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Numerical solution of two-dimensional
nonlinear fractional order

reaction-advection-diffusion equation by using
collocation method

Manpal Singh, S. Das, Rajeev and E-M. Craciun

Abstract

In this article, two-dimensional nonlinear and multi-term time frac-
tional diffusion equations are solved numerically by collocation method,
which is used with the help of Lucas operational matrix. In the pro-
posed method solutions of the problems are expressed in terms of Lucas
polynomial as basis function. To determine the unknowns, the resid-
ual, initial and boundary conditions are collocated at the chosen points,
which produce a system of nonlinear algebraic equations those have been
solved numerically. The concerned method provides the highly accurate
numerical solution. The accuracy of the approximate solution of the
problem can be increased by expanding the terms of the polynomial.
The accuracy and efficiency of the concerned method have been authen-
ticated through the error analyses with some existing problems whose
solutions are already known.

1 Introduction

Nowadays, fractional calculus has been used to model problems in various
areas such as in physics, hydrology, biology, finance and many others [1]-
[15]. Fractional diffusion equations are used in many fields. There are many
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fractional differential operators available viz, Riemann-Liouville, Grunwald-
Letnikov, Riesz, Hadamard, Caputo, Caputo-Fabrizio etc. Researchers are
paying attention on fractional calculus due to its increasing applications. it is
not easy to find the analytical solution of fractional diffusion equation espe-
cially for nonlinear cases, so it is required to find the numerical solution of the
problems. In the last few years, many numerical methods have been developed
such as Agarwal and EI-Sayed [16] have used Non-standard finite difference
collocation technique for solving diffusion equation of fractional order, Molla
and Nova [17] have obtained the approximate solution of two-dimensional dif-
fusion equation of fractional order, Zhang and Sun [18] have developed the
ADI technique to solve two- dimensional time fractional sub-diffusion equa-
tion, Yang et al. [19] have attained numerical solution of two-dimensional
diffusion equation of fractional order, Liu et al. [20] have discussed finite vol-
ume method for solving diffusion equation of fractional order, Meerschaert et
al.[21] have solved two-dimensional dispersion equation of fractional order us-
ing finite difference scheme, Jaiswal et al. [22] have solved nonlinear PDE for
porous media.
The transportation of a substance and quantity by bulk motion is defined as
advection. Mostly the advected medium is fluid, the fluid can be any sub-
stance that can have thermal energy, such as air or water. Transport of silt or
pollutant in river by water flow is an example of advection. Mathematically
advection equation can be described as

∂u

∂t
+∇ · ψ = R,

where u is a scalar field, ψ is the velocity vector field, ∇. is divergence operator,
and R is the reaction term. As ψ = ψdiffusion+ψadvection, where ψdiffusion =
−D∇u and ψadvection = νu, the above equation becomes the combination
of advection and diffusion terms, which is called advection-diffusion equa-
tion. Transport occurs in fluids through reaction advection diffusion equation
(RADE) given by the following model 1.

∂u

∂t
= ∇ · (D∇u)−∇.(vu) +R, (1)

where u is the concentration for mass transfer and temperature for heat trans-
fer, ν is the advection term, D is the diffusion coefficient and the reaction term
R describes the sink or source of the substance.
The main objective of this article is to find the approximate solutions of the
following two-dimensional nonlinear time fractional order reaction-advection-
diffusion equation (FRADE) given by the following model 2.

c
0D

ϑ
t u(Y, t) = ~∇·

[
u(Y, t)

{
î
∂u

∂x
+ ĵ

∂u

∂y

}]
−v
(∂u
∂x

+
∂u

∂y

)
+ku(Y, t)+g(Y, t), 0 < ϑ < 1,

(2)
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and the following multi-term time-fractional diffuson equation (MT-TFDE)
as model 3.

q∑
i=1

di
c
0D

ϑi
t u(Y, t) = ~∇u(Y, t) + g(Y, t), 0 < ϑ < 1, (3)

where u(Y, t) denotes the concentration of the solute, k is reaction coefficient
and g(Y, t) is the forcing term and (x, y) is considered as Y . Here c

