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Strong convergence to a solution of the
inclusion problem for a finite family of

monotone operators in Hadamard spaces

Sajad Ranjbar

Abstract

In this paper, in the setting of Hadamard spaces, a iterative scheme
is proposed for approximating a solution of the inclusion problem for
a finite family of monotone operators which is a unique solution of a
variational inequality. Some applications in convex minimization and
fixed point theory are also presented to support the main result.

1 Introduction

A valuable tool in the study of problems associated to optimization, equi-
librium point, variational inequality is the concept of monotonicity. Finding
solutions to inclusion problems (i.e. zeros of monotone operators) is one of
the most fundamental issues in monotone operators theory. The design of
algorithms to approximate the zeros of monotone operators has always been
of interest to many authors. Rockefellar, in a seminal work [27], defined the
proximal point algorithm for monotone operators by means of the following
iterative scheme:

0 ∈ A(xn+1) + λn(xn+1 − xn), n = 0, 1, 2, ... (1.1)
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where A : H −→ 2H is a monotone operator on Hilbert space H, (λn) is a
sequence of real positive numbers and x0 is an initial point. In fact, Rockafellar
[27] proved that the sequence generated by (1.1) is weakly convergent to a
solution of the inclusion problem

Finding x ∈ H such that 0 ∈ Ax, (1.2)

provided λn ≥ λ > 0, ∀n ≥ 1. Kamimura and Takahashi [18], by using
Halpern regularization, proved a strong convergence theorem to approximate
a zero of the monotone operator A, which is a solution of the inclusion problem
(1.2). The study of the convergence problem of the proximal point algorithm
has been very fruitful and has engaged researchers from different areas, such
as variational inequalities, optimization and metric fixed-point theory. In the
case of Hilbert spaces, the reader can consult [6, 8, 12, 18, 19, 24, 27].

The extensions to convex abstract spaces and CAT(0) spaces of the con-
cepts and techniques that fit in Euclidean spaces are natural and non-trivial.
Actually, in recent years some algorithms defined to solve nonlinear equations,
variational inequalities and minimization problems, which involve monotone
operators, have been extended from the Hilbert space framework to the more
general setting of CAT(0) spaces . In particular, Bačák [3] extended the work
of Martinet [24] to complete CAT(0) spaces. Recently, Khatibzadeh and the
author [20] considered some properties of a monotone operator and its re-
solvent operator and upgraded the proximal point method (1.1) to complete
CAT(0) spaces, (Also, see [25]). Then, the author and Khatibzadeh [26] ex-
tended the work of Kamimura and Takahashi [18] to complete CAT(0) spaces.
Very recently, Heydari, Khadem and the author [15] proved the ∆-convergence
(see, Theorem 2.3) of a modified proximal point algorithm to solve the inclu-
sion problem

Finding x ∈ X such that 0 ∈ Aix (for i = 1, 2, ...,m, ) (1.3)

for approximating a common zero of monotone operators A1, A2, ..., Am, on
complete CAT(0) spaces X.

In this paper, we propose the Halpern regularization method of proximal
point algorithm for a finite family of monotone operators to establish a strong
convergence theorem for getting to a solution of the inclusion problem (1.3)
which is a common zero of finite family A1, A2, ..., Am of monotone opera-
tors on a complete CAT(0) space. This solution is, also, a unique solution
to a variational inequality. Some applications of the main result in convex
minimization problems and fixed point theory are also presented. Our results
extend and improve the related results in the literature.

The paper has been organized as follows.
In Section 2, we give a brief introduction of CAT(0) spaces and some lemmas
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that we need to prove the main result. In Section 3, we propose the Halpern
regularization method of proximal point algorithm for a finite family of mono-
tone operators and prove, under suitable conditions, strong convergence of
the proposed sequence to a solution of the inclusion problem (1.3) which is a
common zero of a finite family of monotone operators and a unique solution
of a variational inequality in complete CAT(0) spaces. Section 4 and Section
5 are devoted to the applications of the main result in convex minimization
problems and fixed point theory.

