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Abstract

The aim of this paper is to analyse the potential impact of multi-
ple current interventions in communities with limited resources in order
to obtain optimal control strategies and provide a basis for future pre-
dictions of the most effective control measures against the spread of
malaria. We developed a population-based model of malaria transmis-
sion dynamics to investigate the effectiveness of five different interven-
tions. The model captured both the human and the mosquito compart-
ments. The control interventions considered were: educational cam-
paigns to mobilise people for diagnostic test and treatment and to sleep
under bed nets; treatment through mass drug administration; indoor
residual spraying(IRS) with insecticide to reduce malaria transmission;
insecticide treated net (ITN) to reduce morbidity; and regular destruc-
tion of mosquito breeding sites to reduce the number of new mosquito
and bites/contact at dusks and dawn. Analysis of the potential impact
of the multiple control interventions were carried out and the optimal
control strategies that minimized the number of infected human and
mosquito and the cost of applying the various control interventions were
determined.
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1 Introduction

Mathematical modelling has been a very useful tool in the study and analysis of
many infectious diseases because it is cheaper and effective in understanding
the transmission dynamics of infectious diseases. It is also a useful tool in
making the best decision on the type of control strategies to put in place in a
particular defined geographical location [28, 30]. The optimal control theory
has also been to optimise the coverage of many chosen control interventions
in different infectious disease model. Pontryagin et al. [31] developed the
theoretical foundation of optimal control models with underlying dynamics
given by ordinary differential equations and this theory, its application areas,
and corresponding numerical algorithm have steadily progressed. Applying
Pontryagin’s Maximum Principle [31], its extension and appropriate numerical
methods, can adjust the control in a model to achieve a goal Kang, Lenhart
and Protopopescu [22].

There are several studies that have been carried out to quantify the im-
pact of malaria infection in humans [3, 12, 15, 16, 20]. Several of these studies
focuses only on the transmission of the disease in human and the vector popu-
lations. Aguas et al. [1] derived a malaria model with the assumption that ac-
quired immunity in malaria is independent of exposure duration, different con-
trol measures and role of transmission rate on the disease prevalence were fur-
ther examined. Brown [13] and Bryson et al. in [14] used mass action incidence
to study malaria transmission model for different levels of acquired immunity
and temperature dependent parameters, relating also to global warming and
local socioeconomic conditions. Ariey et al. [6] proposed a model that account
for acquired immunity in amass action model. A deterministic model with two
latent periods in the hosts and vector populations was formulated to assess the
impact of personal protection, treatment and possible vaccination strategies
on the transmission dynamics of malaria [4], and [5] considered treatment
and spread of drug resistance in an endemic population. Li-Ming [15] de-
veloped a compartmental mathematical model for malaria transmission that
includes incubation periods for both infected human hosts and mosquitoes
was formulated and examined. Pontryagin et al. [31] applied optimal control
theory to a continuous malaria model that includes treatment and vaccina-
tion with waning immunity to study the impact of a possible vaccination with
treatment strategies in controlling the spread of malaria. Other areas of ap-
plications of optimal control theory can be found in [17, 27]. Agusto et al. [2]
proposed and analyzed simple models for disease transmission that include
immigration of infective individuals and variable population size. Yang [20]
studied a mathematical model based on human host immunity, existence of
acquired immunity and immunological memory, which boosts the protective
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response upon reinfection; mosquito vector, and they incorporated an ambient
temperature dependent extrinsic incubation period of parasites and average
period of development from eg to adult mosquito. The equilibrium solutions
were obtained and the reproduction number was calculated in terms of the
model parameters. Makinde et al. in [26] derived and analyzed a malaria
disease transmission mathematical model with inflow of infected immigrants
parameter. They used this parameter also as control parameter, they studied
and determine the possible impact of infected immigrants on the spread of
malaria. Theoretically, they analyzed its stability properties and determine
conditions on the parameters for the existence of equilibrium solutions. They
also carried out detailed qualitative optimal control analysis of the resulting
model and find the necessary conditions for optimal control of the disease using
Pontryagin’s Maximum Principle in order to determine optimal strategies for
controlling the spread of the disease [19]. There are also some recent studies
that applied the theory of optimal control which includes [29, 33] or decision
problems, e.g. [9, 23, 34, 35]. Potucek studied the life thread cycle and its
various models in [32].

In this work, we developed a deterministic mathematical model that cap-
tures the dynamics of malaria epidemic in human-mosquito populations us-
ing a system of ordinary differential equations (ODEs) under some control
interventions: educational campaign, insecticide-Treated Bed nets (ITNs), in-
door residual spraying (IRS) with insecticides, regular destruction of mosquito
breeding sites, and treatment with ACT drugs). The Pontryagin’s Maximum
Principle is applied to establish the optimal strategies for malaria control. The
aim here is to analyse the impact of current control interventions in commu-
nity with limited resources in order to determine the best control strategies
that will reduce the number of infected human and mosquito and the cost
attached to the controls over time.