0D
ϑ
t repre-

sents the Caputo’s fractional derivative of order ϑ with respect to time variable
which is described in the next section. If ϑ = 1, then the model is called the
integer order two dimensional nonlinear reaction-advection-diffusion equation
(RADE). Here we shall use spectral collocation method to find the approxi-
mate solutions of the problems. Spectral method was investigated by Steven
Orszag, which is similar to finite element method. The difference is that in
spectral method the basis function used is non zero on the whole domain
while in the finite element method function is used which is non zero on the
sub-domain. Spectral method has nice error properties as compared to the
finite element method. Spectral collocation method is used to find the numer-
ical solution of partial differential equation, ordinary differential equation and
eigen value problems related to differential equations. Here solution is writ-
ten in combination of Lucas polynomial as

∑
ci,jkφiφjφk, where φ’s are the

polynomial vector and ci,jk are coefficients which have to be determined. In
collocation method residual is collocated at certain collocation points together
with prescribed conditions. We shall solve the mathematical model (2) using
the following conditions:

u(x, y, 0) = ρ1(x, y), 0 ≤ x, y ≤ 1,

u(0, y, t) = ρ2(y, t), 0 ≤ y, t ≤ 1,

u(1, y, t) = ρ3(y, t), 0 ≤ y, t ≤ 1,

u(x, 0, t) = ρ4(x, t), 0 ≤ x, t ≤ 1,

u(x, 1, t) = ρ5(x, t). 0 ≤ x, t ≤ 1.

(4)

Here Lucas operational matrix (OM) is used to find the residual of the problem
described in Eq.(2). OM method is better than the other methods because
it has sparce matrix, that reduces the computational time and increase the
accuracy of the numerical solution. Also OM method is simple to execute. In
the recent years many OM methods have been developed to find approximate
solutions of various problems. Bhrawy et al. [23] have developed Jacobi OM
to obtain the numerical solution of the diffusion-wave equation of fractional
order, Doha et al. [24] have found the approximate solution of fractional order
IVP applying Chebyshev OM, Dehgan et al.[25] have solved telegraph equa-
tion of fractional order with the help of variational iteration method, Singh et



NUMERICAL SOLUTION OF 2-D NONLINEAR FRADE 214

al. [26] have obtained the approximate solution of two-dimensional fractional
transport equation using Legendre OM, Saadatmandi and Dehghan [27] have
discussed OM approach to deal with differential equation of fractional order,
Elhameed and Youssri [28] construct Lucas OM for solving fractional differ-
ential equation, Tohidi et al. [29] have used OM of Bernoulli polynomial
to obtain the approximate solution of generalized pantograph equation, Das
[30] has solved diffusion equation of fractional order using variational itera-
tion method, Das et al. [31] approximated the reaction-diffusion equation of
fractional order, Vishal et al. [32] have used homotopy analytical method to
solve time fractional nonlinear Swift Hohenberg equation, Kumar et al. [33]
have used OM to find numerical solution of two-dimensional reaction-diffusion
equation.
The article is arranged as follows: Section 2 consists of definitions used in this
article. In section 3, OM of Lucas polynomial is introduced. Section 4 con-
tains the details of the proposed numerical method to solve two-dimensional
FRADE. Comparison of the approximate solutions using our proposed method
with the analytical solutions of few existing problems are illustrated in section
5. Section 6 contains the solution of the considered mathematical model ob-
tained by applying the proposed numerical method. Conclusion of the overall
work is given at the end.

2 Basic Definitions

The fractional derivative of order ϑ in Caputo sense of the function u(x, t)
w.r.t. the variable t is given by

c
0D

ϑ
t u(x, t) =


1

Γ(k−ϑ)

∫ t
0
(t− s)k−ϑ−1 ∂

ku(x,s)
∂sk

ds, k − 1 < ϑ < k,

∂ku(x,t)
∂tk

, ϑ = k.

(5)

Also according to the definition of Caputo derivative, we have

Dϑtk =
Γ (1 + k)

Γ (1− ϑ+ k)
tk−ϑ, k ∈ N, k ≥ dϑe, (6)

where d.e represents the greatest integer function.