2 Preliminaries

Let (X, d) be a metric space. A continuous mapping from the interval [0, 1]
to X is called a path. Given a pair of points x, y ∈ X, we say that a path
c : [0, 1] −→ X joins x and y if c(0) = x, c(d(x, y)) = y. A path c : [0, 1] −→ X
is called a geodesic if d(c(s), c(t)) = d(c(0), c(1))|s − t| for every s, t ∈ [0, 1],
that is, if it parametrized proportionally to the arc length. In particular, a
geodesic is an injection unless it is trivial, that is, unless c(0) = c(1). The
metric space (X, d) is a geodesic space if every two points x, y ∈ X are con-
nected by a geodesic. If moreover every two points of (X, d) are connected
by a unique geodesic, the space (X, d) is called uniquely geodesic. In this
case, such a geodesic is denoted by [x, y], but one must remember that such a
geodesic is not uniquely determined by its endpoints in general. For a point

z ∈ [x, y], the notation z = (1 − t)x ⊕ ty is used, where t =
d(x, z)

d(x, y)
and we

say z is a convex combination of x and y. A subset C of X is called convex if
[x, y] ⊆ C for all x, y ∈ C.
A non-positive curvature metric space or a CAT(0) space (in honour of E.
Cartan, AD. Alexandrov and V.A. Toponogov) is a geodesic space (X, d)
which satisfies the following condition.
CN−inequality: If x, y0, y1, y2 ∈ X such that d(y0, y1) = d(y0, y2) = 1

2d(y1, y2),
then

d2(x, y0) ≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2).

It is known that a CAT(0) space is a uniquely geodesic space. A com-
plete CAT(0) space is called a Hadamard space. For other equivalent def-
initions and basic properties, we refer the reader to the standard texts such
as [4, 7, 9, 14, 17]. The following are the prominent examples of Hadamard
spaces:
Hilbert spaces, Hadamard manifolds (i.e. simply connected complete Rieman-
nian manifolds with non-positive sectional curvature which can be of infinite
dimension), R-trees as well as examples that have been built out of given
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Hadamard spaces such as closed convex subsets, direct products, warped prod-
ucts, L2-spaces, direct limits and Reshetnyak’s gluing (see [29], Section 3).
Berg and Nikolaev [5] have introduced the concept of quasilinearization for

the CAT(0) space X. They denote a pair (a, b) ∈ X ×X by
−→
ab and called it

a vector. Then the quasilinearization map 〈.〉 : (X × X) × (X × X) → R is
defined by

〈
−→
ab,
−→
cd〉 = 1

2 (d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (a, b, c, d ∈ X).

It can be easily verified that 〈
−→
ab,
−→
ab〉 = d2(a, b), 〈

−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉 and

〈
−→
ab,
−→
cd〉 = 〈−→ae,

−→
cd〉 + 〈

−→
eb,
−→
cd〉 are satisfied for all a, b, c, d, e ∈ X. Also, we

can formally add compatible vectors, more precisely −→ac +
−→
cb =

−→
ab, for all

a, b, c ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d), (a, b, c, d ∈ X).

Berg and Nikolaev have then proved the following result.

Theorem 2.1. [5, Corollary 3] A geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini [2] have introduced the concept of dual
space of a Hadamard space X, based on a work of Berg and Nikolaev [5], as
follows.
Consider the map Θ : R×X ×X → C(X,R) defined by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then
the Cauchy-Schwarz inequality implies that Θ(t, a, b) is a Lipschitz function
with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X),

where L(ϕ) = sup{ϕ(x)−ϕ(y)d(x,y) : x, y ∈ X,x 6= y} is the Lipschitz semi-norm for

any function ϕ : X → R. A pseudometric D on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

For a Hadamard space (X, d), the pseudometric space (R×X ×X,D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz
functions (Lip(X,R), L).

Lemma 2.2. [2, Lemma 2.1] D((t, a, b), (s, c, d)) = 0 if and only if t〈
−→
ab,−→xy〉 =

s〈
−→
cd,−→xy〉, for all x, y ∈ X.

By Lemma 2.2, D imposes an equivalent relation on R×X×X, where the
equivalence class of (t, a, b) is
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[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d).

It is clear that [−→aa] = [
−→
bb] for all a, b ∈ X. Fix o ∈ X, we write 0 = [−→oo] as the

zero of the dual space. In [2], it is shown that the dual of a closed and convex

subset of Hilbert space H with nonempty interior is H and t(b−a) ≡ [t
−→
ab] for

all t ∈ R, a, b ∈ H. Note that X∗ acts on X ×X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

Also, we use the following notation:

〈αx∗+βy∗,−→xy〉 := α〈x∗,−→xy〉+β〈y∗,−→xy〉, (α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).

