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On numerical solution of nonlinear parabolic
multicomponent diffusion-reaction problems

Gh. Juncu, C. Popa, Gh. Sarbu

Abstract

This work continues our previous analysis concerning the numerical
solution of the multi-component mass transfer equations. The present
test problems are two-dimensional, parabolic, non-linear, diffusion- re-
action equations. An implicit finite difference method was used to dis-
cretize the mathematical model equations. The algorithm used to solve
the non-linear system resulted for each time step is the modified Picard
iteration. The numerical performances of the preconditioned conjugate
gradient algorithms (BICGSTAB and GMRES) in solving the linear
systems of the modified Picard iteration were analysed in detail. The
numerical results obtained show good numerical performances.

1 INTRODUCTION

The generalized Fick law, shows that, for a multicomponent mixture, the diffu-
sion of a certain species is dictated not only by its own concentration gradient
but also by the concentration gradients of the other species. This idea was
first formulated by Maxwell [13] and Stefan [16].
From a computational point of view, the numerical solution of multicompo-
nent diffusion equations is still difficult and is considered an open problem.
The numerical algorithms used to solve the partial differential equations that
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model multicomponent mass transfer are reviewed in [3, 4].
Relating to the parabolic partial differential equations case, the subject of
the present work, the followings aspects must be mentioned: (1) for 1D spa-
tial operators, the method of lines (discretization of the spatial derivatives
with finite difference, finite volume, or Galerkin methods and the integration
of the resulting ODE system with an ODE solver, e.g., Livermore Solver for
Ordinary Differential Equations (LSODE) package) was used in [12, 18]; (2)
discretization of the spatial derivatives with the finite difference, finite volume,
or Galerkin methods and time integration with the implicit (Euler), implicit-
explicit (Euler), or Crank-Nicholson algorithm are the numerical methods em-
ployed in [8,9,14,17,20] for 2D spatial operators.
Kumar and Mazumder [8] have developed a numerical solution algorithm for
multicomponent diffusion equations. The first step of the method was to de-
compose the domain of definition into subdomains, using the binary spatial
partitioning algorithm. For each subdomain the equations of the mathemat-
ical model were discretized using the finite volume method. Discrete linear
equations were solved, for each subdomain, with the preconditioned GMRES
algorithm.
Kozeschnik [9] use the finite-element technique, to discretize the multicompo-
nent diffusion equations. The suggested formalism is based on the solution
of the integral statement of the generalized diffusion equation. This treat-
ment allows for a simple implementation of particular boundary conditions
and can easily be extended from a one to a multidimensional analysis. The
finite-element diffusivity matrices are evaluated for a one-dimensional bar and
a two-dimensional triangular element.
Wangard et al. [20] approaches the solving of the equations governing laminar-
diffusion of multicomponent fluids (gas or liquid). The rigorous model for mul-
ticomponent mass diffusion is recast into a mathematical form analogous to
that for binary diffusion. Diagonal terms are integrated by default and terms
outside the diagonal are explicitly integrated.
Mazumder [14] analyzes the case of two-dimensional diffusion, and draws the
following conclusions: (1) if only the self-diffusion operator is treated implic-
itly, the stability of the resulting equations depends on the constraint condi-
tions imposed on the total conservation of mass; (2) a totally implicit proce-
dure prevents this instability and ensures an unconditional stability.
Bottcher [17] analyzes a multicomponent stationary transport problem, which
combines diffusion with fluid flow. The discretization of the mathematical
model was performed with the finite element method. Solving the resulting
nonlinear algebraic system was performed using the Newton-Raphson method.
Juncu [5] and Juncu et al. [6,7] develop a new splitting method for solving
the multicomponent diffusion problem, the linear case. The method is stable
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if the discrete spatial operator is symmetric and positive definite.
The objective of the present work is the analysis of the numerical perfor-
mances of the modified Picard-preconditioned conjugate gradient algorithms
(BICGSTAB and GMRES) for solving 2D, parabolic, non-linear multicompo-
nent diffusion-reaction equations. It must be mentioned that these algorithms
were used in [3] for solving 2D elliptic, non-linear, multicomponent diffusion-
reaction equations.
The present paper is organized as follows: in Section 2 we describe the math-
ematical model of the test problems. Section 3 presents the numerical algo-
rithms. The results of the numerical simulations performed are presented in
Section 4. Finally, some concluding remarks are briefly mentioned in Section
5.