2.1 Lucas polynomial

The recurrence relation of the Lucas polynomial is given by

Ln+2(t) = Ln(t) + xLn+1(t), n ≥ 0, (7)
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with the conditions
L0(t) = 2, L1(t) = t.

From the above relation series form of Lucas polynomial can be obtained as

Ln(t) = n

bn2 c∑
m=0

(n− 2m+ 1)m−1

m!
tn−2m, (8)

where the notation b.c represents the floor function, and (k)m is the Pochham-

mer notation which is defined by (k)m = Γ(k+m)
Γ(k) .

Every polynomial tm for m ≥ 1 can be written in combination of Lucas poly-
nomial as

tm =

bm2 c∑
k=0

(−1)kδm−2k(m− k + 1)k
k!

Lm−2k(t), (9)

where δs is defined by

δs =

{
1 s > 0,
1
2 , s = 0.

(10)

2.2 Kronecker product

Consider the matrices R = [rij ] and S = [sij ] of order p × q and m × n
respectively, then their kronecker product is denoted by R⊗ S and is defined
as

R⊗ S =


r11S r12S · · · · · · r1qS
r21S r22S · · · · · · r2qS

...
...

. . .
...

rp1S rp2S · · · · · · rpqS

 ,

where R⊗ S is mp× nq order matrix.

2.3 Approximation of function

Consider the function g(Y, t) defined in C3[0, 1], then g(Y, t) can be expressed
in combination of Lucas polynomial as

g(Y, t) =∼=
n+1∑
i

n+1∑
j

n+1∑
k

UijkLi(t)Lj(x)Lk(y) = φ(t)TUψ(x, y),
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where ψ(x, y) = φ(x)⊗ φ(y) and φ(t) = [L1(t), L2(t), L3(t), · · · , Ln+1(t)]T ,

and U is (n+ 1)× (n+ 1)2 dimensional unknown matrix defined as

U =


u11 u12 · · · · · · u1(n+1)2

u21 u22 · · · · · · u2(n+1)2

...
...

. . .
...

u(n+1)1 u(n+2)2 · · · · · · u(n+1)(n+1)2


(n+1)×(n+1)2

. (11)

3 OM of derivative in terms of Lucas polynomials

According to [28], the derivative of the vector φ(t) is given by

dφ(t)

dt
= M (1)φ(t), (12)

where M (1) = (m
(1)
ij ) is the Lucas OM of order (n+1)×(n+1) whose elements

are given by

m
(1)
ij =

{
i(−1)

i−j−1
2 , if i > j and (i+ j) is odd

0, elsewhere
,

and derivative of order k of φ(t) is given as

dkφ(t)

dtk
= Mkφ(t) = (M (1))kφ(t), (13)

where k is a positive integer.
Now fractional derivative of order ϑ of φ(t) is

Dϑφ(t) = t−ϑM (ϑ)φ(t), 0 < ϑ ≤ 1, (14)

where M (ϑ)=(m
(ϑ)
i,j ) is Lucas OM of order (n + 1) × (n + 1), which is lower

triangular matrix and it is given as

M (ϑ) =



0 0 0 · · · 0
...

...
...

...
ηϑ(dϑe, 0) ηϑ(dϑe, dϑe) 0 · · · 0

...
...

...
...

ηϑ(i, 0) · · · ηϑ(i, i) · · · 0
...

...
...

...
ηϑ(n, 0) ηϑ(n, 1) ηϑ(n, 2) · · · ηϑ(n, n)


. (15)
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The elements (mϑ
i,j) are given explicitly by

m
(ϑ)
ij =

{
ηϑ(i, j), if i ≥ dϑeand i ≥ j,
0, elsewhere,

,

where

ηϑ(i, j) =

i∑
k=dϑe

(i+k)even
(j+k)even

(−1)
k−j
2

(
k+2+j

2

)
k−j
2

δj
(
i−2+k

2

)
!(

i−k
2

)
!
(
k−j

2

)
! Γ(1− ϑ+ k)

. (16)

4 Numerical method to solve two-dimensional fractional
order diffusion model

Let us consider the following form of nonlinear model 2 as

c
0D

ϑ
t u(Y, t) = Θ

(∂2u(Y, t)

∂x2
,
∂2u(Y, t)