A notion of convergence in Hadamard spaces, ∆-convergence introduced by
Lim [23], has been studied by many authors (e.g. [11, 13]).

A. Kakavandi [1] proved the following characterization for ∆-convergence.

Theorem 2.3. [1, Theorem 2.6] Let (X, d) be a Hadamard space, (xn) be a
sequence in X and x ∈ X. Then (xn) ∆-converges to x if and only if

lim sup
n→∞

〈−−→xxn,−→xy〉 ≤ 0, for all y ∈ X.

It is well-known that in all CAT(0) spaces, every bounded sequence has a
∆-convergent subsequence.
In the following, we present some properties of the resolvent operator of a
monotone operator in CAT(0) space which verified in [20], and we need them
in the sequel.

Definition 2.4. [16] Let X be a Hadamard space with dual space X∗. The
multi-valued operator A : X → 2X

∗
with domain D(A) := {x ∈ X : A(x) 6= ∅},

is monotone if and only if

〈x∗ − y∗,−→yx〉 ≥ 0,

for all x, y ∈ D(A), x 6= y, x∗ ∈ Ax, y∗ ∈ Ay.

Definition 2.5. [20] Let λ > 0 and A : X → 2X
∗

be a set-valued operator.
The resolvent of A of order λ is the set-valued mappings Jλ : X → 2X defined
by Jλ(x) := {z ∈ X | [ 1λ

−→zx] ∈ Az}.

Definition 2.6. [20] Let X be a Hadamard space and T : C ⊂ X → X be a

mapping. We say that T is firmly nonexpansive if d2(Tx, Ty) ≤ 〈
−−−→
TxTy,−→xy〉,

for any x, y ∈ C.
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By the definition and Cauchy-Schwarz inequality, it is clear that any firmly
nonexpansive mapping T is nonexpansive.
We denote F (T ) := {x ∈ X such that Tx = x}.

Remark 2.7. Let C be a nonempty convex subset of a Hadamard space X.
The map P : X −→ C with u = PCx is called the projection mapping where
d(x, u) ≤ d(x, y), ∀ y ∈ C, (see, [10]). Dehghan and Rooin [10] proved that
〈−→xu,−→yu〉 ≤ 0, ∀ y ∈ C. [20, Corollary 3.8.] shows that the projection mapping
is a firmly nonexpansive mapping.

Theorem 2.8. [20] Let X be a CAT(0) space and Jλ is resolvent of the
operator A of order λ. We have;
(i) For any λ > 0, R(Jλ) ⊂ D(A), F (Jλ) = A−1(0).
(ii) If A is monotone, then Jλ is a single-valued and firmly nonexpansive
mapping.
(iii) If A is monotone and λ ≤ µ then d(x, Jλx) ≤ 2d(x, Jµx).

Remark 2.9. [20] It is well-known that if T is a nonexpansive mapping on
subset C of CAT(0) space X then F (T ) is closed and convex. Thus, if A is a
monotone operator on CAT(0) space X then, by parts (i) and (ii) of Theorem
2.8, A−1(0) is closed and convex.

The following lemmas are needed to prove the main result.

Lemma 2.10. [11] Let (X, d) be a CAT(0) space. Then, for all x, y, z ∈ X
and all t ∈ [0, 1] :
(1) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y),
(2) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),
In addition, by using (1), we have

d(tx⊕ (1− t)y, tx⊕ (1− t)z) ≤ (1− t)d(y, z).

Lemma 2.11. [30] Let X be a Hadamard space, C be a nonempty closed and
convex subset of X and T : C −→ C be a nonexpansive mapping. For any
contraction f : C −→ C and t ∈ (0, 1), let xt ∈ C be the unique fixed point of
the contraction x −→ tf(x)⊕(1−t)Tx, i.e., xt = tf(xt)⊕(1−t)Txt. Then (xt)
converges strongly as t −→ 0 to a point x∗ such that x∗ = PF (T )f(x∗), where
PF (T ) is the metric projection from X −→ F (T ), which is also the unique
solution to the following variational inequality:

〈
−−−−−→
x∗f(x∗),

−−→
xx∗〉 ≥ 0, ∀ x ∈ F (T ).