This paper is organized as follows; we present a malaria transmission model
formulation in Section 2, the general mathematical framework, notations and
model equations is developed. In Section 3, the basic properties of the model
and its analysis were discussed. In Section 4, the control problem is presented
as well as the objective functional to be minimized, we then apply the Pon-
tryagins Maximum Principle to find the necessary conditions for the optimal
control of the disease. In Section 5 we discuss the main conclusion and rec-
ommendations.
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2 The Malaria Mathematical Model and its Biological
Description

Here we describe a standard model of the type SEIRS (Susceptible-Exposed-
Infected-Recovered-Susceptible) as earlier discussed in [7, 8] for the human
compartment and SEI (Susceptible-Exposed-Infected) for the mosquito com-
partment in the presence of five different time dependent control intervention
concurrently that is

1. the use of Insecticide treated bed nets (ITN) - u1;

2. educational campaigns - u2 ;

3. Indoor Residual spray (IRS) - u3;

4. regular destruction of mosquito breeding sites to reduce the number of
new mosquito and bites/contact at dusks and dawn - u4 and;

5. treatment with ACT through mass drug administration- u5.

The malaria model subdivides the total population of human, denoted by
Nh, into the following sub-classes of humans who are susceptible to infection
with malaria (Sh), those exposed/latent to malaria parasite (Eh), humans with
malaria symptoms (i.e. who are already infected and infective with malaria
parasite) (Ih) and recovered humans (Rh), so that Nh = Sh + Eh + Ih + Rh.
The total population of the female Anopheles mosquitoes, denoted Nv, is given
as a non-intersecting population of susceptible female Anopheles mosquitoes
(Sv), female Anopheles mosquitoes exposed to the malaria parasite (Ev) and
infectious female Anopheles mosquitoes (Iv). That is Nv = Sv + Ev + Iv.

The dynamics of Susceptible humans population is developed through birth
(at a constant per capita rate bh), through the loss of immunity to the disease
(at a constant per capita rate γ). It is reduced by natural death (at a rate
dh) and also by the rate of acquiring malaria through contact with infectious
mosquitoes at a rate (2− u1 − u2)β1εhφ, where β1 is the transmission proba-
bility per bite, εh is the per capita biting rate of mosquitoes, φ is the contact
rate of vector per human per unit time and u1, u2 ∈ [0, 1] are the control on
the use of insecticide treated bed nets (ITN) and educational campaign. The
rate of change of the population of exposed humans is generated by α which is
the per capita rate of progression of humans from the exposed class to the in-
fectious class. The infected human population is increased by the progression
of human from the exposed state to the infectious state(at a per capita rate
αh) and decreased by human spontaneous recovery(at a rate θ). It is reduced
by the disease induced death rate (at per capita rate ψ), by the natural death
rate (at per capita rate dh) and use of treatment with ACT through mass
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drug administration(u5). The recovered human population is obtained follow-
ing a human spontaneous recovery (at a rate θ) and by treatment with ACT
through mass drug administration (u5) but decreased by loss of immunity(at
a rate γ) and by natural death(at a rate dh).

The dynamics of Susceptible mosquitoes are generated by the birth of mos-
quitoes (at a per capita rate of bv). It is reduced by rate of acquiring malaria
through contacts with infected humans at a rate (2 − u1 − u2)β2εvφ, where
β2 is probability for a vector to get infected by an infectious human. It is
also reduced by natural death (at a rate dv). It is decreased by the use of
insecticides spray at a rate pu3, where u3 is the control on the use of indoor
residual spray (IRS) and p is the efficacy of the indoor residual spray (IRS). It
is also decreased by the use of regular destruction of mosquito breeding sites to
reduce the number of new mosquito and bites/contact at dusks and dawn, at a
rate qu4, where u4 is the control on the use of regular destruction of mosquito
breeding sites to reduce the number of new mosquito and bites/contact at
dusks and dawn and q is the efficacy of the regular destruction of mosquito
breeding sites to reduce the number of new mosquito and bites/contact at
dusks and dawn. The rate of change of the exposed mosquitoes population
is produced by the per capita rate αv which is the progression of mosquitoes
from the exposed state to the infectious state. The population of infected
mosquitoes is increased by the progression of mosquitoes from the exposed
state to the infectious (at a per capita rate αv) and decreased by the natural
death rate (at a rate dv) and also reduced by the use of insecticides residual
spray (IRS) and regular destruction of mosquito breeding sites to reduce the
number of new mosquito and bites/contact at dusks and dawn (at a rate pu3
and qu4) where p is the efficacy of the insecticides residual spray (IRS) and q
is the efficacy of the regular destruction of mosquito breeding sites to reduce
the number of new mosquito and bites/contact at dusks and dawn, u3 and
u4 are the control on the use of insecticides residual spray (IRS) and regular
destruction of mosquito breeding sites to reduce the number of new mosquito
and bites/contact at dusks and dawn.

We obtained the malaria with control intervention model by bringing the
above descriptions and assumptions together:

dSh
dt = bh + γRh − (2− u1 − u2)β1εhφShIv

Nh
− dhSh

dEh
dt = (2− u1 − u2)β1εhφShIv

Nh
− (αh + dh)Eh

dIh
dt = αhEh − (u5 + θ + ψ + dh)Ih
dRh
dt = (u5 + θ)Ih − (γ + dh)Rh
dSv
dt = bv − (2− u1 − u2)β2εvφSvIh

Nh
− dvSv − (pu3 + qu4)Sv

(1)
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dEv
dt = (2− u1 − u2)β2εvφSvIh

Nh
− (αv + dv)Ev − (pu3 + qu4)Ev

dIv
dt = αvEv − dvIv − (pu3 + qu4)Iv,

(2)

subject to the initial conditions Sh(0) = Sh,0, Eh(0) = Eh,0, Ih(0) = Ih,0,
Rh(0) = Rh,0, Sv(0) = Sv,0, Ev(0) = Ev,0, Iv(0) = Iv,0. In addition, we
rewrite the model equation (1) in the form below:

dSh
dt = g1(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
dEh
dt = g2(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
dIh
dt = g3(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
dRh
dt = g4(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
dSv
dt = g5(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
dEv
dt = g6(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
dIv
dt = g7(Sh, Eh, Ih, Rh, Sv, Ev, Iv),

(3)

with Nh = Nh,0 > 0 and Nv(0) = Nv,0 > 0 for Nh = Sh, Eh, Ih, Rh and
Nv = Sv, Ev, Iv. The associated model parameters and variables are described
in Tables 1. and 2. respectively.