∂y2
,
du(Y, t)

dx
,
du(Y, t)

dy
, u(Y, t), g(Y, t)

)
,

(17)
and also the form of MT-TFDE model 3 as

q∑
i=1

di
c
0D

ϑi
t u(Y, t) = ω

(∂2u(Y, t)

∂x2
,
∂2u(Y, t)

∂y2
, g(Y, t)

)
, (18)

where 0 < ϑ ≤ 1,
under the given initial and boundary conditions as

u(x, y, 0) = ρ1(x, y),

u(0, y, t) = ρ2(y, t),

u(1, y, t) = ρ3(y, t),

u(x, 0, t) = ρ4(x, t),

u(x, 1, t) = ρ5(x, t).

(19)

To approximate u(Y, t) with Lucas polynomial, let us consider

u(Y, t) ∼= φT (t)Uψ(x, y).

The differentiation of order β(positive integer) of ψ(x, y) w.r.t. x and y are
given as
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dβψ(x, y)

dxβ
=
dβ(φ(x)⊗ φ(y))

dxβ
,

=
dβφ(x)

dxβ
⊗ φ(y),

= (M (β)φ(x))⊗ (Iφ(y)),

= (Mβ ⊗ I)(φ(x)⊗ φ(y),

= Mβ
xψ(x, y),

(20)

and

dβψ(x, y)

dyβ
=
dβ(φ(x)⊗ φ(y))

dyβ
,

= φ(x)⊗ dβφ(y)

dyβ
,

= (Iφ(x))⊗ (Mβφ(y)),

= (I ⊗Mβ)(φ(x)⊗ φ(y)),

= Mβ
y φ(x)⊗ φ(y),

= Mβ
y ψ(x, y),

(21)

where I is an identity matrix of order (n+ 1)× (n+ 1) and Mβ
x = (Mβ ⊗ I),

Mβ
y = (I ⊗Mβ).

The derivative of u(Y, t) of order β (positive integer) w.r.t. x and y are given
as

∂βu(Y, t)

∂xβ
∼=

∂β

∂xβ
φT (t)Uψ(x, y),

= φ(t)TU
∂β

∂xβ
ψ(x, y),

= φ(t)UMβ
xψ(x, y),

(22)

∂βu(Y, t)

∂yβ
∼=

∂β

∂yβ
φT (t)Uψ(x, y),

= φ(t)TU
∂β

∂yβ
ψ(x, y),

= φ(t)UMβ
y ψ(x, y),

(23)
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and derivative of u(Y, t) of order α, 0 < α < 1 w.r.t. t is given as

∂αu(Y, t)

∂tα
∼=

∂α

∂tα
φT (t)Uψ(x, y),

=

(
∂α

∂tα
φT (t)

)
Uψ(x, y),

=
(
t−αM (α)φ(t)

)T
Uψ(x, y)

= t−αφT (t)(Mα)TUψ(x, y).

(24)

The Residual of the model 2 is obtained by using Eqs.(19)-(24) as

R(x, y, t) = t−ϑφT (t)(Mϑ)TUψ(x, y)

−Θ
(
φ(t)UM2

xψ(x, y), φ(t)UM2
yψ(x, y), φ(t)UM (1)

x ψ(x, y), φ(t)UM (1)
y ψ(x, y), g(x, y, t)

)
,

(25)

with the prescribed conditions

φT (0)Uψ(x, y) = ρ1(x, y),

φT (t)Uψ(0, y) = ρ2(y, t),

φT (t)Uψ(1, y) = ρ3(y, t),

φT (t)Uψ(x, 0)) = ρ4(x, t),

φT (t)Uψ(x, 1) = ρ5(x, t).

(26)

By choosing the collocation points as xi = yi = ti = 2i−1
2n+1 ,we may collocate

the residual at (n− 1)× (n− 1)× n points, so that the residual is zero.

