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Qualitative results in thermoelasticity of type
III for dipolar bodies

M. Marin, S. Vlase, A. Öchsner

Abstract

In our study we formulated the mixed initial boundary value problem
corresponding to the thermoelasticity of type III for bodies with dipo-
lar structure. In main section we approached four qualitative results
regarding the solutions for this problem. In two of these (in the first
two theorems) we obtained two results of uniqueness, proved in differ-
ent ways. Also, we proven two results which show that the solutions of
the considered problem depend continuously with respect to the supply
terms. We use different procedures in the two theorems on continuous
dependence, but we essentially rely on the auxiliary results from Sec-
tion 3 and Gronwall-type inequalities. It is important to emphasize that
all results are obtained by imposing on the basic equations and basic
conditions, average constraints that are common in the mechanics of
continuous solids.

1. Introduction

In our study we approach the thermoelasticity of type III for bodies having
a dipolar structure, starting from the theories proposed by Green and Naghdi
in [1-3].
Specific to this type of thermoelesticity is the consideration of a new inde-
pendent variable, denoted by θ, which is called the thermal displacement and
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which is introduced by means of the variation of the absolute temperature T ,
using the relation:

θ̇ = T. (1)

After the appearance of this thermoelasticity theory of type III, the researchers
have shown great interest in this theory. Many studies with this topic have
been published, among which we mention the works [4-7]. There are studies
that address the problem of the uniqueness of the solution of the mixed prob-
lem as well as the continuous dependence of the solutions, as we did in the
present study. But in other studies the bodies are generally isotropic, which
allows to apply the logarithmic convexity method or the Lagrange identity
method, both to obtain the uniqueness as well the continuous dependence re-
sults, see for instance, [8]. However, in the case of dipolar bodies approached
in the context of thermoelasticity of type III, there are no results either in
terms of uniqueness or in terms of continuous dependence.
It should be noted that this type of structure is a part of such called non-
classical theories, namely the theories of materials having microstructure. One
of the pioneers of these theories is Eringen (see, for instance, [9], [10]). The
dipolar structure has attracted the attention of many researchers, the impor-
tance of this type of structure can be deduced in the base of the large number
of published studies dedicated to this topic, of which we can mention [11-13].
We consider our study as a modest continuation of these concerns.
The plane of our study is as follows. In Section 2 we summarize the main
equations, the initial conditions and the boundary data of the mixed problem.
In Section 3 we prove some results, more precisely four inequalities of integral
type, useful for the basic results. Section 4 is devoted to the main results of
our paper last part of our study we prove the , namely two results on unique-
ness for the solution of the mixed problem and two theorems regarding the
continuous dependence of solutions with regards to the supply terms

2. Basic equations and conditions

Our study is dedicated to a dipolar body in the context of the thermoelas-
ticity of type III, as proposed by Green and Naghdi. This body is considered
by non-homogeneous and anisotropic which occupies a specific regular region
D, as a apart of the three-dimensional Euclidean physical space E3. The bor-
der of the domain D is denoted by ∂D and is assumed be piecewise a surface,
enough smooth. Let us denote by D̄ the closure of D and, of course, we have
D̄ = D ∪ ∂D. An orthonormal system of references is introduced and then
tensors and vectors have components with Latin subscripts over 1,2,3. The
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Einstein convention for summation is implied. A superposed dot for a func-
tion f means the partial derivative of f with respect the time variable and the
writing f, i is for partial derivative of f with respect to the spatial variable
xi. To characterize the behaviour of a dipolar thermoelastic we will use in our
study the following functions:

vk(t, x), φkl(t, x), T (t, x), (t, x) ∈ D × [0, t0),

that is, the displacement vector, the dipolar displacement vector and the ab-
solute temperature.
With the help of the variables vk(t, x), φkl(t, x), we can define the deforma-
tion tensors, having the components ekl, κkl and χijk, as well the thermal
displacement gradient of components αi, as follows:

ekl =
1

2
(vl,k + vk,l) , κkl = vk,l − φkl, χjkl = φkl,j , αk = θ,k. (2)