Table 1: Variables in the malaria control model
Variables Description

Sh(t) Susceptible Human Population
Eh(t) Exposed Human Population
Ih(t) Infected Human Population
Rh(t) Recovered Human Population
Sv(t) Susceptible Mosquito Population
Ev(t) Exposed Mosquito Population
Iv(t) Infected Mosquito Population

2.1 Description of the current malaria control interventions used
in the model

According to WHO recommendation for all people at risk of malaria and those
infected with malaria, the control interventions for control and elimination of
malaria must be multiple interventions [37]. In this work, we present five
different interventions to treat, prevent and reduce malaria transmission. The
five different interventions introduced into our malaria model are vector control
interventions which involve u1-u5.
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Table 2: Descriptions of malaria control model parameters
Parameter Symbol

disease induced death rate ψ
probability of human getting infected β1
probability of mosquito getting infected β2
per capita birth rate of mosquitoes bv
Natural death rate of humans dh
progression of human from the exposed to the infectious state αh

progression of mosquitoes from the exposed to the infectious state αv

per capita biting rate of mosquitoes εv
contact rate of vector per human per unit time φ
per capita biting rate of humans εh
human spontaneous recovery θ
Natural death rate of mosquitoes dv
rate of loss of immunity from humans γ
per capita birth rate of humans bh

Figure 1: Flow chart of Malaria model (1) from [8].

All these control interventions used are variable in time hence we applied
the principle of optimal control theory to derive optimal control strategies that
vary in time.
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3 Basic mathematical properties of the Malaria Model
with constant Control Interventions

The Malaria control intervention model (1) will be analyzed in a biologically
feasible region for both human and mosquito populations. Hence, for it to be
epidemiologically well posed, it is significant to prove that all its state variables
are non-negative for all time t > 0. In this section, we obtained the existence
and uniqueness of the solution to the model (1).

Proposition 3.1. Let the domain ∆ = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7
+ :

Sh ≥ 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0, Sv ≤ 0, Ev ≥ 0, Iv ≥ 0} be positively in-
variant by the positive semi-wave produced by the system equation (1) with
non-negative initial condition in R7

+

Proof. We rewrite the model equation (1) in the following pattern:

d

dt



Sh

Eh

Ih
Rh

Sv

Ev

Iv


=



g1(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
g2(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
g3(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
g4(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
g5(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
g6(Sh, Eh, Ih, Rh, Sv, Ev, Iv)
g7(Sh, Eh, Ih, Rh, Sv, Ev, Iv)


= G(Sh, Eh, Ih, Rh, Sv, Ev, Iv)

and from the model, we have:
g1(Sh = 0, Eh, Ih, Rh, Sv, Ev, Iv) = bh+γRh ≥ 0 for Eh, Ih, Rh, Sv, Ev, Iv ≥ 0,
g2(Sh, Eh = 0, Ih, Rh, Sv, Ev, Iv) = (2−u1−u2)β1εhφShIv

Nh
≥ 0 for Eh, Ih, Rh, Sv,

Ev, Iv ≥ 0,
g3(Sh, Eh, Ih = 0, Rh, Sv, Ev, Iv) = αhEh ≥ 0 for Eh, Ih, Rh, Sv, Ev, Iv ≥ 0,
g4(Sh, Eh, Ih, Rh = 0, Sv, Ev, Iv) = u5+θ)Ih ≥ 0 for Eh, Ih, Rh, Sv, Ev, Iv ≥ 0,
g5(Sh, Eh, Ih, Rh, Sv = 0, Ev, Iv) = bv ≥ 0 for Eh, Ih, Rh, Sv, Ev, Iv ≥ 0,
g6(Sh, Eh, Ih, Rh, Sv, Ev = 0, Iv) = (2−u1−u2)β2εvφSvIh

Nh
≥ 0 for Eh, Ih, Rh, Sv,

Ev, Iv ≥ 0,
g7(Sh, Eh, Ih, Rh, Sv, Ev, Iv = 0) = αvEv ≥ 0 for Eh, Ih, Rh, Sv, Ev, Iv ≥ 0.
Therefore, the field remains on the interior of ∆.

Remark 3.1. It is observed that ∆ is positively invariant. So that it is suffi-
cient to consider solutions in ∆ and every solution with initial conditions in
the domain ∆ = ∆h ∪∆v ⊂ R4

+×R3
+ remains in the region ∆ as t→∞. The

region is a positively invariant region with respect to the model (1). Hence, the
malaria control model (1) is mathematically and epidemiologically well posed.

Corollary 3.1. The compact domain ∆N := {(Nh, Nv) ∈ ∆ : Nh ≤ bh
dh
, Nv ≤

bv
(dv+qu4+pu3)

} is positively invariant and attracts all trajectory from ∆.
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Proposition 3.2. Suppose the existence and uniqueness of the solution of the
model equation (1) is obtained on an horizon of infinite time.