R(xi, yj , tk) = 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, 1 ≤ k ≤ n. (27)

Now collocating Eq.(26), we obtain (n+ 1)2 + 4n2 algebraic equations as

φT (0)Uψ(xi, yj) = ρ1(xi, yj), 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1

φT (tk)Uψ(0, yj) = ρ2(yj , tk), 1 ≤ j ≤ n, 1 ≤ k ≤ n
φT (tk)Uψ(1, yj) = ρ3(yj , tk), 1 ≤ j ≤ n, 1 ≤ k ≤ n
φT (tk)Uψ(xi, 0)) = ρ4(xi, tk), 1 ≤ i ≤ n, 1 ≤ k ≤ n
φT (tk)Uψ(xi, 1) = ρ5(xi, tk), 1 ≤ i ≤ n, 1 ≤ k ≤ n.

(28)

From Eqs.(27) and (28), we obtain total (n+1)3 algebraic equations those can
be solved by well known Newton’s method. Similarly the residual of model
3 is obtained by collocating (n − 1) × (n − 1) × n points and solved by the
Newton’s method. All the numerical computations will be done by taking help
of Wolfram Mathematica version 11.3.
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5 Numerical examples

In this section, the accuracy, efficiency and performance of the concerned nu-
merical technique are discussed. For this purpose, the concerned method is
applied on some problems which have already been solved analytically/ nu-
merically by other researchers and we have compared the results obtained by
our proposed scheme with the existing results through the maximum absolute
errors(MAE) defined by

En(Y, t) = |u(Y, t)− ũ(Y, t)|, (29)

where ũ(Y, t) and u(Y, t) are approximate and exact solutions respectively.

Example 5.1 Consider a two-dimensional FDE

c
0D

ϑ
t u(Y, t) =

∂2u(Y, t)

∂x2
+
∂2u(Y, t)

∂y2
−
(
∂u(Y, t)

∂x
+
∂u(Y, t)

∂y

)
+ g(Y, t), (30)

with

g(Y, t) = ex
(

1 +
t1−ϑ

Γ(2− ϑ)

)
,

under the following conditions

u(x, y, 0) = exy,

u(0, y, t) = t+ y,

u(1, y, t) = e(t+ y), (31)

u(x, 0, t) = ext,

u(x, 1, t) = ex(t+ 1),

having the exact solution as u(Y, t) = (t+ y)ex. The MAEs of Example 5.1
for ϑ = 0.4 and ϑ = 0.8 are shown in tabular forms.
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Table 1: The MAE for n = 8, 10 and ϑ = 0.4 at t = 0.5
Y E8(Y, 0.5) E10(Y, 0.5)

(0.1, 0.1) 1.06509× 10−10 1.53988× 10−13

(0.2, 0.2) 4.11712× 10−10 5.96634× 10−13

(0.3, 0.3) 9.25109× 10−10 1.34692× 10−12

(0.4, 0.4) 1.64009× 10−09 2.39120× 10−12

(0.5, 0.5) 2.53065× 10−09 3.70126× 10−12

(0.6, 0.6) 3.56142× 10−09 5.21760× 10−12

(0.7, 0.7) 4.67059× 10−09 6.87717× 10−12

(0.8, 0.8) 5.87935× 10−09 8.64508× 10−12

(0.9, 0.9) 6.09956× 10−09 9.84990× 10−12

Table 2: The MAE for n = 8, 10 and ϑ = 0.8 at t = 0.5
Y E8(Y, 0.5) E10(Y, 0.5)

(0.1, 0.1) 5.41911× 10−11 7.74936× 10−14

(0.2, 0.2) 2.23101× 10−10 3.20965× 10−13

(0.3, 0.3) 5.52441× 10−10 8.02469× 10−13

(0.4, 0.4) 1.08100× 10−09 1.57407× 10−12

(0.5, 0.5) 1.83223× 10−09 2.67963× 10−12

(0.6, 0.6) 2.81421× 10−09 4.12514× 10−12

(0.7, 0.7) 3.98735× 10−09 5.88463× 10−12

(0.8, 0.8) 5.36519× 10−09 7.91944× 10−12

(0.9, 0.9) 5.84315× 10−09 9.55636× 10−12

From Table 1 and Table 2, it is clear that the numerical solution of the Ex-
ample 5.1 by our proposed method is almost equal to exact solution for small
values of n. The maximum absolute error can be reduced with the increase in
n, which shows higher convergence rate of our proposed scheme as compared
to other existing methods.