Lemma 2.12. [28] Let {sn} be a sequence of nonnegative real numbers, {αn}
be a sequence of real numbers in (0, 1) with

∑∞
n=1 αn = ∞ and {tn} be a
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sequence of real numbers. Suppose that

sn+1 ≤ (1− αn)sn + αntn for all n ≥ 1.

If limsupk→∞tmk
≤ 0 for every subsequence {smk

} of {sn} satisfying
lim infk(smk+1 − smk

) ≥ 0, then limn→∞sn = 0.

3 Strong convergence to a common zero of monotone
operators

Let X be a Hadamard space with dual X∗. We say that the operator A : X →
2X

∗
satisfies the range condition if for every λ > 0, D(JAλ ) = X (see [20]). It

is known that if A is a maximal monotone operator on the Hilbert space H
then R(I+λA) = H, ∀λ > 0, where I is the identity operator. Thus, every
maximal monotone operator A on a Hilbert space satisfies the range condi-
tion. Also as it has shown in [22], if A is a maximal monotone operator on a
Hadamard manifold, then A satisfies the range condition. For presenting some
examples of monotone operators that satisfy the range condition in CAT(0)
spaces, refer to [20, Sections 5 and 6].

Let A1, A2, ..., Am : X → 2X
∗

be multi-valued monotone operators on the
Hadamard space X with dual X∗ that satisfy the range condition and (λ(n,i))
for i = 1, 2, ...,m be some sequences of nonnegative real numbers. For strong
convergence to a solution of the inclusion problem (1.3) which is a common zero
of the finite family A1, A2, ..., Am of monotone operators in Hadamard spaces,
we propose Halpern regularization method of proximal point algorithm which
is the sequence generated by:

x1 ∈ X,
zin = JAi

λ(n,i)
zi+1
n , for i ∈ {1, 2, ...,m},

zm+1
n = xn, for all n ∈ N,
xn+1 = αnf(xn)⊕ (1− αn)z1n, for all n ∈ N,

(3.1)

where (αn) is a sequence in [0, 1] and f : X −→ X is a contractive mapping
with coefficient κ, (i.e. there exists κ ∈ (0, 1), such that d(f(x), f(y)) ≤
κd(x, y) ∀ x, y ∈ X).

In the following, under suitable assumptions, we prove that the sequence
(xn) generated by (3.1) is convergent strongly to the element p of ∩mi=1A

−1
i (0)

which is a solution of the inclusion problem (1.3) and a unique solution of the
variational inequality:

〈
−−−→
pf(p),−→xp〉 ≥ 0, ∀ x ∈ ∩mi=1A

−1
i (0).
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Lemma 3.1. Let X be a Hadamard space with dual X∗ and A1, A2, ..., Am :
X → 2X

∗
be multi-valued monotone operators such that satisfy the range con-

dition and ∩mi=1A
−1
i (0) 6= ∅. Suppose (λ(n,i)) for i = 1, 2, ...,m are some

sequences of nonnegative real numbers. Then

Uλn
:= JA1

λ(n,1)
oJA2

λ(n,2)
oJA3

λ(n,3)
o...oJAm

λ(n,m)

is a nonexpansive mapping and

F (Uλn) = F (JA1

λ(n,1)
oJA2

λ(n,2)
oJA3

λ(n,3)
o...oJAm

λ(n,m)
) = ∩ki=1A

−1
i (0).

Proof. It is clear that Uλn
is nonexpansive by part (ii) of Theorem 2.8. We

prove F (Uλn
) = ∩mi=1A

−1
i (0). The inclusion ∩mi=1A

−1
i (0) ⊂ F (Uλn

) is obvious.
We show F (Uλn) ⊂ ∩mi=1A

−1
i (0). If ∩mi=1A

−1
i (0) = X, then the proof is

complete, otherwise, suppose that x /∈ ∩mi=1A
−1
i (0) and p ∈ ∩mi=1A

−1
i (0). For

i = 1, 2, 3, ...,m, JAi

λ(n,i)
is firmly nonexpansive. Thus, by definition 2.6, for

i = 1, 2, 3, ...,m, we obtain

d2(JAi

λ(n,i)
x, JAi

λ(n,i)
p) ≤ 〈

−−−−−−−−−−−−−→
(JAi

λ(n,i)
x)(JAi

λ(n,i)
p),−→xp〉,

which by p ∈ ∩mi=1A
−1
i (0), follows

d2(JAi

λ(n,i)
x, p) ≤ 〈

−−−−−−−→
(JAi

λ(n,i)
x)p,−→xp〉,

which implies

d2(JAi

λ(n,i)
x, p) ≤ d2(x, p)− d2(x, JAi

λ(n,i)
x)〉,

thus by x /∈ ∩mi=1A
−1
i (0), for i = 1, 2, 3, ...,m, we have

d(JAi

λ(n,i)
x, p) < d(x, p).