2 THE DIFFUSION-REACTION PROBLEM

Consider that, inside a homogeneous porous catalyst pellet having the finite
slab geometry with square section, the isothermal, first-order, complex chem-
ical reaction,

A1
k∗
1−→ A2

k∗
2−−→←−−

k∗
4

A3

A1

k∗
3−−→←−−

k∗
5

A4 (1)

takes place. The external transport resistances are assumed negligibly (the
concentrations on the external surface of the catalyst pellet are the same as
the bulk values). When the total mixture molar concentration is constant, the
dimensionless concentrations profiles inside the pellet are given by

∂Zi
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4∑
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where

R1 = −k1Z1 − k3Z1 + k5Z4

R2 = k1Z1 − k2Z2 + k4Z3

R3 = k2Z2 − k4Z3



ON NUMERICAL SOLUTION OF NONLINEAR PARABOLIC
MULTICOMPONENT DIFFUSION-REACTION PROBLEMS 186

R4 = k3Z1 − k5Z4

where Zi = Ai/A1b is the dimensionless concentration, A1b is the bulk molar
concentration of species A1,ki = k∗i L

2/Dref is the nondimensional reaction
rate constant, L is the length of the square section,t = tDref/L

2 is the di-
mensionless time or Fourier number, Di,j is the multicomponent Fick diffusion
coefficient related to Dref , and Dref is a reference diffusion coefficient. In
our case (diffusion-reaction systems), we can use the molar average frame.
The initial and boundary conditions for the mathematical model previously
presented are :

-initial conditions :

t = 0, Z1 = 0, Z2 = Z3 = Z4 = 0 (x, y) ∈ Ω = (0, 1)× (0, 1) (3)

-boundary conditions:

t ∈ (0, 1), Z1 = 1, Z2 = Z3 = Z4 = 0 (x, y) ∈ ∂Ω (4)

The relation used to compute the matrix of the mole-based multicompo-
nent Fick diffusion coefficients, D, is,

D = B−1Γ (5)

In relation (5), B is the matrix that takes into account the drag effects and
Γ is the matrix of thermodynamic effects. Considering negligible the Knudsen
and surface diffusion, the matrix B is given by, [1, 10, 19],

Bii =
xi

Din
+

n∑
k=1
k 6=i

xk
Dik

, i = 1, ..., n− 1, (6)

Bij = −xi(
1

Dij
− 1

Din
), i, j = 1, ..., n− 1, i 6= j, (7)

where Dij is the Stefan-Maxwell diffusion coefficient related to Dref and
xi is mole fraction of species i. The mole fraction of the i -th species, xi , is
calculated by:

xi =
Zi

n∑
j=1

Zj

(8)

where n is the total number of chemical species present in system. In this work
the value assumed for n is n = 5. The fifth species is an inert not involved in the
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chemical reaction. The dimensionless molar concentration of Z5 is computed
based on the assumption of constant total mixture molar concentration. In
addition, it must be mentioned that for a mixture with n chemical species,
there are only n-1 linear independent fluxes and composition gradients, [19].
For this reason, only n-1 mass balance equations are necessary to model such a
system. The Stefan-Maxwell diffusion coefficients were considered constants.
This assumption is a widely used one, [19]. The reference diffusion coefficient
Dref selected is Dref = D15

3 NUMERICAL METHODS

3.1 Discretization

The spatial derivatives of Eq. (2) were discretized with the central second-
order accurate finite difference scheme on uniform grids with N ×N points:

0 = x1 < x2... < xN−1 < xN = 1, xk = (k − 1)h,

0 = y1 < y2... < yN−1 < yN = 1, yl = (l − 1)h, k, l = 0, N

where h = 1/(N−1) is the grid step size. The discrete approximation obtained
is:

Zk,l,t+∆t
i − Zk,l,t

i
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=
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(9)

where i = 1, 4.
The values of the diffusion coefficients were calculated as:
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The grid point values of the multicomponent Fick diffusion coefficients were
calculated with the relation (5) presented in the previous section.