Example 5.2 Consider the nonlinear diffusion equation

∂u(Y, t)

∂t
= ∇2u(Y, t) + u2(1− u), (32)
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under initial and boundary conditions

u(x, y, 0) =

[
1 + exp

(
x√
3

+
y√
6

)]−1

,

u(0, y, t) =

[
1 + exp

(
y√
6
− t

2

)]−1

,

u(1, y, t) =

[
1 + exp

(
1√
3

+
y√
6
− t

2

)]−1

, (33)

u(x, 1, t) =

[
1 + exp

(
x√
3

+
1√
6
− t

2

)]−1

,

u(x, 0, t) =

[
1 + exp

(
x√
3
− t

2

)]−1

,

whose analytical solution is u(Y, t) =
[
1 + exp

(
x√
3

+ y√
6
− t

2

)]−1

.

Table 3: The MAE for n = 8, 10 at t = 0.5
Y E8(Y, 0.5) E10(Y, 0.5)

(0.1, 0.1) 3.15237× 10−12 1.26565× 10−14

(0.2, 0.2) 1.11112× 10−12 4.62963× 10−14

(0.3, 0.3) 2.45729× 10−11 1.04083× 10−13

(0.4, 0.4) 4.23398× 10−11 1.80300× 10−13

(0.5, 0.5) 6.16443× 10−11 2.62845× 10−13

(0.6, 0.6) 7.84176× 10−11 3.31957× 10−13

(0.7, 0.7) 8.75495× 10−11 3.66429× 10−13

(0.8, 0.8) 8.59888× 10−11 3.59268× 10−13

(0.9, 0.9) 7.12742× 10−11 3.41727× 10−13

The above Table 3 shows the MAE between analytical results and numeri-
cal results. It is seen that for the nonlinear problem, the MAE between exact
solution and approximate solution is of order 10−12 and 10−14 for n = 8 and
n = 10 respectively which can be decreased on increasing the value of n.

Example 5.3 Consider the time fractional two-dimensional nonlinear dif-
fusion equation

c
0D

0.6
t u(Y, t) = ∇2u(Y, t) + u2(Y, t) + g(Y, t), (34)
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where

g(Y, t) = ey
(

t0.4

Γ(1.4)
− ey(t+ x)2 − (t+ x)

)
,

whose initial and boundary conditions can be obtained from the exact solution
as in Example 5.1
The above equation has the analytical solution as u(Y, t) = ey(t+x). Table 4
shows the MAE between analytical and numerical solutions.

Table 4: The MAE for n = 8, 10 at t = 0.5
Y E8(Y, 0.5) E10(Y, 0.5)

(0.1, 0.1) 1.48230× 10−10 2.14273× 10−13

(0.2, 0.2) 5.71009× 10−10 8.33666× 10−13

(0.3, 0.3) 1.27240× 10−09 1.86429× 10−12

(0.4, 0.4) 2.22245× 10−09 3.26139× 10−12

(0.5, 0.5) 3.35403× 10−09 4.93916× 10−12

(0.6, 0.6) 4.56775× 10−09 6.75149× 10−12

(0.7, 0.7) 5.71915× 10−09 8.53184× 10−12

(0.8, 0.8) 6.74699× 10−09 1.01736× 10−11

(0.9, 0.9) 6.53286× 10−09 1.11613× 10−11

Example 5.4 Consider the following MT-TFDE as

d1
c
0D

ϑ1
t u(Y, t) + d2

c
0D

ϑ2
t u(Y, t) = ∇u(Y, t) + g(Y, t), (35)

we determine the approximate solution of the above mentioned two-dimensional
MT-TFDE for d1 = 1,d2 = 0.35,ϑ1 = 0.60 and ϑ2 = 0.40 for the suitable
choice of g(Y, t) such that its exact solution is u(Y, t) = t sinx sin y, initial
and boundary conditions can be obtained from the analytical solution.