This together with nonexpansiveness of Uλn imply

d(Uλnx, p) = d(JA1

λ(n,1)
oJA2

λ(n,2)
oJA3

λ(n,3)
o...oJAm

λ(n,m)
x, p)

≤ d(JA2

λ(n,2)
oJA3

λ(n,3)
o...oJAm

λ(n,m)
x, p)

≤ ...
≤ d(JAm

λ(n,m)
x, p)

< d(x, p).
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Now it is clear that x /∈ F (Uλn) because, otherwise, we would obtain

d(x, p) = d(Uλn
x, p) < d(x, p),

that is a contradiction. Hence, F (Uλn) ⊂ ∩mi=1A
−1
i (0), which completes the

proof.

Theorem 3.2. Let X be a Hadamard space with dual X∗ and A1, A2, ..., Am :
X → 2X

∗
be multi-valued monotone operators such that satisfy the range con-

dition and ∩mi=1A
−1
i (0) 6= ∅. Suppose (λ(n,i)) for i = 1, 2, ...,m, are some

sequences of nonnegative real numbers and (αn) is a sequence in [0, 1] such
that satisfy the conditions:

C1 : limn→∞ αn = 0,

C2 :
∑∞
n=1 αn =∞,

C3 : λ(n,i) ≥ λ > 0, for all n ∈ N and i = 1, 2, ...,m.

If f : X −→ X is a contractive mapping with contractive coefficient κ ∈ (0, 12 ],
then the sequence generated by (3.1) is convergent strongly to the element p of
∩mi=1A

−1
i (0) such that p = P∩m

i=1A
−1
i (0)f(p), where P∩m

i=1A
−1
i (0) is the projection

mapping from P : X −→ ∩mi=1A
−1
i (0), and p also is the unique solution to the

following variational inequality:

〈
−−−→
pf(p),−→xp〉 ≥ 0, ∀ x ∈ ∩mi=1A

−1
i (0).

Proof. By Remark 2.9, ∩mi=1A
−1
i (0) is convex and closed. Set

Uλ = JA1

λ oJA2

λ oJA3

λ o...oJAm

λ . Then, by Lemma 3.1, Uλ is nonexpansive and
F (Uλ) = ∩mi=1A

−1
i (0) = F (Uλn

). Therefore, by Lemma 2.11, there exists
p ∈ ∩mi=1A

−1
i (0) such that p = P∩m

i=1A
−1
i (0)f(p). We show (xn) is convergent

strongly to p. First, we prove that (xn) is bounded. From p = P∩m
i=1A

−1
i (0)f(p),

we get 0 ∈ Aip, for i ∈ {1, 2, ...,m}. Moreover, by the definition of the resolvent
operator, we obtain

[
1

λ(n,i)

−−−−→
zinz

i+1
n ] ∈ Ai(zin), for i ∈ {1, 2, ...,m}.

Hence by the monotonicity of Ai, for i ∈ {1, 2, ...,m} one has

〈[ 1

λ(n,i)

−−−−→
zinz

i+1
n ]− 0,

−→
pzin〉 ≥ 0,

or equivalently,

d2(zi+1
n , p)− d2(zin, p) ≥ d2(zi+1

n , zin), for i ∈ {1, 2, ...,m}. (3.2)
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By summing the inequality (3.2) from i = 1 to i = m, we obtain

d2(p, xn)− d2(p, z1n) ≥
k∑
i=1

d2(zi+1
n , zin) ≥ 0, (3.3)

which implies d(z1n, p) ≤ d(xn, p). Therefore, by Lemma 2.10, we have

d(xn+1, p) ≤ αnd(f(xn), p) + (1− αn)d(z1n, p)

≤ αnd(f(xn), f(p)) + αnd(f(p), p) + (1− αn)d(xn, p)

≤ καnd(xn, p) + αnd(f(p), p) + (1− αn)d(xn, p)

≤ (1− αn(1− κ)d(xn, p) + αnd(f(p), p)

≤ max{d(xn, p),
d(f(p), p)

1− κ
}

≤ ... ≤ max{d(x1, p),
d(f(p), p)

1− κ
}.