We consider the linear theory of the thermoelasticity of type III for dipolar
bodies. As such it is natural to take the internal specific energy is a form
with quadratic terms regarding its specific variables. Consider that in the
initial state of the body, the internal energy is e. According to the energy
conservation principle, we expand the function e in series and take into account
only the terms of first and second order.
Considering that the initial state of the body is free of charges, we can write
the internal energy is of the following form ((see [12])):

ρe =
1

2
Aklmneklemn +Dklmneklκmn + Fklmnreklχmnr +

+
1

2
Bklmnκklκmn +Gklmnrκklχmnr +

1

2
Ckljmnrχkljχmnr + (3)

+(Pklmekl+Qklmκkl+Rklnmχkln)αm+
1

2
Kmnαmαn+

1

2
cT 2.

As a consequence, the Helmholtz free energy H receives the form:

ρH =
1

2
Aklmneklemn +Dklmneklκmn + Fklmnreklχmnr +

+
1

2
Bklmnκklκmn +Gklmnrκklχmnr +

1

2
Ckljmnrχkljχmnr + (4)

+(Pklmekl+Qklmκkl+Rklnmχkln)αm+
1

2
Kmnαmαn−

−akleklT − bklκklT − ckljχkljT + dkαkT −
1

2
cT 2.

We will use this form of the Helmholtz free energy in the inequality of entropy
production in order to obtain the basic relations that characterize the the
thermoelasticity of type III for dipolar bodies, namely (see [15], [19]):
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- the motion equations:

(τkl + ηkl),l + ρfk = ρv̈k,

µjkl,j + ηjk + ρgjk = Ikrφ̈lr; (5)

- the equation of energy:

ρT0Ṡ = qm,m + ρr. (6)

By using the same entropy production inequality, we can also deduce the
constitutive relations. These relations are for the expression of the stress
tensors of stress as functions depending on the strain tensors. So, if we write
the elements of the tensors of stress as τkl, ηkl and µjkl, then the constitutive
equations give the connection between these tensors and the strain tensors ekl,
κkl, χjkl.
Our approach is based on specific technique that are used by Green, Rivlin in
paper [12], so that starting from the free energy of Helmholtz defined in (4)
we get the following constitutive relations:

τkl =
∂W

∂ekl
= Aklmnemn +Dmnklκmn + Fmnrklχmnr + Pklmαm − aklθ,

ηkl =
∂W

∂κkl
= Dklmnemn +Bklmnκmn +Gklmnrχmnr +Qklmαm − bklθ,

µjkl=
∂W

∂χjkl
=Fjklmnemn+Gmnjklκmn+Cjklmnrχmnr +Rjklmαm−cjklθ, (7)

S = −∂W
∂T

= aklekl + bklκkl + cjklχjkl − dmαm + cT,

that take place in cylinder D × [0, t0). By S we denoted the specific entropy
in unit mass.
For the components qi of the entropy flux vector we have the following con-
stitutive relation:

qm = Pklmekl +Qklmκkl +Rklnmχkln +Knmαn + dmT + Knmα̇n, (8)

where Knm is the heat conductivity tensor which is symmetric and satifies the
following dissipation inequality:

Knmα̇nα̇m ≥ 0. (9)

The semnifications of the notations which we have used in previous relations is
the following: ρ-the density of mass, supposed be constant; Ikl-the microiner-
tia, which is a symmetric tensor; fk-the external body forces; gjk-the external
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dipolar charges; r-the externalrate of supply of heat; Aklmn, Bklmn, ..., akl-
the constitutive coefficients that characterize the material properties of the
material from the elasticity point of view and which satisfy the relations of
symmetry that follows:

Aklmn = Alkmn = Amnkl, Cjklmnr = Cmnrjkl,

Bklmn = Bmnkl, Fjklmn = Fjklnm, Dklmn = Dklnm, (10)

Kmn = Knm, Pklm = Plkm, amn = anm, Kmn = Knm.