The MAE for different choices of x and y are depicted in Table 5
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Table 5: The MAE for n = 8, 10 at t = 0.5
Y E8(Y, 0.5) E10(Y, 0.5)

(0.1, 0.1) 2.93013× 10−11 3.30437× 10−14

(0.2, 0.2) 9.09550× 10−11 1.31839× 10−13

(0.3, 0.3) 2.07445× 10−10 3.01988× 10−13

(0.4, 0.4) 3.76958× 10−10 5.48950× 10−13

(0.5, 0.5) 6.04058× 10−10 8.81170× 10−13

(0.6, 0.6) 8.94985× 10−10 1.30523× 10−12

(0.7, 0.7) 1.24676× 10−09 1.82449× 10−12

(0.8, 0.8) 1.67331× 10−09 2.43866× 10−12

(0.9, 0.9) 1.77749× 10−09 2.93099× 10−12

From the above one can analyze that the approximate result obtained by
the presented approach is in nice agreement with the exact results.

Example 5.5 Considering q = 2, our model 2 is reduced in the following
MT-TFDE

d1
c
0D

ϑ1
t u(Y, t) + d2

c
0D

ϑ2
t u(Y, t) = ∇u(Y, t) + g(Y, t). (36)

We find out the approximate solution of the above MT-TFDE by using our
proposed method for d1 = 1, d2 = 1, ϑ1 = 0.15 and ϑ2 = 0.95 for the
proper choice of g(Y, t) so that its analytical solution is given as u(Y, t) =
sinx sin y (t3 + t2 + t+ 1) with the conditions obtained from exact solution.

The errors between the existing analytical and the approximate solution
by using our proposed approach are obtained for various values of x,y and
t = 0.5, which are incorporated in Table 6.

Table 6: The MAE for n = 8, 10 at t = 0.5
Y E8(Y, 0.5) E10(Y, 0.5)

(0.1, 0.1) 8.37133× 10−11 1.20706× 10−13

(0.2, 0.2) 3.33924× 10−10 4.81115× 10−13

(0.3, 0.3) 7.60437× 10−10 1.10353× 10−12

(0.4, 0.4) 1.38476× 10−09 2.00995× 10−12

(0.5, 0.5) 2.22477× 10−09 3.23391× 10−12

(0.6, 0.6) 3.30622× 10−09 4.80371× 10−12

(0.7, 0.7) 4.62109× 10−09 6.73306× 10−12

(0.8, 0.8) 6.22444× 10−09 9.01579× 10−12

(0.9, 0.9) 6.63281× 10−09 1.07920× 10−11
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From the above results one can say that he approach introduced in this
article produces excellent approximate results of the problems. Hence this
approach is considered as the best tool to deal with such types of problems.

6 Model validation

In this section, the solute concentration of the considered two dimensional
FRADE model 2 is calculated using the proposed method for various values
of ϑ and k for n = 2.
The variations of the solute concentration versus x and y are determined for
different fractional and integer values of ϑ. The variations in the solute con-
centration are also exhibited graphically for conservative and non-conservative
cases.

Figure 1: Plots of solute profile vs. x and y for non-conservative system with
sink term (k = −1) for various values of v.
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Figure 2: Plots of solute profile vs. x and y for conservative and non-
conservative systems for ϑ=1 at t=0.5.

The effects of solute profile for two-dimensional FRADE are shown in Fig.
1 for different values of ϑ. It is observed that on increasing the values of ϑ,
the concentration decreases with the presence of sink term.
The variations of solute concentration for the integer order (ϑ = 1) two-
dimensional RADE are shown through Fig. 2 for both the conservative and
non-conservative cases. It is clearly be observed that the concentration will
be higher and lower as compared to conservative system (k = 0) due to the
presence of source (k = 1) and sink (k = −1) terms respectively which is
physically relevant.
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7 Conclusion

In the present article a method is established to find the approximate solution
of two-dimensional nonlinear time fractional diffusion equation. The Lucas
polynomial and OM of Lucas polynomial are used in the method while finding
the solutions of the considered problems. The residual function is collocated at
the selected collocation points together with initial and boundary conditions
to get the unknowns. The efficiency of the proposed scheme is shown through
maximum absolute error while applying it on few existing problems. The
accuracy can be improved by increasing the terms of polynomial. The authors
are confident that the method can be applied to find the approximate solutions
of other types of two dimensional multi-term fractional order PDEs.
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