J`−1/J`]t 6= 0} ≤ reg(J`−1/J`).

Then, rI ≤ reg(R`) = reg(S/I∆).

5 Results related to F -purity

Definition 5.1. Let R be a Noetherian ring of prime characteristic p, and
F : R → R be the Frobenius map. We say that R is F -pure if for every
R-module, M , we have that

M ⊗R R
1M⊗RF // M ⊗R R

is injective. We say that R is F -finite if R is finitely generated as Rp-module.

Definition 5.2. Suppose that K has prime characteristic, K is F -finite, and
that I is a radical ideal. Then, we set

• F e∗S/I := {F e∗ f | f ∈ S/I} ∼= S/I as a Abelian groups, but the action of
S/I on F e∗S/I : is given by rF e∗ f = F e∗ f

pef .

• me = {f ∈ S/I | φ(F e∗ f) ∈ m ∀φ : F e∗S/I → S/I} [AE05].

• be = max{t | mt 6⊆ me}.

• fpt(S/I) = lim
e→∞

be
pe [TW04].

Theorem 5.3 ([DSNnB18, Theorem B]). Suppose that K has prime charac-
teristic. If S/I is a F -pure ring, then ai(S/I) ≤ − fpt(S/I). Furthermore, if
S/I is a Gorenstein ring, then reg(S/I) = dim(S/I)− fpt(S/I).

Remark 5.4. Suppose that K has prime characteristic, K is F -finite, and
that S/I is a F -pure ring. Let p1, . . . , p` be the minimal primes of I, and
Ji =

⋂
i 6=j pj. Then, S/Ji is F -pure [Sch10, Corollary 4.8]. Furthermore,

fpt(S/I) ≤ fpt(S/Ji) [DSNnB18, Theorem 4.7], because Ji ·S/I is a compatible
ideal for S/I.
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Theorem 5.5. Suppose that K has prime characteristic. If S/I is a F -pure
ring, then rI ≤ dim(S/I).

Proof. Let p1, . . . , p` be the minimal primes of I. For i = 1, . . . , `, we set
Ji =

⋂
i 6=j pj . We have a short exact sequence

0→ Ji/I → S/I → S/Ji → 0.

This induces a long exact sequence

0→ H0
m(Ji/I)→ H0

m(S/I)→ H0
m(S/Ji)→ H1

m(Ji/I)→ . . . .

Since both S/Ji and S/I are F -pure, we have that aj(S/Ji) ≤ 0 and aj(S/I) ≤
0 for every j. Then, aj(Ji/I) ≤ 0 for every j [HR76, Proposition 2.4]. Then,

min{t | [Ji/I]t 6= 0} ≤ max{` | β0,`(Ji/I) 6= 0}
≤ reg(Ji/I)

= max{aj(Ji/I) + j}
≤ dim(S/I).

Theorem 5.6. Suppose that K has prime characteristic. If S/I is a F -pure
ring and Gorenstein, then rI ≤ reg(S/I).

Proof. We first assume that K is F -finite. Let p1, . . . , p` be the minimal primes
of I. For i = 1, . . . , `, we set Ji =

⋂
i 6=j pj . We have a short exact sequence

0→ Ji/I → S/I → S/Ji → 0.

This induces a long exact sequence

0→ H0
m(Ji/I)→ H0

m(S/I)→ H0
m(S/Ji)→ H1

m(Ji/I)→ . . . .

Since both S/Ji and S/I are F -pure, we have that aj(S/Ji) ≤ − fpt(S/Ji)
and aj(S/I) ≤ − fpt(S/I) for every j. Then,

aj(Ji/I) ≤ max{− fpt(S/Ji),− fpt(S/I)} ≤ − fpt(S/I)

for every j by Theorem 5.3. Then,

min{t | [Ji/I]t 6= 0} ≤ max{` | β0,`(Ji/I) 6= 0}
≤ reg(Ji/I)

= max{aj(Ji/I) + j}
= max{− fpt(S/I) + j}
≤ dim(S/I)− fpt(S/I)

= reg(S/I) by Theorem 5.3.
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The result for non F -finite fields follows from taking the product ⊗KK, because
the numerical invariants do not change after field extensions. In addition, F -
purity is stable for field extensions.

Theorem 5.7. Let K be any field and I is a square-free monomial ideal.
Then, rI ≤ dim(S/I). If S/I is a Gorenstein ring, then rI ≤ reg(S/I).

Proof. If K has prime characteristic, the result follows from Theorems 5.5 and
5.6.

We now assume that K has characteristic zero. Since field extensions do
not affect whether a ring is Gorenstein and their dimension, without loss
of generality we can assume that K = Q. Let A = Z[x1, . . . , xn] and IA
the monomial ideal generated by the monomials in I. We have that rI =
rIA⊗ZFp

by Propositions 3.7 and 3.8, since dim(S/I) = dim(A⊗ZQ/IA⊗ZQ) =
dim(Fp[x1, . . . , xn]/IA ⊗Z Fp). Then,

rI = rIA⊗ZFp
≤ dim(Fp[x1, . . . , xn]/IA ⊗Z Fp) = reg(S/I)

by Theorem 5.6, because Stanley–Reisner rings in prime characteristic are
F -pure.

We have that

regS(S/I) = regA⊗ZQ(A⊗Z Q/IA ⊗Z Q) = regA⊗ZFp
(A/IA ⊗Z Fp)

and A/J ⊗Z Fp is Gorenstein for p� 0 [HH, Theorem 2.3.5]. Then, the result
follows from Theorem 5.6, because Stanley–Reisner rings in prime character-
istic are F -pure.
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Supported by CONACyT Grant 284598, Ctedras Marcos Moshinsky, and SNI,
Mexico.
Email: luisnub@cimat.mx

Yuriko PITONES,
Centro de Investigación en Matemáticas,
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