To simplify writing, in the following we will consider that the domaun D is
occupied by a centrosymmetric body.
Consequently, we have:

Pklm = Qklm = Rklnm = dm = 0. (11)

Considering the constitutive relations (7) and (8) and the kinematic equa-
tions (2), the basic equations (5) and (6) are transformed in system of partial
differential equations of the following form:

ρv̈k = [(Cklmn +Gklmn) vn,m + (Gmnij +Bklmn) (vn,m − φmn) +

+ (Fmnrij +Dklmnr)φnr,m − (akl + bkl) θ],l + ρfk,

Ikrφ̈lr=[Fjklmnvn,m+Dmnjkl (vn,m − φmn) +Akljmnrφnr,m − cjklθ],j+ (12)

+Gjkmnvm,n+Bjkmn(vn,m−φmn)+Djkmnrφnr,m−bjkθ + ρgkl,

cṪ = −
[
aklv̇l,k + bkl

(
v̇l,k − φ̇kl

)
+ cjklφ̇kl,j

]
+
(
KmnT, n+ KmnṪ , n

)
,m
.

Regarding the system of differential equations (12), we will construct a mixed
problem with boundary and initial data. For this purpose, we will add the
next boundary relations:

vk(t, x) = ṽk(t, x), (t, x) ∈ S1 × [0,∞), tl(t, x) = t̃l(t, x), (t, x) ∈ Sc1 × [0,∞),

φkl(t, x)= φ̃kl(t, x), (t, x)∈S2 ×[0,∞),mkl(t, x)=m̃kl(t, x), (t, x)∈Sc2 ×[0,∞), (13)

T (t, x) = T̃ (t, x), (t, x) ∈ S3 × [0,∞), q(t, x) = q̃(t, x), (t, x) ∈ Sc3 × [0,∞).

Here ṽk(t, x), t̃k(t, x), φ̃kl(t, x), m̃kl(t, x), T̃ (t, x) and q̃(t, x) are given and
regular functions on their domains of definition.
Also, we considered the surface tractions of components ti, the surface couple
of components µjk, and the heat flux q defined by

tl = (τkl + ηkl)nk, mkl = µjklnj , q = qknk,

where we denoted by n = (nk) the normal that is oriented outward of the
boundary ∂D.
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In (13) we used the surfaces S1, S2, S3 and their complements Sc1, Sc2, Sc3
which are subsets of the surfaces ∂D which meet the conditions:

S1 ∪ Sc1 = S2 ∪ Sc2 = S3 ∪ Sc3 = ∂D,

S1 ∩ Sc1 = S2 ∩ Sc2 = S3 ∩ Sc3 = ∅.

We also consider the initial conditions:

vk(0, x) = v0
k(x), v̇k(0, x) = v1

k(x), φkl(0, x) = φ0
kl(x),

φ̇kl(0, x) = φ1
kl(x), T (0, x) = T 0(x), Ṫ (0, x) = T 1(x), x ∈ D̄. (14)

Here the functions v0
k(x), v1

k(x), φ0
kl(x), φ1

kl(x), T 0(x) and T 1(x) are continu-
ous and prescribed in their domains of definition and are in accordance with
relations (13) on the corresponding subsurfaces of ∂D.
In the following we will use the notation P for the mixed problem consists
of the system of equations (12), the boundary conditions (13) and the initial
conditions (14).

3. Auxiliary results

First, we will establish some estimations regarding the solutions u = (vk, φkl, T )
of the mixed problem P.