Proof. The model equation (1) is considered to be well posed and epidemio-
logically meaningful in the region ∆ = ∆h ∪∆v ⊂ R4

+ ×R3
+. The region ∆ is

defined by the boundaries of the solution of the model equations

∆h = {(Sh, Eh, Ih, Rh)

∆v = {(Sv, Ev, Iv)

∆ = ∆h ∪∆v ⊂ R4
+ × R3

+

We consider the right hand side of the model equation (1) to be continuous
with continuous partial derivative in ∆. It is assumed that an initial condition
exists in the region ∆. Hence, we show that a solution of the model equation
remain in the strip ∆ in the following way:
(a) If Sh = 0, then,

dSh
dt

= bh + γRh − (2− u1 − u2)
β1εhφIv · 0

Nh
− dh · 0 ≥ 0

and if Sh = bh
dh

, then, dSh
dt = bh + γRh − (2− u1 − u2)

β1εhφIv·
bh
dh

Nh
− bh ≤ 0.

(b) If Eh = 0, then,

dEh
dt

= (2− u1 − u2)
β1εhφShIv

Nh
− (αh + dh) · 0 ≥ 0

and if Eh = 1, then, dEh
dt = (2− u1 − u2)β1εhφShIv

Nh
− (αh + dh) · 1 ≤ 0.

(c) If Ih = 0, then,

dIh
dt

= αhEh − (u5 + θ + ψ + dh) · 0 ≥ 0

and if Ih = 1, then, dIh
dt = αhEh − (u5 + θ + ψ + dh) · 1 ≤ 0.

(d) If Rh = 0, then,

dRh
dt

= (u5 + θ)Ih − (γ + dh) · 0 ≥ 0

and if Rh = 1, then, dRh
dt = (u5 + θ)Ih − (γ + dh) · 1 ≤ 0.

(e) If Sv = 0, then,

dSv
dt

= bv − (2− u1 − u2)
β2εvφIh · 0

Nh
− dv · 0− (pu3 + qu4) · 0 ≥ 0
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and if Rh = 1, then, dSvdt = bv−(2−u1−u2)β2εvφIh·0
Nh

−dv ·0−(pu3+qu4)·1 ≤ 0.

(f) If Ev = 0, then,

dEv
dt

= (2− u1 − u2)
β2εvφSvIh

Nh
− (αv + dv) · 0− (pu3 + qu4) · 0 ≥ 0

and if Ev = 1, then, dEvdt = (2−u1−u2)β2εvφSvIh
Nh

−(αv+dv)·1−(pu3+qu4)·1 ≤
0.
(g) If Iv = 0, then, dIv

dt = αvEv − dv · 0 − (pu3 + qu4) · 0 ≥ 0 and if Iv = 1,

then, dIv
dt = αvEv − dv · 1− (pu3 + qu4) · 1 ≤ 0.

Therefore, these all follows in line with Picard-Lindelöf theorem that a unique
solution exists for the model equation (1) in the region ∆

4 Optimal control Analysis of the controlled
Malaria transmission Model

In this section, we considered the use of multiple control variables in order
to obtain the optimal control strategy out of various sets of combined control
strategies. The sets of combine control strategies can be the use of at least one
control at a time. The control u1 is the use insecticide treated nets (ITN), u2
is the educational campaign, u3 is the control by the use of insecticides spray,
u4 is the use of regular destruction of mosquito breeding sites and u5 is the
control by the use of treatment with ACT through mass drug administration‘
ui ∈ [0, 1]. All these controls are bounded. The model equation is given below
as:

dSh
dt = bh + γRh − (2− u1(t)− u2(t))β1εhφShIv

Nh
− dhSh

dEh
dt = (2− u1(t)− u2(t))β1εhφShIv

Nh
− (αh + dh)Eh

dIh
dt = αhEh − (u5(t) + θ + ψ + dh)Ih
dRh
dt = (u5(t) + θ)Ih − (γ + dh)Rh
dSv
dt = bv − (2− u1(t)− u2(t))β2εvφSvIh

Nh
− dvSv − (pu3(t) + qu4(t))Sv

dEv
dt = (2− u1(t)− u2(t))β2εvφSvIh

Nh
− (αv + dv)Ev − (pu3(t) + qu4(t))Ev

dIv
dt = αvEv − dvIv − (pu3(t) + qu4(t))Iv.

(4)
The costs associated with each control intervention appear as quadratic terms
in the objective functional. We chose the quadratic term to describe the
nonlinear behaviour of the cost of implementing any of the control programme.
The form of the objective functional follows previous applications of optimal
control to the management of infectious diseases [24, 34]. Combining the
factors described above we obtain the objective functional. We now define the



ANALYSIS OF CONTROL INTERVENTIONS AGAINST MALARIA IN
COMMUNITIES WITH LIMITED RESOURCES 81

objective functional as

J(u1, u2, u3, u4, u5) =

min
{u1,u2,u3,u4,u5}

∫ tf

0

(A1Ih +A2Iv +A3u
2
1 +A4u

2
2 +A5u

2
3 +A6u

2
4 +A7u

2
5) dt

(5)

subject to malaria control model (3) with typical states initial conditions while
the Lebesgue measurable control set U is defined as
U = {(u1, u2, u3, u4, u5)|0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1, 0 ≤ u4 ≤ 1, 0 ≤
u5 ≤ 1, t ∈ [0, tf ]} where the parameter A1 ≥ 0, A2 ≥ 0, A3 ≥ 0, A4 ≥ 0, A5 ≥
0, A6 ≥ 0, A7 ≥ 0 such that A1−A7 are positive constants which represents the
weights of the costs of using treated bedNets, using educational campaign [35,
36], using insecticides spray, use of regular destruction of mosquito breeding
sites and treatment with drug. Therefore our u1, u2, u3, u4 and u5 lies between
0 and 1. The weights A1−A7 measure the weights of the infected human and
mosquito, costs of mosquito treated bed Nets, costs of educational campaigns,
costs of insecticides spray, costs on the use of regular destruction of mosquito
breeding sites and costs of treatment with drug in waging war against the
spread of malaria disease and also the cost of implementing each of the control
strategies per unit time. In our objective functional, we use the quadratic
terms u21, u22, u23, u24 and u25 on the assumption that the cost are non-linear.
Hence, we are seeking an optimal control u∗1, u∗2, u∗3, u∗4 and u∗5 such that