3.2 Numerical Algorithms

The nonlinear algorithm used in the present work is the modified Picard iter-
ation [11].
The modified Picard scheme, also called a fixed point method, is given by:

A(Zm)δZm+1 = b(Zm)−A(Zm)Zm (11)

Zm+1 = Zm + δZm+1 (12)

where m is the iteration number such that Z0 is the initial estimate, Zm =
[Zm

1 , Z
m
2 , Z

m
3 , Z

m
4 ]. The matrix A(Zm) is defined by:

A(Zm) =


Am

11 Am
12 Am

13 Am
14

Am
21 Am

22 Am
23 Am

24

Am
31 Am

32 Am
33 Am

34

Am
41 Am

42 Am
43 Am

44

 +


(k1 + k3)h2I 0 0 −k5h

2I
−k1h

2I k2h
2I −k4h

2I 0
0 −k2h

2I k4h
2I 0

−k3h
2I 0 0 k5h

2I


(13)

where I is the (N − 2) × (N − 2) identity matrix. The blocks Am
ij are

(N − 2)× (N − 2) penta-diagonal matrices corresponding to the discretization
stencil:  CN

CW CM CE
CS

 (14)

CM =
h2

∆t
+ (D

k+ 1
2 ,l

ij +D
k− 1

2 ,l
ij +D

k,l+ 1
2

ij +D
k,l− 1

2
ij ) (15)

CE = −Dk+ 1
2 ,l

ij (16)

CW = −Dk− 1
2 ,l

ij (17)

CS = −Dk,l− 1
2

ij (18)

CN = −Dk,l+ 1
2

ij (19)

The linear solvers employed in the modified Picard iteration are the Matlab
R2018a implementations of the preconditioned BICGSTAB (see Ref. [2, p.



ON NUMERICAL SOLUTION OF NONLINEAR PARABOLIC
MULTICOMPONENT DIFFUSION-REACTION PROBLEMS 189

24] and also Ref. [21]) and preconditioned restarted GMRES (m) (see Ref. [2,
p. 19] and also Ref. [21]). The preconditioners tested are the block diagonal
matrices: 

∆̃0 0 0 0

0 ∆̃0 0 0

0 0 ∆̃0 0

0 0 0 ∆̃0

 (20)

where ∆̃0 is the complete/incomplete Cholesky factorization (symbolized by
CC=IC) of the discrete Laplace operator. The incomplete Cholesky factoriza-
tion preserves the sparsity structure of the original matrix. Details concerning
the preconditioners will be given in the next section. In all numerical experi-
ments, the value of the GMRES (m) restart parameter was:

m = 35

The stopping criterion for both the linear and non-linear iterations is:

||resi||
||res0||

< 10−6

3.3 The Preconditioning Techniques

The preconditioning technique used in the present work is described in detail
and theoretical analysed in [4]. The present test problem is similar to that
employed in [4]. For these reasons, only the main elements of the precondi-
tioning technique can be seen in the next paragraphs. We consider the system
of linear equations to be solved in one step of the Picard method:

AZ = B (21)

where

A =


Am

11 Am
12 Am

13 Am
14

Am
21 Am

22 Am
23 Am

24

Am
31 Am

32 Am
33 Am

34

Am
41 Am

42 Am
43 Am

44

 , Z =


Z1

Z2

Z3

Z4

 , B =


b1
b2
b3
b4


The blocks Aij are squared matrix with dimension (N − 2)2 and blocks Aii,
i = 1, 4 are symmetric and positive definite. The classical method of construct-
ing a preconditioning matrix for the system (2.31) is based on the Choleski
type decomposition, complete or incomplete of the diagonal blocks:

Aii = CiC
T
i +Ri, i = 1, 4 (22)
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(if Ri = 0, i = 1, 4 we refer to complete decomposition, thus we have the
case of incomplete decomposition).
In the case of incomplete decomposition, the matrix Ri is different from the
null matrix in the same way as the matrix Ci maintain the sparsity character
of the matrix Aii. We choose that the preconditioner are the Jacobi block-
diagonal matrix:

M =


C1 0 0 0
0 C2 0 0
0 0 C3 0
0 0 0 C4



CT

1 0 0 0
0 CT

2 0 0
0 0 CT

3 0
0 0 0 CT

4

 (23)

=


C1C

T
1 0 0 0

0 C2C
T
2 0 0

0 0 C3C
T
3 0

0 0 0 C4C
T
4


The following preconditioning methods can be used:

-left preconditioning:
AZ = B ⇐⇒ ÂZ = B̂, with Â = M−1A, B̂ = M−1B;
-right preconditioning:
AZ = B ⇐⇒ ÂẐ = B, with Â = AM−1, Ẑ = MZ;
-left-right preconditioning:
AZ = B ⇐⇒ ÂẐ = B̂, with

Â =


C−1

1 0 0 0
0 C−1

2 0 0
0 0 C−1

3 0
0 0 0 C−1

4

A

C−T1 0 0 0

0 C−T2 0 0

0 0 C−T3 0

0 0 0 C−T4

 (24)

Ẑ =


CT

1 0 0 0
0 CT

2 0 0
0 0 CT

3 0
0 0 0 CT

4

Z, B̂ =


C−1

1 0 0 0
0 C−1

2 0 0
0 0 C−1

3 0
0 0 0 C−1

4

B
Jacobi block-type preconditioning techniques give quite good results, but re-
quire four complete or incomplete Choleski-type decompositions of diagonal
blocks, which becomes computationally expensive in practical applications.
Next we propose a preconditioning matrix that is no longer based on the di-
agonal blocks Aii, but on a single block, ∆0.
∆0 is the matrix obtained from the discretization, using finite difference schemes,
of the equation −∆z+ ∂z

∂t = 0. The matrix ∆0 is symmetric and positive def-
inite (strictly diagonal dominant and the diagonal elements strictly positive).
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For N = 5, ∆0 has the following expression:

∆0 =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


(25)

We define

∆̃0 = ∆0 + h2I (26)

where I is the (N − 2)2 identity matrix.
From construction ∆̃0 is the symmetric and positive definite matrix (〈∆̃0x, x〉 =
〈∆0x, x〉2h||x||2 > 0, ∀x 6= 0) and accept a Cholesky decomposition (forR = 0
is complete, otherwise is incomplete)

∆̃0 = CCT +R (27)

The preconditioning matrix used in this work is:

P =


∆̃0 0 0 0

0 ∆̃0 0 0

0 0 ∆̃0 0

0 0 0 ∆̃0

 =


C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C



CT 0 0 0
0 CT 0 0
0 0 CT 0
0 0 0 CT

 = Γ·ΓT

(28)

4 NUMERICAL RESULTS

In the case of the linear stationary diffusion-reaction problem, the decrease
of the convergence rate and the efficiency of the algorithms was observed due
to the increase of the diffusion interaction of chemical species, while in the
nonlinear case, the diffusion interaction does not significantly influence the
convergence speed and efficiency [3].
In the case of the linear stationary convection-diffusion-reaction problem, the
decrease in the convection rate leads to the increase of the diffusion interac-
tion, and in the nonlinear case, the increase of the dilution ratio leads to the
increase of the convergence rate and efficiency [3].
For the non-stationary linear case, a splitting method was developed for the
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convection-diffusion problem. The advantage of the splitting method is that
the algebraic systems to be solved are triangular blocks. The stability of the
method is given by the condition that the two triangular block matrices (upper
and lower) are positively defined [6,7].
The multicomponent diffusion-reaction problem analyzed in this paper is time
dependent (contains an evolving term) and is non-linear (due to the fact that
the diffusion coefficients are dependent on concentrations).
The present computations are focused on the following aspects: stability, ac-
curacy and the numerical performances of the algorithms employed. The time
step is considered constant and takes values from ∆t = 0.001 to ∆t = 0.01.
The values used for the spatial grid step size h are h = 2−5, 2−6, 2−7 and 2−8.
The influence of cross-diffusion coupling on the numerical performances of the
numerical algorithms is analysed considering the following multicomponent
Fick diffusion matrices:
D11 0 0 0