Hence, (xn) is bounded and so are (f(xn) and (z1n).
Note that

d2(f(xn), p)− d2(f(xn), z1n) = 2〈f(xn)p, z1np〉 − d2(z1n, p)

= 2〈f(xn)f(p), z1np〉+ 2〈f(p)p, z1np〉 − d2(z1n, p)

≤ 2d(f(xn), f(p))d(z1n, p) + d2(f(p), p)− d2(z1n, f(p))

≤ 2κd2(xn, p) + d2(f(p), p)− d2(z1n, f(p)).

Therefore, by Lemma 2.10, we conclude

d2(xn+1, p) = d2(αnf(xn)⊕ (1− αn)z1n, p)

≤ αnd2(f(xn), p) + (1− αn)d2(z1n, p)− αn(1− αn)d2(f(xn), z1n)

= (1− αn)d2(z1n, p) + αn(d2(f(xn), p)− d2(f(xn), z1n)) + α2
nd

2(f(xn), z1n)

≤ (1− αn)d2(xn, p) + 2καnd
2(xn, p) + αnd

2(f(p), p)− αnd2(f(p), z1n)

+ α2
nd

2(f(xn), z1n)

≤ (1− αn(1− 2κ))d2(xn, p) + αn(d2(f(p), p)− d2(z1n, f(p))) + α2
nd

2(f(xn), z1n),

which is,

d2(xn+1, p) ≤ (1−αn(1−2κ))d2(xn, p)+αn(d2(f(p), p)−d2(z1n, f(p))+αnd
2(f(xn), z1n)).

By this and Lemma 4.2, for getting to d(xn+1, p) −→ 0, it suffices to show
that

lim sup
k→∞

(d2(f(p), p)− d2(z1nk
, f(p)) + αnk

d2(f(xnk
), z1nk

)) ≤ 0,
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for every subsequence d2(xnk
, p) of d2(xn, p) that satisfies,

lim inf
k→∞

(d2(xnk+1, p)− d2(xnk
, p)) ≥ 0.

By boundedness of (z1nk
), there exists subsequence (z1nkt

) of (z1nk
) such that

(z1nkt
) is ∆-convergent to q ∈ X and

lim sup
k→∞

(d2(f(p), p)− d2(z1nk
, f(p)) + αnk

d2(f(xnk
), z1nk

))

= lim
t→∞

(d2(f(p), p)− d2(z1nkt
, f(p)) + αnkt

d2(f(xnkt
), z1nkt

)).

Since d2(f(p), .) is convex and continuous and therefore ∆-lower semicontinu-
ous, by the assumption C1, we obtain

lim sup
k→∞

(d2(f(p), p)− d2(z1nk
, f(p)) + αnk

d2(f(xnk
), z1nk

))

= lim
t→∞

(d2(f(p), p)− d2(z1nkt
, f(p)) + αnkt

d2(f(xnkt
), z1nkt

))

≤ d2(f(p), p)− d2(q, f(p)),

Hence, by p = P∩m
i=1A

−1
i (0)f(p) and Remark 2.7, for proving d(xn+1, p) −→ 0,

it is enough to show q ∈ ∩mi=1A
−1
i (0) for every subsequence d2(xnk

, p) of
d2(xn, p) that satisfies,

lim inf
k→∞

(d2(xnk+1, p)− d2(xnk
, p)) ≥ 0.

For this, suppose that d2(xnk
, p) is a subsequence of d2(xn, p) that satisfies,

lim inf
k→∞

(d2(xnk+1, p)− d2(xnk
, p)) ≥ 0.
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Then

0 ≤ lim inf
k→∞

(d2(xnk+1, p)− d2(xnk
, p))

≤ lim inf
k→∞

(αnk
d2(f(xnk

), p) + (1− αnk
)d2(z1nk

, p)

− αnk
(1− αnk

)d2(f(xnk
), z1nk

)− d2(xnk
, p))

≤ lim inf
k→∞

(αnk
d2(f(xnk

), p) + (1− αnk
)d2(z1nk

, p)− d2(xnk
, p))