J(u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5) = min

u1,u2,u3,u4,u5

{J(u1, u2, u3, u4, u5) | u1, u2, u3, u4, u5 ∈ U}

where u1, u2, u3, u4, u5 ∈ U such that the control u∗1, u∗2, u∗3, u∗4 and u∗5 are
called optimal control. We present the following assumptions in the case of
our model under consideration:

(i) The control state variables are non-empty.

(ii) The admissible control set U is closed and convex.

(iii) The right hand side of our model equation are continuous, bounded
above a sum of the variable and state variable and can be written as a
linear function of µ with coefficient depending on time and space.

(iv) There exist constant m1, m2, m3, m4 and β > 1 such that the inte-
grand f(t, x, u) of the objective functional J is convex in u, and satisfies
f(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv, u1, u2, u3, u4, u5) ≥ m1(|u1(t)|2 + |u2(t)|2 +

|u3(t)|2 + |u4(t)|2 + |u5(t)|2))
β
2 − (m2 +m3 +m4) and β > 1.
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4.1 Existence of optimal control

Proposition 4.1. The optimal control problem given by the objective func-
tional J(u1, u2, u3, u4, u5) = min{u1,u2,u3,u4,u5}

1
2

∫ tf
0

(A1Ih + A2Iv + A3u
2
1 +

A4u
2
2+A5u

2
3+A6u

2
4+A7u

2
5) dt where U = {u1, u2, u3, u4, u5 : ui measurable 0 ≤

u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, 0 ≤ u3(t) ≤ 1, 0 ≤ u4(t) ≤ 1, 0 ≤ u5(t) ≤ 1t ∈
[t0, T ] ∈ R+ for i = 1, 2, 3, 4, 5.} and subject to the dynamic constraints of
system equations (3) with Sh(0) = Sh,0, Eh(0) = Eh,0, Ih(0) = Ih,0, Rh(0) =
Rh,0, Sv(0) = Sv,0, Ev(0) = Ev,0, Iv(0) = Iv,0., exist, and the optimal control
are u∗ = (u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5) such that

min
u1,u2,u3,u4,u5∈U

J(u1, u2, u3, u4, u5) = J(u∗1, u
∗
2, u
∗
2, u
∗
4, u
∗
5)

subject to the malaria control system (3) with the initial conditions, has a
solution.

Proof. We define a set according to Filippov-Cesari Existence Theorem [25],
for every (t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ Rn+1 such that
Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) = {(A1Ih+A2Iv+A3u

2
1+A4u

2
2+A5u

2
3+A6u

2
4+

A7u
2
5) + ξi, g(x, u, t)},

where g(x, u, t) = (bh+γRh− (2−u1(t)−u2(t))β1εhφShIv
Nh

−dhSh, (2−u1(t)−
u2(t))β1εhφShIv

Nh
− (αh + dh)Eh, αhEh − (u5(t) + θ+ψ+ dh)Ih, (u5(t) + θ)Ih −

(γ+dh)Rh, bv− (2−u1(t)−u2(t))β2εvφSvIh
Nh

−dvSv− (pu3(t) + qu4(t))Sv, (2−
u1(t) − u2(t))β2εvφSvIh

Nh
− (αv + dv)Ev − (pu3(t) + qu4(t))Ev, αvEv − dvIv −

(pu3(t) + qu4(t))Iv)
T .

Next, we need to show that Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) is convex for every
(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv).

(i) For every Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) is convex for all (t, Sh, Eh, Ih, Rh,
Sv, Ev, Iv)

Suppose f1, f2 ∈ Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) we prove that the line connect-
ing f1 and f2 remain entirely in Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) in order to es-
tablish that Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) is convex for each (t, Sh, Eh, Ih, Rh,
Sv, Ev, Iv).
Therefore, we establish that
θf1 + (1− θ)f2 ∈ Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∀ θ ∈ [0, 1].
Let fi ∈ Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv) means that there exist ξi ≤ 0 and the
control vectors are (u1, u2, u3, u4, u5) ∈ U such that
fi = {f(Sh, Eh, Ih, Rh, Sv, Ev, Iv, u1, u2, u3, u4, u5)+ξi, g(Sh, Eh, Ih, Rh, Sv, Ev,
Iv, u1, u2, u3, u4, u5)} for i=1,2.
Hence, we obtain: θ(f(Sh, Eh, Ih, Rh, Sv, Ev, Iv, u1, u2, u3, u4, u5) + ξ1) + (1−
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θ)(f(Sh, Eh, Ih, Rh, Sv, Ev, Iv, u11, u21, u31, u41, u51)+ξ2)θ(A1Ih+A2Iv+A3u
2
1

+A4u
2
2 +A5u

2
3 +A6u

2
4 +A7u

2
5 + ξ1) + (1− θ)(A1Ih +A2Iv +A3u

2
11 +A4u

2
21 +

A5u
2
31 +A6u

2
41 +A7u

2
51 + ξ2).

