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Invariance property of a five matrix product
involving two generalized inverses

Bo Jiang, Yongge Tian

Abstract

Matrix expressions composed by generalized inverses can generally
be written as f(A−

1 , A
−
2 , . . . , A

−
k ), where A1, A2, . . . , Ak are a family of

given matrices of appropriate sizes, and (·)− denotes a generalized in-
verse of matrix. Once such an expression is given, people are primarily
interested in its uniqueness (invariance property) with respect to the
choice of the generalized inverses. As such an example, this article de-
scribes a general method for deriving necessary and sufficient conditions
for the matrix equality A1A

−
2 A3A

−
4 A5 = A to always hold for all gener-

alized inverses A−
2 and A−

4 of A2 and A4 through use of the block matrix
representation method and the matrix rank method, and discusses some
special cases of the equality for different choices of the five matrices.

1 Introduction

Throughout this note, Cm×n denotes the collection of all m × n complex
matrices, r(A), R(A), and N (A) denote the rank, the range, and the null
space of a matrix A ∈ Cm×n, respectively; Im denotes the identity matrix of
order m, [A, B] denotes a row block matrix consisting of A and B. We next
introduce the definition and notation of generalized inverses of matrix. The
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Moore–Penrose inverse of A ∈ Cm×n, denoted by A†, is the unique matrix
X ∈ Cn×m satisfying the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA. (1)

A matrix X is called a {i, . . . , j}-generalized inverse of A, denoted by A(i,...,j),
if it satisfies the ith,. . . , jth equations in (1). The collection of all {i, . . . , j}-
generalized inverses of A is denoted by A{i, . . . , j}. A matrix X is called a
generalized inverse of A if it satisfies AXA = A, and is denoted by A−.

One of the principal problems in the theory of matrix algebra is to study
various matrix-valued functions from theoretical and applied point of view,
including the establishment of matrix equations and identities that involve un-
known matrices. In [6], we presented some standard algebraic procedures for
deriving the invariance properties of various multilinear matrix-valued func-
tions (MMVFs). As examples, we recently have concentrated our efforts on
understanding the uniqueness (invariance property) of the following MMVFs

f(X1, . . . , Xk) = (A1 + B1X1C1)(A2 + B2X2C2) · · · (Ak + BkXkCk), (2)

g(X1, Y1, . . . , Xk, Yk) = (A1 + B1X1C1 + D1Y1E1) · · · (Ak + BkXkCk + DkYkEk),
(3)

and have constructed necessary and sufficient conditions in block matrix forms
for some special cases of f(X1, . . . , Xk) = A and g(X1, Y1, . . . , Xk, Yk) = A
to hold respectively for all variable matrices X1, . . ., Xk, Y1, . . ., Yk, which
we denote by f(X1, . . . , Xk) ≡ A and g(X1, Y1, . . . , Xk, Yk) ≡ A associated
with (2) and (3), respectively. The results obtained can be used to estab-
lish various specified matrix identities that involve multiple variable matrices,
including the characterizations of various complicated matrix equalities that
involve matrices and their generalized inverses.

Recall that matrix expression that involves generalized inverses can gener-

ally be written as f(A
(i1,...,j1)
1 , A

(i2,...,j2)
2 , . . . , A

(ik,...,jk)
k ), where A1, A2, . . . , Ak

are a family of given matrices of appropriate sizes. The invariance property
of this matrix expression can be formulated as the following matrix iden-

tity problem f(A
(i1,...,j1)
1 , A

(i2,...,j2)
2 , . . . , A

(ik,...,jk)
k ) ≡ A for the generalized

inverses. Especially, people are interested in the uniqueness of matrix prod-
ucts composed by matrices and generalized inverses (cf. [1, 4, 6, 14, 16]). One
concrete example of matrix identities that involves a product of five matrices
and their generalized inverses is given by

A1A
−
2 A3A

−
4 A5 ≡ A, (4)

where A1 ∈ Cm1×m2 , A2 ∈ Cm3×m2 , A3 ∈ Cm3×m4 , A4 ∈ Cm5×m4 , and A5 ∈
Cm5×m6 , and A ∈ Cm1×m6 are given matrices. The matrix identity problem
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in (4) and some of its special cases occur in reverse order law problems for
generalized inverses, such as, (AB)− = B−A−, (ABC)− = (BC)−B(AB)−,
etc. Thus the work is indeed meaningful and inclusive. It is easy to figure out
that we cannot directly give any simple and explicit necessary and sufficient
conditions for (4) to hold under general assumptions. In this note, we shall
solve this problem using analytical formulas of generalized inverses, multilinear
matrix identities, as well as matrix rank formulas. Some special cases of (4)
in applications will also be discussed.

Note from the definitions of generalized inverses of a matrix that they are
in fact defined to be (common) solutions of some matrix equations. Thus
analytical expressions of generalized inverses of matrices can be written as
certain matrix-valued functions with one or more variable matrices. In fact,
analytical formulas of generalized inverses of matrices and their functions are
important issues and tools in matrix analysis. For instance, the basic formula
in the following lemma can be found, e.g., in [2, 3, 9].

Lemma 1.1. Let A ∈ Cm×n. Then the general expression of A− of A can be
written as

A− = A† + FAU + V EA, (5)

where EA = Im −AA† and FA = In −A†A, and U, V ∈ Cn×m are arbitrary.

In order to simplify matrix expressions and matrix equalities associated
with (4), we need to use the following rank formulas and their consequences.