Proposition 1.. Suppose that the array u = (vk, φkl, T ) satisfies the mixed
problem P. Then, we have the following identity:

ρfkv̇k + Iklgksφ̇ls + ρrT +
[
(τkl + ηkl) v̇k + µjklφ̇jk + qlT

]
,l

=

∂

∂s

(
1

2
ρv̇kv̇k + Ijkφ̇jmφ̇km + ρe

)
+ Kmnα̇mα̇n. (15)

Proof. This identity is obtained by direct calculations, taking into account
the equations of motion (5), the energy equation (6) and the expression of the
internal energy e which is defined in (3).
In the following we will have some integrals for which the integration domain
is of the form D(t). This means that the evaluation of the quantity under
integral is made at time t.
As a measure of the deformation, we will can use the following function:

M(t) =

∫
D(t)

(
1

2
ρv̇kv̇k + Ijkφ̇jmφ̇km + ρe

)
dV +

+

∫ t

0

∫
D(τ)

Kmnα̇mα̇ndV dτ. (16)
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In the following proposition we will prove a conservation law relative to the
measure defined (16).

Proposition 2.. The following conservation law takes place:

M(t)−M(0) =

∫ t

0

∫
D(τ)

(
ρfkv̇k + Iklgksφ̇ls + ρrT

)
dV dτ +

+

∫ t

0

∫
∂D(τ)

[
(τkl + ηkl) v̇knl + µjklφ̇jknl + qlTnl

]
dAdτ. (17)

Proof. This important conservation law can be immediately obtained
by integrating the identity (15) on the cylinder [0, t] × D(t) and using the
divergence theorem and the initial conditions (14).
We can prove the next results only if we impose some conditions. So, we
suppose that c, which is the specific heat, is strictly positive, the mass density
ρ is strictly positive, the heat conductivity tensor Kmn is positive definite and
the internal energy e is positive, that is:

c > 0, ρ > 0;

Aklmnxklxmn + 2Dklmnxklymn + 2Fklmnrxklzmnr +Bklmnyklymn+

+2Gklmnryklzmnr+Ckljmnrzkljzmnr+2 (Pklmxkl+Qklmykl+Rklnmzkln)um+ (18)

+Kmnumun+cw2 ≥ 0, ∀xmn = xnm, ymn, zmnr, um, w;

Kmnξmξn ≥ k0ξmξm, ∀ξm.

Here we denoted by k0 an appropriate positive constant which is related to
the minimum eigenvalue of the tensor Kmn.
The next two inequalities are useful in proving the main results.

Proposition 3.. Assume that αm(t, x) is a function of class C1 regarding the
time variable t and satisfies the condition:

αm(0, x) = 0, ∀x ∈ D̄. (19)

Then we can find a constant b1 > 0 such that it is fulfilled the next inequality:∫ t

0

∫
D(τ)

Kmnα̇mα̇ndV dτ ≥ b1
∫
D(t)

KmnαmαndV, ∀t ≥ 0. (20)

Proof. First, because the function αm(t, x) is of class C1, regarding the
variable t, based on (19), we can find t1 > 0 so that:

αm(t, x) = 0, ∀(t, x) ∈ [0, t1]× D̄. (21)
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We will prove the inequality (20) by reducing it to the absurd.
With other words, we suppose that the inequality is false on the interval
(t1, t2), t2 > t1, i.e.∫ t

0

∫
D(τ)

Kmnα̇mα̇ndV dτ < b1

∫
D(t)

KmnαmαndV, ∀t ∈ (t1, t2) , (22)

such that we can deduce that:∫
D(t)

KmnαmαndV > 0, ∀t ∈ (t1, t2) . (23)

Also, taking into account (21) and the Chauchy-Schwarz inequality, we deduce:∫
D(t)

KmnαmαndV =

∫
D(t)

KmnαmαndV + 2

∫ t

t1

∫
D(τ)

Kmnα̇mαndV dτ ≤

≤ 2

(∫ t

t1

∫
D(τ)

Kmnα̇mα̇ndV dτ

)1/2(∫ t

t1

∫
D(τ)

KmnαmαndV dτ

)1/2

,

and from this we obtain a Gronwall-type inequality:∫
D(t)

KmnαmαndV < 4b1

∫ t

t1

∫
D(τ)

KmnαmαndV dτ, ∀t ∈ (t1, t2) . (24)

If we derive in (24), we obtain

d

dt

(∫ t

t1

∫
D(τ)

KmnαmαndV dτ

)
≤ 2b1

∫
D(t)

KmnαmαndV d,

from where we arrive to the conclusion that:∫ t

t1

∫
D(τ)

KmnαmαndV dτ = 0,

such that, based on (18)3, we contradicted (23).
Given the start of the demonstration, we deduce that the inequality (20) is
true.