θ(A1Ih +A2Iv +A3u
2
1 +A4u

2
2 +A5u

2
3 +A6u

2
4 +A7u

2
5) + (1− θ)(A1Ih +A2Iv +

A3u
2
11 +A4u

2
21 +A5u

2
31 +A6u

2
41 +A7u

2
51) + θξ1 + (1− θ)ξ2.

Suppose u6 =
√
θA3u21 + (1− θ)A3u211, we observed that u6 ∈ U . More-

over, setting ξ3 = θξ1 + (1 − θ)ξ2, it is observed that ξ3 ≤ 0. Hence,
we also observed that the first part of the convex combination belongs to
Ω(t, Sh, Eh, Ih, Rh, Sv, Ev, Iv).

Next, we work on the second part of the function Ω(t, Sh, Eh, Ih, Rh, Sv,
Ev, Iv) such that: g(Sh, Eh, Ih, Rh, Sv, Ev, Iv, u1, u2, u3, u4, u5) = (bh + γRh−
(2 − u1(t) − u2(t))β1εhφShIv

Nh
− dhSh, (2 − u1(t) − u2(t))β1εhφShIv

Nh
− (αh +

dh)Eh, αhEh−(u5(t)+θ+ψ+dh)Ih, (u5(t)+θ)Ih−(γ+dh)Rh, bv−(2−u1(t)−
u2(t))β2εvφSvIh

Nh
− dvSv − (pu3(t) + qu4(t))Sv, (2 − u1(t) − u2(t))β2εvφSvIh

Nh
−

(αv + dv)Ev − (pu3(t) + qu4(t))Ev, αvEv − dvIv − (pu3(t) + qu4(t))Iv)
T

g(Sh, Eh, Ih, Rh, Sv, Ev, Iv, u11, u21, u31, u41, u51) =
(
bh + γRh −

(
2− u11(t)−

u21(t)
)
β1εhφShIv

Nh
−dhSh,

(
2−u11(t)−u21(t)

)
β1εhφShIv

Nh
−
(
αh+dh

)
Eh, αhEh−(

u51(t) + θ+ψ+ dh)Ih, (u51(t) + θ
)
Ih−

(
γ + dh

)
Rh, bv −

(
2− u11(t)− u21(t)

)
β2εvφSvIh

Nh
−dvSv−

(
pu31(t)+qu41(t)

)
Sv,
(
2−u11(t)−u21(t)

)
β2εvφSvIh

Nh
−(αv+

dv)Ev −
(
pu31(t) + qu41(t)

)
Ev, αvEv − dvIv −

(
pu31(t) + qu41(t)

)
Iv

)T
.

(ii) Suppose U is compact.

It is clear that U is compact.

(iii) Every solution of the optimal control problem (5) is bounded.

We consider the total human and mosquito population of the model equa-
tion (3) at time t, which are given by: Nh = Sh + Eh + Ih + Rh and
Nv = Sv + Ev + Iv. The derivatives of Nh and Nv with respect to time are
given by:

dNh
dt = bh − dhNh − ψIh, (6)

dNv
dt = bv − (dv + qu4 + pu3)Nv. (7)

For the proof of boundedness, it is of note that 0 < Ih(t) ≤ Nh(t) and
0 < Iv(t) ≤ Nv(t). All solutions of model (3) are bounded. The feasible region
for the human population is:
∆h = (Sh, Eh, Ih, Rh|Sh + Eh + Ih + Rh ≤ bh

dh
, 0 ≤ Sh ≤ Sh(t) ≤ bh

dh
, Eh ≥

0, Ih ≥ 0, Rh ≥ 0) And the feasible region for the mosquito population is:
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∆v = (Sv, Ev, Iv|Sv +Ev + Iv ≤ bv
(dv+qu4+pu3)

, 0 ≤ Sv ≤ Sv(t) ≤ bv
(dv+qu4+pu3)

,

Ev ≥ 0, Iv ≥ 0). Therefore,

bh − (dh + ψ)Nh(t) ≤ dNh(t)

dt
≤ bh − dhNh(t)

bv − (dv + qu4 + pu3)Nv(t) ≤
dNv(t)

dt
≤ bv − (dv + qu4 + pu3)Nv(t)

Hence,
bh

dh + ψ
≤ lim inf

t→∞
Nh(t) ≤ lim sup

t→∞
Nh(t) ≤ bh

dh

and

bv
(dv + qu4 + pu3)

≤ lim inf
t→∞

Nv(t) ≤ lim sup
t→∞

Nv(t) ≤
bv

(dv + qu4 + pu3)

Therefore, we have that Nh(t) ≤ suptNh where Nh remains the solution of

the equation dNh(t)
dt ≤ bh− (dh+ψ)Nh(t). Hence, suptNh ≤ max{Nh(0), Nh}.

Suppose Nh(0) ≤ Nh, then max{Nh(t)} ≤ Nh.