= lim inf
k→∞

(αnk
(d2(f(xnk

), p)− d2(z1nk
, p)) + d2(z1nk

, p)− d2(xnk
, p))

≤ lim sup
k→∞

(αnk
(d2(f(xnk

), p)− d2(z1nk
, p)) + lim inf

k→∞
(d2(z1nk

, p)− d2(xnk
, p))

= lim inf
k→∞

(d2(z1nk
, p)− d2(xnk

, p))

≤ lim sup
k→∞

(d2(z1nk
, p)− d2(xnk

, p))

≤ lim sup
k→∞

(d2(xnk
, p)− d2(xnk

, p)) = 0,

follows
lim
k→∞

(d2(z1nk
, p)− d2(xnk

, p)) = 0, (3.4)

which by (3.3) implies

lim
k→∞

d(zink
, zi+1
nk

) = 0, for i = 1, 2, ...,m. (3.5)

This, together with the triangle inequality of the metric d, follows

lim
k→∞

d(xnk
, zink

) = 0, for i = 1, 2, ...,m. (3.6)

On the other hand, by C3 and part (iii) of Theorem 2.8, we obtain

d(JAi

λ zi+1
nk

, zi+1
nk

) ≤ d(JAi

λ(nk,i)
zi+1
nk

, zi+1
nk

) = d(zink
, zi+1
nk

),

which by (3.5) implies

d(JAi

λ zi+1
nk

, zi+1
nk

) −→ 0, for i = 1, 2, ...,m. (3.7)

As well as, for all i ∈ {1, 2, ...,m}, we have

d(JAi

λ xnk
, xnk

) ≤ d(JAi

λ xnk
, JAi

λ zi+1
nk

) + d(JAi

λ zi+1
nk

, zi+1
nk

) + d(zi+1
nk

, xnk
)

≤ 2d(zi+1
nk

, xnk
) + d(JAi

λ zi+1
nk

, zi+1
nk

)

that by (3.6) and (3.7) follows

d(xnk
, JAi

λ xnk
) −→ 0, for i = 1, 2, ...,m. (3.8)
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Moreover, (xnkt
) is a subsequence of (xnk

) which ∆-converge to q ∈ X, beacuse

of (3.6) and ∆-convergence of (z1nkt
) to q ∈ X. Therefore by demicloseness

of JAi

λ and (3.8), we conclude q ∈ ∩mi=1A
−1
i (0), as desired . Hence the se-

quence (xn) generated by (3.1) is convergent strongly to p = P∩m
i=1A

−1
i (0)f(p),

which by Remark 2.7 and Lemma 2.11 is the unique solution to the following
variational inequality

〈
−−−→
pf(p),−→xp〉 ≥ 0, ∀ x ∈ ∩mi=1A

−1
i (0).

4 Approximation to common minimizer of convex func-
tions

One of the most widely used examples of monotone operators that satisfies the
range condition, is subdifferential of a convex, proper and lower semicontinuous
function. In the following, we approximate a common minimizer of a finite
family of proper, convex and lower semicontinuous functions in Hadamard
spaces. Let (X, d) be a Hadamard space. In [2], the subdifferential of a proper
function on a Hadamard space X was defined, as follows.

Definition 4.1. [2] Let X be a Hadamard space with dual X∗ and f : X →
(−∞,+∞] be a proper function with efficient domain D(f ) := {x : f (x ) <
+∞}, then the subdifferential of f is the multi-valued function ∂f : X → 2X

∗

defined by

∂f(x) = {x∗ ∈ X∗ : f(z)− f(x) ≥ 〈x∗,−→xz〉 (z ∈ X)},

when x ∈ D(f ) and ∂f(x) = ∅, otherwise.

Part (iii) of the following theorem shows that subdifferential of a con-
vex, proper and lower semicontinuous function satisfies the range condition in
Hadamard spaces.

Theorem 4.2. [2, Theorem 4.2] [20, Proposition 5.2] Let f : X → (−∞,+∞]
be a proper, lower semicontinuous and convex function on a Hadamard space
X with dual X∗, then
(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f(x).
(ii) ∂f : X → 2X

∗
is a monotone operator.