Proposition 4.. For any solution u = (vk, φkl, T ) of the initial boundary
value problem P, then takes place the next inequality:∫

D(t)

[Aklmneklemn + 2Dklmneklκmn + 2Fklmnreklχmnr+

+Bklmnκklκmn + 2Gklmnrκklχmnr + Ckljmnrχkljχmnr + (25)

+2 (Pklmekl+Qklmκkl+Rklnmχkln)αm+Kmnαmαn] dV +

+2

∫ t

t1

∫
D(τ)

Kmnα̇mα̇ndV dτ ≥ 0.
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Proof. Let us consider the aritmethic-geometric mean inequalities in the
following form:

ab ≤ 1

2

(
a2

p2
+ p2b2

)
,

for suitable chosen parameters p.
We will this inequality for each product from the expression

(Pklmekl+Qklmκkl+Rklnmχkln)αm

that appears in (25).
By conveniently choosing the parameters p, with this inequality and the Cauchy-
Schwarz inequality, we can raise this product with terms in which only the
elasticity tensors appear. In this way, we find the positive constants C1 and
C2 for which we have:∫

D(t)

[Aklmneklemn + 2Dklmneklκmn + 2Fklmnreklχmnr+

+Bklmnκklκmn + 2Gklmnrκklχmnr + Ckljmnrχkljχmnr +

+2 (Pklmekl+Qklmκkl+Rklnmχkln)αm+Kmnαmαn] dV +

+2

∫ t

t1

∫
D(τ)

Kmnα̇mα̇ndV dτ ≥ (26)

≥ C1

∫
D(t)

[Aklmneklemn + 2Dklmneklκmn+

+2Fklmnreklχmnr +Bklmnκklκmn + 2Gklmnrκklχmnr +

+Ckljmnrχkljχmnr] dV + C2

∫
D(t)

KmnαmαndV.

If we take into account the hypotheses (18), from (26) the desired inequlity
(25) is obtained and the proof of proposition is completed.

4. Main results

Our following main results are based, for the most part, on the auxiliary results
from previous section. In the first two theorems we prove in two different ways
the uniqueness of the solution of the mixed initial boundary value problem P.

Theorem 1.. We assume that the hypotheses (18) are satisfied. Then the
mixed problem P admits only one solution.

Proof. Since the problem P is linear, the difference of its two supposed
solutions is also a solution, but which correspond to null initial data and
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homogeneous boundary conditions. Then, based on the proposition 2, we
deduce:∫
D(t)

(
1

2
ρv̇kv̇k + Ijkφ̇jmφ̇km + ρe

)
dV +

∫ t

0

∫
D(τ)

Kmnα̇mα̇ndV dτ = 0, (27)

so that, considering the hypotheses (18), we obtain:

v̇m(t, x) = 0, φ̇mn(t, x) = 0, ∀(t, x) ∈ [0,∞)× D̄, (28)

and from this we deduce

vm(t, x) = 0, φmn(t, x) = 0, ∀(t, x) ∈ [0,∞)× D̄, (29)

because the initial data are null.
On the other hand, if we take into account Eqs. (16), (27) and (28), we are
led to the identity:∫
D(t)

1

2

(
cT 2 +Kmnαmαn

)
dV +

∫ t

0

∫
D(τ)

Kmnα̇mα̇ndV dτ = 0, ∀(t, x) ∈ [0,∞)× D̄,

from where, based on the hypothese (18), we deduce

T (t, x) = 0, ∀(t, x) ∈ [0,∞)× D̄. (30)

Considering (29) and (30), the proof of Theorem 1 is complete.