To prove the existence of an optimal control pair we use the result in
[18, 25, 31]. The control and the state variables are non-negative values and
are non-empty. In the minimization problem, the necessary convexity of the
objective functional in u1, u2,u3, u4 and u5 are satisfied. The set of all the
control variables (u1, u2, u3, u4, u5 ∈ U) is also convex and closed by definition.
The optimal system is bounded which determines compactness needed for the
existence of the optimal control. Furthermore, the integrand in the objective
functional which is (A1Ih + A2Iv + A3u

2
1 + A4u

2
2 + A5u

2
3 + A6u

2
4 + A7u

2
5) is

convex on the control set U . There exists constants b1, b2 > 0 and β > 1
such that the integrand of the objective functional J is convex and satisfies

J(u1, u2, u3, u4, u5) ≥ b(|u1(t)|2 + |u2(t)|2 + |u3(t)|2 + |u4(t)|2 + |u5(t)|2)
β
2 −

b2. By standard control arguments involving the bounds on the controls, we
conclude for i = 1, 2, ..., 5:

u∗i =



0 if r∗i ≤ 0,

r∗i if 0 < r∗i < 1,

1 if r∗i ≥ 1,

(8)

where u∗i =
β1εhφIvSh(λEh−λSh )+β2εvφIhSv(λEv−λSv )

2AiNh
, for i = 1, 2;

u∗3 =
p(SvλSv+IvλIv )

2A5
; u∗4 =

q(SvλSv+EvλEv+IvλIv )
2A6

; u∗5 =
(IhλIh+IhλRh )

2A7
.
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4.1.1 Existence conditions for optimising the Hamiltonian

Since the solution exists we used the Pontryagin’s maximum principle to de-
termine the optimal solution.

Proposition 4.2. Suppose the optimal control (u∗1(t), u∗2(t), u∗3(t), u∗4(t), u∗5(t))
and the solution

x∗(t) = (S∗h(t), E∗h(t), I∗h(t), R∗h(t), S∗v (t), E∗v (t), I∗v (t))

of the associated state system (3) is given then there exists adjoint variables
λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), and λ7(t) satisfying
The co-state equation given by

dλSh
dt =

(λSh−λEh )(2−u1−u2)β1εhφIv
Nh

+ dhλShSh
dλEh
dt = (αh + dh)λEh − αhλIh

dλIh
dt = (u5 + θ + ψ + dh)λIh − θλRh +

(λSv−λEv )(2−u1−u2)β2εvφSv
Nh

dλRh
dt = γλSh + (γ + dh)λRh

dλSv
dt =

(λSv−λEv )(2−u1−u2)β2εvφSv
Nh

+ (pu3 + qu4 + dv)λSv
dλEv
dt = (pu4 + qu5 + dv + αv)λEv − αvIv

dλIv
dt =

λSh (2−u1−u2)β1εhφSh
Nh

+ (pu3 + qu4 + dv)λIv −
λEh (2−u1−u2)β1εhφSh

Nh
.

(9)
with terminal conditions

λSh(tf ) = λEh(tf ) = λIh(tf ) = λRh(tf ) = λSv (tf ) = λEv (tf ) = λIv (tf ) = 0
(10)

Moreover,

u∗1(t) =
(

1,max
(

0,min
β1εhφIvSh(λEh−λSh )+β2εvφIhSv(λEv−λSv )

A1Nh

))
u∗2(t) =

(
1,max

(
0,min

β1εhφIvSh(λEh−λSh )+β2εvφIhSv(λEv−λSv )
A2Nh

))
u∗3(t) =

(
1,max

(
0,min

p(SvλSv+EvλEv+IvλIv )
A3

,
))

u∗4(t) =
(

1,max
(

0,min
q(SvλSv+EvλEv+IvλIv )

A4
,
))

u∗5(t) = max
{

0,min
(

1,
(IhλIh+IhλRh )

2A7

)}
.

(11)

Proof. From Pontryagin’s Maximum Principle, there exists a vector
λ(t) = (λSh(t), λEh(t), λIh(t), λRh(t), λSv (t), λEv (t), λIv (t)) satisfying model
equation (3)

dλ(t)

dt
= −∂H

∂x
= −fx −Wxλ(t). (12)
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Then the adjoint system can be written as

dλSh
dt =

(λSh−λEh )(1−u2)β1εhφIv
Nh

+ dhλShSh
dλEh
dt = (αh + dh)λEh − αhλIh

dλIh
dt = (u5 + θ + ψ + dh)λIh − θλRh +

(λSv−λEv )(1−u2)β2εvφSv
Nh

dλRh
dt = γλSh + (γ + dh)λRh

dλSv
dt =

(λSv−λEv )(2−u1−u2)β2εvφSv
Nh

+ (pu3 + qu4 + dv)λSv
dλEv
dt = (pu4 + qu5 + dv + αv)λEv − αvIv

dλIv
dt =

λSh (2−u1−u2)β1εhφSh
Nh

+ (pu3 + qu4 + dv)λIv −
λEh (2−u1−u2)β1εhφSh

Nh
.

(13)
with transversality conditions

λSh(tf ) = λEh(tf ) = λIh(tf ) = λRh(tf ) = λSv (tf ) = λEv (tf ) = λIv (tf ) = 0.

We have on the interior of the control set U , where 0 ≤ ui ≤ 1, for i = 1, 2, . . . 5;

0 = ∂H
∂u1

=
β1εhφI

∗
vS

∗
hλSh

Nh
− β1εhφI

∗
vS

∗
hλEh

Nh
+
β2εvφI

∗
hS

∗
vλSv

Nh
− β2εvφI

∗
hE

∗
vλSh

Nh
+2A1u

∗
1

0 = ∂H
∂u2

=
β1εhφI

∗
vS

∗
hλSh

Nh
− β1εhφI

∗
vS

∗
hλEh

Nh
+
β2εvφI

∗
hS

∗
vλSv

Nh
− β2εvφI

∗
hE

∗
vλSh

Nh
+2A2u

∗
2

0 = ∂H
∂u3

= −p(SvλSv + IvλIv ) + 2A5u
∗
3

0 = ∂H
∂u4

= −q(SvλSv + EvλEv + IvλIv ) + 2A6u
∗
4

0 = ∂H
∂u5

= −(IhλIh + IhλRh) + 2A7u
∗
5.