0 D22 0 0
0 0 D33 0
0 0 0 D44


(a)


D11 D12 0 0
D21 D22 0 0

0 0 D33 0
0 0 0 D44


(b)


D11 D12 D13 0
D21 D22 D23 0
D31 D32 D33 0

0 0 0 D44


(c)


D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44


(d)

For these matrices, the cross-diffusion coupling increases progressively, from
no cross-diffusion coupling (case (a)) to all species interaction (case (d)). For
brevity, the case (a) will be symbolized by CPL1, case (b) by CPL2, case (c)
by CPL3 and case (d) by CPL4. The values of the Stefan-Maxwell diffusion
coefficients are presented in the Appendix. The values of the dimensionless
reaction rate constants are:

(1) - k1 = 1, k2 = 0.4, k3 = 0.5, k4 = 0.2, k5 = 0.1

(2) - k1 = 10, k2 = 4, k3 = 5, k4 = 2, k5 = 1

(3) - k1 = 100, k2 = 40, k3 = 50, k4 = 20, k5 = 10
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1: Dimensionless concentration profiles calculated for set B1, set (2) of dimen-
sionless reaction rate constants, Z5b = 1, CPL=4, mesh 33x33, GMRES(Non)

2: Dimensionless concentration profiles calculated for set B2, set (3) of dimen-
sionless reaction rate constants, Z5b = 1, CPL=4, mesh 33x33, GMRES(Non)
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The numerical results for set B1 of Stefan-Maxwell diffusion coefficients
and set(2) of dimensionless reaction rate constants are plotted in Figure 1.
The numerical results for set B2 of Stefan-Maxwell diffusion coefficients and
set(3) of dimensionless reaction rate constants are depicted in Figure 2. The
results introduced in Figure 1-2 were gotten utilizing a constant time step
equal to ∆t = 10−3 and final time t = 1.
The numerical results rich a stationary state, at time t = 1.
All numerical results obtained confirm the stability of the method. For all the
combinations of the parameters we obtained a stable solution.

To analyse the spatial convergence rate, we made a convergence analysis
using the following sequence of spatial grids: 33× 33, 65× 65, 129× 129, and
257×257. Let Z(m−1) and Z(m) denote the solutions on grid m1 and the next
finer grid m with twice as many points in both coordinate directions. The
difference between the solutions on the grids m1 and m is given by (in the
discrete p norm)

Err(m) = ||Z(m) − Z(m−1)||p (29)

The rate of convergence can be approximated by formula [15]:

R(m) ≈ log2(
Err(m−1)

Err(m)
) (30)

Tables 1-2 show a selection from the numerical experiments made for the
calculation of the spatial convergence rate. The norm used is the discrete Eu-
clidean norm (p = 2).
We observe that, for B1 and B2, and the grid m = 3, 4, R(m) are approxi-
mately equal to 2.3. The values of R(m) previously presented show that, as
expected, the present numerical solution is second-order accurate in space.
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Table 1: Convergence rate ; set B1 of the Stefan-Maxwell diffusion coefficients

m Mesh Case
Z5b=1 Z5b=10

Err(m) R(m) Err(m) R(m)

1 33 x 33 CPL1 - - - -
CPL2 - - - -
CPL3 - - - -
CPL4 - - - -

2 65 x 65 CPL1 0.002 - 0.002 -
CPL2 0.002 - 0.002 -
CPL3 0.0019 - 0.002 -
CPL4 0.0019 - 0.002 -

3 129 x129 CPL1 0.00041 2.286304 0.00042 2.251539
CPL2 0.00041 2.286304 0.00042 2.251539
CPL3 0.00041 2.212304 0.00041 2.286304
CPL4 0.00040 2.247928 0.00041 2.286304