Theorem 2.. We assume that the hypotheses (18) are satisfied. Then the
mixed problem P admits only one solution.

Proof. The result can be obtained as a consequence of the Proposition 3
and the Proposition 4. The difference of two solutions of the problem P is also
a solution, but corresponding to null initial data and homogeneous boundary
conditions. As a consequence, we have

M(t) = 0, ∀t ∈ [0,∞),

the function M(t) being defined in (16).
Based on (16), (18)-(20) and (25), we get(

v̇k, φ̇kl, T
)

(t, x) = 0, ∀(t, x) ∈ [0,∞)× D̄,

so that, considering the null initial data, we deduce

(vk, φkl, T ) (t, x) = 0, ∀(t, x) ∈ [0,∞)× D̄,

and this ends the proof of Theorem 2.
Our next main results are regarding the continuous dependence of a solution
of the mixed problem P regarding the supply terms.
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Theorem 3.. We assume that the hypotheses (18) are satisfied and consider
the homogeneous form of the boundary conditions (13). Then, for any solution
(vk, φkl, T ) of the mixed problem P, we have the following estimate:

[M(t)]1/2≤ [M(0)]1/2+

[
1

2

∫ t

0

∫
D(τ)

ρ

(
fkfk+gklgkl+

1

c
r2

)
dV dτ

]1/2

,∀t≥0. (31)

Proof. Taking into account the null boundary data and using the Cauchy-
Schwarz inequality in (17), we deduce

M(t) ≤M(0) +

+

∫ t

0

(∫
D(τ)

ρ

(
fkfk+gklgkl+

1

c
r2
)
dV

)1
2
(∫

D(τ)

(
ρv̇kv̇k+Iklφkmφlm+ cT 2)dV)1

2

dτ (32)

If we take into account (16) and (19), from (32) we deduce the following
Gronwall inequality

M(t) ≤M(0) +

∫ t

0

(
2M(τ)

∫
D(τ)

ρ

(
fkfk+gklgkl+

1

c
r2

)
dV

)1/2

dτ. (33)

Now, we can use Gronwall’s lemma so that we arrive at the estimate (31),
which concludes the proof of the theorem.
Before we approach our last result, we must specify that the result is valid only
in the situation where S3 = ∂D, as such Sc3 = ∅, that is, the whole boundary
surface is thermally insulated.
Let us denote by P0 the particular form of P which respect this situation.
According to Eqs. (5) and (6), the supply therms are (fk, gkl, r).
To simplify writing, we introduce the following notations:

F (t) =

(∫ t

0

∫
D(τ)

ρ (fkfk+gklgkl) dV dτ

) 1
2

,

R(t) =

∫ t

0

∫ s

0

∫
D(τ)

ρ2r2dV dτds, (34)

G(t) = 2R(t) + 2

(∫ t

0

F (τ)dτ

)2

,

w =
√

max
D̄
|c|.

Theorem 4.. We assume that the hypotheses (18) are satisfied and consider
the homogeneous form of the initial conditions (13). If (vk, φkl, T ) is a specific



Qualitative Results in Thermoelasticity of Type III for Dipolar Bodies 138

solution of the particular problem P0 for which the following conditions are
met: ∫ ∞

0

e−
t
w2G(t)dt <∞,

lim
t→∞

e−
t

2w2

∫ t

0

M(τ)dτ = 0, (35)

then we obtain the next estimation:

0 ≤
∫ t

0

M(τ)dτ ≤ 1

2w2

∫ ∞
t

e−
τ−t
2w2G(τ)dτ,∀t ≥ 0. (36)

Proof. First, taking into account the hypotheses (18), fom (16) and (26)
we find:∫ t

0

M(τ)dτ ≥ 1

2

∫
D(t)

(
ρv̇kv̇k + Ijkφ̇jmφ̇km

)
dV +

+
1

2

∫ t

0

∫ s

0

∫
D(τ)