Hence we obtain the following

r∗i (t) =
β1εhφIvSh(λEh−λSh )+β2εvφIhSv(λEv−λSv )

2A1Nh
, for i = 1, 2,

r∗3(t) =
p(SvλSv+IvλIv )

2A5
, r∗4(t) =

q(SvλSv+EvλEv+IvλIv )
2A6

, r∗5(t) =
(IhλIh+IhλRh )

2A7

and receive the (10).
Now the Pontryagin’s Maximum Principle (PMP) gives the following necessary

conditions to obtain the optimality pair(x∗, u∗) ∂H(x,u∗,λ,t)
∂u = 0, H(x, u∗, λ, t) =

f(x, u, t) + λtf g(x, u, t). Now the Optimality system is given by incorporating
control pair in the state system coupled with the adjoint system. Thus, we
have our resulting optimality system as follows: State Equations:

dSh
dt = bh + γRh − (2− u1 − u2)β1εhφShIv

Nh
− dhSh

dEh
dt = (2− u1 − u2)β1εhφShIv

Nh
− (αh + dh)Eh

dIh
dt = αhEh − (u3 + θ + ψ + dh)Ih
dRh
dt = (u5 + θ)Ih − (γ + dh)Rh
dSv
dt = bv − (2− u1 − u2)β2εvφSvIh

Nh
− dvSv − (pu3 + qu4)Sv

dEv
dt = (2− u1 − u2)β2εvφSvIh

Nh
− (αv + dv)Ev − (pu3 + qu4)Ev

dIv
dt = αvEv − dvIv − (pu3 + qu4)Iv.

(14)
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Subject to Initial conditions: Sh(0) = Sh,0, Eh(0) = Eh,0, Ih(0) =
Ih,0, Rh(0) = Rh,0, Sv(0) = Sv,0, Ev(0) = Ev,0, Iv(0) = Iv,0.

Adjoint Equation:

dλSh
dt =

(λSh−λEh )(2−u1−u2)β1εhφIv
Nh

+ dhλShSh
dλEh
dt = (αh + dh)λEh − αhλIh

dλIh
dt = (u5 + θ + ψ + dh)λIh − θλRh +

(λSv−λEv )(2−u1−u2)β2εvφSv
Nh

dλRh
dt = γλSh + (γ + dh)λRh

dλSv
dt =

(λSv−λEv )(2−u1−u2)β2εvφSv
Nh

+ (pu3 + qu4 + dv)λSv
dλEv
dt = (pu3 + qu4 + dv + αv)λEv − αvIv

dλIv
dt =

λSh (2−u1−u2)β1εhφSh
Nh

+ (pu3 + qu4 + dv)λIv −
λEh (2−u1−u2)β1εhφSh

Nh
.

(15)
Transversality conditions:

λSh(tf ) = λEh(tf ) = λIh(tf ) = λRh(tf ) = λSv (tf ) = λEv (tf ) = λIv (tf ) = 0.
(16)

Characterization of the optimal control u∗1,u∗2,u∗3,u∗4,u∗5:
∂H
∂u1

= ∂H
∂u2

= ∂H
∂u3

= ∂H
∂u4

= ∂H
∂u5

= 0 at u1 = u∗1, u2 = u∗2,u3 = u∗3, u4 = u∗4,u5 =
u∗5 on the set {t ∈ [0, tf ] : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1, 0 ≤ u4 ≤ 1, 0 ≤
u5 ≤ 1}. That is we have (7).

By the a priori boundedness of the state system, adjoint system and the
resulting Lipschitz structure of the ODEs, we obtain the uniqueness of the
optimal control for small tf . The uniqueness of the optimal control follows
from the uniqueness of the optimality system, which consist of (11), (12), (13)
with characterization (10). We impose a bound on the length of time interval
in order to guarantee the uniqueness of the optimality system. The smallness
restriction of the length on the state problem has initial values and the adjoint
problem has final values. This restriction is very common in control problems
[10, 11, 21, 25].

Remark 4.1. An optimal control pair (S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
v , E

∗
v , I
∗
v , u
∗
1, u
∗
2, u
∗
3, u
∗
4,

u∗5) exists for minimizing the objective functional subject to model equation (3).

The numerical experiments of created models were done and the results
were presented in [8].

5 Conclusion

In this work, we analyzed a non-linear model to study the effect of multiple
control interventions on malaria transmission with its optimal control anal-
ysis. Both qualitative analysis and numerical simulation of the model have
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been carried out. Optimal control analysis was applied to make decisions on
the model where we minimize the total number of infected individuals and
mosquitoes and the cost associated with the various control interventions on
[0, tf ]. The Pontryagin’s maximum principle (PMP) was used to derive the
necessary conditions for the optimal control of the disease and to minimize
pointwise the Hamiltonian. Results on the existence of the control interven-
tion in the model was shown and the optimality system was also presented.
Hence, in the model we obtained the best control interventions that will mini-
mize the number of infected human and mosquito and the cost of applying the
multiple control interventions over time, which form a basis for future predic-
tions of possible impact of using combinations of the five controls, either one
at a time, two at a time, three at a time, or four at a time against the spread
of malaria in areas with limited resources.
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