4 257 x 257 CPL1 0.000085 2.270089 0.000086 2.287981
CPL2 0.000085 2.270089 0.000085 2.304855
CPL3 0.000083 2.304441 0.000085 2.270089
CPL4 0.000082 2.286304 0.000084 2.287163

Table 2: Convergence rate ; set B2 of the Stefan-Maxwell diffusion coefficients

m Mesh Case
Z5b=1 Z5b=10

Err(m) R(m) Err(m) R(m)

1 33 x 33 CPL1 - - - -
CPL2 - - - -
CPL3 - - - -
CPL4 - - - -

2 65 x 65 CPL1 0.0021 - 0.0021 -
CPL2 0.0021 - 0.0022 -
CPL3 0.0022 - 0.0022 -
CPL4 0.0021 - 0.0022 -

3 129 x129 CPL1 0.00044 2.254814 0.00045 2.222392
CPL2 0.00044 2.254814 0.00045 2.289507
CPL3 0.00045 2.289507 0.00045 2.289507
CPL4 0.00044 2.254814 0.00045 2.289507

4 257 x 257 CPL1 0.000090 2.289507 0.000091 2.305987
CPL2 0.000091 2.273565 0.000091 2.305987
CPL3 0.000091 2.305987 0.000090 2.321928
CPL4 0.000091 2.273565 0.000090 2.321928
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Table 3: Average value of the average reduction factor, ρ ; set B1 of the
Stefan-Maxwell diffusion coefficients

The next issue analysed in this work is the numerical performances of the
preconditioned GMRES and BiCGSTAB as linear solvers in the modified Pi-
card iteration. The average reduction factor,ρ, and the efficiency, τ , are the
quantities used to quantify the numerical performances of the preconditioned
GMRES and BiCGSTAB. The average reduction factor is given by

ρ = (
||resi||
||res0||

)
1
i

where resi is the residual after i iterations. The average reduction factor is one
of the quantities widely used to measure the convergence rate of an algorithm.
The relation used to compute the efficiency is,

τ =
W

|lnρ|
where W (the work) is the number of arithmetic operations per grid point and
iteration step. The efficiency can be viewed as an indicator for the computa-
tional time and implicitly the computational efficiency.
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Table 4: Average values of the efficiency, τ ; set B1 of the Stefan-Maxwell
diffusion coefficients

Tables 3 and 4 presents a selection from the values computed for the aver-
age reduction factor and efficiency. This selection captures the salient features
of the process. The results presented in tables 3 and 4 lead to the following
statements:

• as expected CPL1,CPL2,CPL3,CPL4 and Z5b, has no influnece on the
convergence rate

• the convergence rate for the set B1 is higher than that for the set B2

• for a given mesh, the impact of the cross-diffusion coupling on the effi-
ciency observes similar guidelines as on account of the average reduction
factor

5 CONCLUSIONS

In this work we have analysed the numerical solving of transient, non-linear
multicomponent diffusion-reaction equations in two space dimensions. The
non-linear parabolic equations were discretized in time by the fully implicit
method. The central second order accurate finite difference scheme was used
to discretize the spatial derivatives. The non-linear systems resulted were
solved by the modified Picard-preconditioned conjugated gradient methods.
For all the combinations of the parameters, we obtained a stable solution.
The values of the convergence rate obtained show that the present numerical
solution is second-order accurate in space.
The values of the convergence rate and efficiency of the preconditioned
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GMRES and BiCGSTAB algorithms are similar those usually reported in lit-
erature for non-linear diffusion-reaction problems.
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APPENDIX

The values of the stefan-Maxwell diffusion coefficients used for the numerical experiments
of Section 4 are:

-set B1:

D12 = 0.22, D13 = 0.31, D14 = 0.25, D15 = 1.0

D23 = 0.35, D24 = 0.1, D25 = 1.18

D34 = 0.43, D35 = 1.2

D45 = 1.3

-set B2:

D12 = 6.326, D13 = 4.2523, D14 = 0.247, D15 = 1.0

D23 = 4.978, D24 = 0.189, D25 = 5.178

D34 = 3.325, D35 = 1.27

D45 = 0.987