Kmnα̇mα̇ndV dτds ≥ 0, ∀t ≥ 0. (37)

Also,∫ t

0

M(τ)dτ = 0, ∀t ≥ 0⇒ (vk, φkl, T ) (t, x) = 0, ∀(t, x) ∈ [0,∞)× D̄. (38)

Considering (16) and (26) we can obtain the estimate:

M(t) ≥ 1

2

∫ t

0

∫
D(τ)

T 2ddV τ. (39)

But we considered the case of null initial and boundary data, so that from
(19) we can write∫ t

0

M(τ)dτ) =
1

2

∫ t

0

∫
D(τ)

−cT 2dV dτ +

+

∫ t

0

∫ s

0

∫
D(τ)

(
ρfkv̇k + Iklgksφ̇ls + ρrT

)
dV dτds, ∀t ≥ 0. (40)

Here, we take the aritmethic-geometric mean inequalities in the same form as
that proposed in Proposition 4, the Cauchy-Schwarz inequality and the the
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estimate (39) so that we obtain:∫ t

0

M(τ)dτ) ≤ w2M(t) +
1

4

∫ t

0

∫ s

0

∫
D(τ)

Kmnα̇mα̇ndV dτds+R(t) +

+

∫ t

0

F (s)

(∫ s

0

∫
D(τ)

(
ρv̇kv̇k + Ijkφ̇jmφ̇km

)
dV dτ

)1/2

ds,

that can be reformulated as:∫ t

0

M(τ)dτ) ≤ w2M(t) +
1

4

∫ t

0

∫ s

0

∫
D(τ)

Kmnα̇mα̇ndV dτds+R(t) +

+

(∫ t

0

∫
D(τ)

(
ρv̇kv̇k + Ijkφ̇jmφ̇km

)
dV dτ

)1/2 ∫ t

0

F (τ)dτ. (41)

From (41), by using the aritmethic-geometric mean inequalities, we deduce∫ t

0

M(τ)dτ) ≤ w2M(t) +R(t) +

+
1

4

∫ t

0

∫
D(τ)

(
ρv̇kv̇k + Ijkφ̇jmφ̇km

)
dV dτ + (42)

+
1

4

∫ t

0

∫ s

0

∫
D(τ)

Kmnα̇mα̇ndV dτds.

If we analyze the estimates (37) and (42) we come to the conclusion that:∫ t

0

M(τ)dτ) ≤ w2M(t) +G(t), ∀t ≥ 0,

or, in another form, we have

d

dt

(
e−

t
2w2

∫ t

0

M(τ)dτ +
1

2w2

∫ t

0

e−
τ

2w2G(τ)dτ

)
≥ 0, ∀t ≥ 0. (43)

Now, we take into account (35)2 as such from (42) it follows that for all t ≥ 0
we deduce

e−
t

2w2

∫ t

0

M(τ)dτ +
1

2w2

∫ t

0

e−
τ

2w2G(τ)dτ ≤

≤ 1

2w2

∫ ∞
0

e−
τ

2w2G(τ)dτ,

and from here we arrive at the estimate (36), and the theorem is demonstrated.
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5. Conclusions

We have considered the initial boundary value problem specific to the ther-
moelasticity of type III for dipolar materials. We then proven four ancillary
results, namely four integral inequalities, in the four propositions of the study.
In section ”Main results” we approached four qualitative results regarding the
solutions of the above proposed problem. In two of these (in the first two the-
orems) we obtained two results of uniqueness, proved in different ways. Also,
we proven two results which show that the solutions of the considered prob-
lem depend continuously with respect to the supply terms. We use different
procedures in the two theorems on continuous dependence, but we essentially
rely on the auxiliary results from Section 3 and Gronwall-type inequalities. It
is important to emphasize that all results are obtained by imposing on the
basic equations and basic conditions, average constraints that are common in
the mechanics of continuous solids.
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