(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that

[α−→xy] ∈ ∂f(x). (i.e. D(J∂fλ ) = X ∀λ > 0).
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Khatibzadeh and the author in [20, Proposition 5.3.] proved if f : X →
(−∞,+∞] is a proper, lower semicontinuous and convex function on a Hadamard
space X with dual X∗, then

J∂fλ x = Argminz∈X{f(z) +
1

2λ
d2(z, x)}, ∀ λ > 0, x ∈ X. (4.1)

Therefore, using Theorem 3.2, we can approximate a common minimizer of a
finite family of proper, convex and lower semicontinuous functions which is a
unique solution of a variational inequality in Hadamard spaces.

Theorem 4.3. Let X be a Hadamard space with dual X∗ and g1, g2, ..., gm :
X → (−∞,+∞] be be proper, convex and lower semi-continuous functions
such that ∩mi=1argmin gi 6= ∅. Suppose (λ(n,i)) for i = 1, 2, ...,m, are some
sequences of nonnegative real numbers and (αn) is a sequence in [0, 1] such
that satisfy the conditions:

C1 : limn→∞ αn = 0,

C2 :
∑∞
n=1 αn =∞,

C3 : λ(n,i) ≥ λ > 0, for all n ∈ N and i = 1, 2, ...,m.

If f : X −→ X is a contractive mapping with contractive coefficient κ ∈ (0, 12 ],
then the sequence generated by:
x1 ∈ X,
zin = argminu∈X{gi(u) + 1

λ(n,i)
d2(u, zi+1

n )}, for i ∈ {1, 2, ...,m},
zm+1
n = xn, for all n ∈ N,
xn+1 = αnf(xn)⊕ (1− αn)z1n, for all n ∈ N,

is convergent strongly to the element p of ∩mi=1argmin gi such
that p = P∩m

i=1argmin gif(p) and p also is the unique solution to the following
variational inequality:

〈
−−−→
pf(p),−→xp〉 ≥ 0, ∀ x ∈ ∩mi=1argmin gi.

Proof. Define Ai := ∂gi, for i = 1, 2, ...,m, then each operator Ai := ∂gi is a
monotone operator that satisfies the range condition. Therefore, by (4.1), we
can use Theorem 3.2 to get the desired result.

5 Approximation to common fixed point of nonexpansive
mappings

Let (X, d) be a Hadamard space and T : X → X be a nonexpansive mapping

(i.e. d(Tx, Ty) ≤ d(x, y) ∀x, y ∈ X). Set Az = [
−−→
Tzz], then F (T ) =
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A−1(0) and [21, Proposition 4.2] shows the operator A is a monotone operator.
We refer the reader to [20, Section 6], to consider the range codition for the

operator Az = [
−−→
Tzz]. In the following theorem, as a corollary of the Theorem

3.2, a common fixed point of a finite family of nonexpansive mappings, which
is a unique solution of a variational inequality, is approximated.

Theorem 5.1. Let X be a Hadamard space with dual X∗ and T1, T2, ..., Tm :

X → 2X
∗

be nonexpansive mappings such that Aiz = [
−−→
Tizz] for i = 1, 2, 3, ...,m,

satisfy the range condition and ∩mi=1F (Ti) 6= ∅. Suppose (λ(n,i)) for i =
1, 2, ...,m, are some sequences of nonnegative real numbers and (αn) is a se-
quence in [0, 1] such that satisfy the conditions:

C1 : limn→∞ αn = 0,

C2 :
∑∞
n=1 αn =∞,

C3 : λ(n,i) ≥ λ > 0, for all n ∈ N and i = 1, 2, ...,m.

If f : X −→ X is a contractive mapping with contractive coefficient κ ∈ (0, 12 ],
then the sequence generated by:

x1 ∈ X,
zin = JAi

λ(n,i)
zi+1
n , for i ∈ {1, 2, ...,m},

zm+1
n = xn, for all n ∈ N,
xn+1 = αnf(xn)⊕ (1− αn)z1n, for all n ∈ N,

is convergent strongly to the element p of ∩mi=1F (Ti) such that p = P∩m
i=1F (Ti)f(p)

and p also is the unique solution to the following variational inequality:

〈
−−−→
pf(p),−→xp〉 ≥ 0, ∀ x ∈ ∩mi=1F (Ti).

Proof. Proof is deduced by Theorem 3.2.

Acknowledgments: The author is grateful to the editor and the referees
for their valuable comments and suggestions.
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