Lemma 1.2 ( [8]). Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n, and D ∈ Cl×k.
Then

r[A, B] = r(A) + r(EAB) = r(B) + r(EBA), (6)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (7)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC), (8)

r

[
A B
C D

]
= r(A) + r

[
0 EAB

CFA D − CA†B

]
. (9)

In particular, the following results hold.

(a) r[A, B] = r(A)⇔ R(B) ⊆ R(A) ⇔ AA†B = B ⇔ EAB = 0.

(b) r

[
A
C

]
= r(A)⇔ R(C∗) ⊆ R(A∗) ⇔ CA†A = C ⇔ CFA = 0.
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(c) r

[
A B
C 0

]
= r(B) + r(C) ⇔ EBAFC = 0.

(d) r

[
A B
C D

]
= r(A)⇔ R(B) ⊆ R(A), R(C∗) ⊆ R(A∗), and CA†B = D.

Lemma 1.3 ( [10]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k.
Then

r(D − CA†B) = r

[
A∗AA∗ A∗B
CA∗ D

]
− r(A). (10)

In particular,

r(D − CA†B) = r

[
AA∗ B
CA∗ D

]
− r(A) if R(B) ⊆ R(A), (11)

r(D − CA†B) = r

[
A∗A A∗B
C D

]
− r(A) if R(C∗) ⊆ R(A∗). (12)

We shall use the following two simple facts:

R(A1) = R(A2) and R(B1) = R(B2)⇒ r[A1, B1] = r[A2, B2], (13)

R(A) ⊆ R(B) and r(A) = r(B)⇒ R(A) = R(B), (14)

and use the following known result to approach the matrix equality problem
in (4).

Lemma 1.4 ( [6]). The bilinear matrix equation

M1(A1 + B1X1 + Y1C1)M2(A2 + B2X2 + Y2C2)M3 = M (15)

holds for all matrices X1, X2, Y1, and Y2, namely, (15) is a matrix identity,
if and only if one of the following six block matrix equalities holds:

(i) [M, M1] = 0, (ii)

[
M
M3

]
= 0, (iii)

[
M 0
0 M2

]
= 0,

(iv)

[
M M1A1M2 M1B1

0 C1M2 0

]
= 0, (v)

 M 0
M2A2M3 M2B2

C2M3 0

 = 0,

(vi)

M1A1M2A2M3 −M M1A1M2B2 M1B1

C1M2A2M3 C1M2B2 0
C2M3 0 0

 = 0.
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2 Main results

To understand the matrix identity in (4), we need first to convert it into the
following bilinear matrix equation

A1A
−
2 A3A

−
4 A5 = A1(A†2 + FA2

U1 + U2EA2
)A3(A†4 + FA4

V1 + V2EA4
)A5 = A,

(16)

where U1, U2 ∈ Cm2×m3 and V1, V2 ∈ Cm4×m5 are unknown matrices. Ap-
parently (16) is a special case of (15). Hence, we can deduce necessary and
sufficient conditions for (16) to always hold from Lemma 1.4 and a variety of
algebraic matrix calculations.

Theorem 2.1. Let Ai and A be as given in (4), i = 1, . . . , 5. Then the fol-
lowing four statements are equivalent:

(a) A1A
−
2 A3A

−
4 A5 = A holds for all A−2 and A−4 , i.e., A1A

−
2 A3A

−
4 A5 ≡ A.

(b) A1A
−
2 A3A

−
4 A5 is invariant with respect to the choice of A−2 and A−4 , and

A = A1A
†
2A3A

†
4A5.

(c) One of the following six assertions holds:

(i) A1 = 0 and A = 0.

(ii) A3 = 0 and A = 0.

(iii) A5 = 0 and A = 0.

(iv) A = 0, A1A
†
2A3 = 0, R(A∗1) ⊆ R(A∗2), and R(A3) ⊆ R(A2).

(v) A = 0, A3A
†
4A5 = 0, R(A∗3) ⊆ R(A∗4), and R(A5) ⊆ R(A4).

(vi) A = A1A
†
2A3A

†
4A5, R(A∗1) ⊆ R(A∗2), R(A5) ⊆ R(A4),

R[(A1A
†
2A3)∗] ⊆ R(A∗4), R(A3A

†
4A5) ⊆ R(A2), and

EA2A3FA4 = 0.

(d) One of the following six assertions holds:

(i) A1 = 0 and A = 0.

(ii) A3 = 0 and A = 0.

(iii) A5 = 0 and A = 0.

(iv) A = 0 and r

[
A2 A3

A1 0

]
= r(A2).

(v) A = 0 and r

[
A4 A5

A3 0

]
= r(A4).
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(vi) A = A1A
†
2A3A

†
4A5, R([ 0, A1]∗) ⊆ R

([
A3 A2

A4 0

])∗
,

R

[
0
A5

]
⊆ R

[
A3 A2

A4 0

]
, and r

[
A3 A2

A4 0

]
= r(A2) + r(A4).

Proof. The equivalence of (a) and (b) follows from setting A−2 = A†2 and

A−4 = A†4 in (16).
Applying Lemma 1.4 to (16), we see that (16) always holds for all U1, U2,

V1, and V2 if and only if one of the following six equalities holds

[A, A1] = 0,

[
A
A5

]
= 0,

[
A 0
0 A3

]
= 0, (17)

[
A A1A

†
2A3 A1FA2

0 EA2
A3 0

]
= 0,

 A 0

A3A
†
4A5 A3FA4

EA4A5 0

 = 0, (18)

A1A
†
2A3A

†
4A5 −A A1A

†
2A3FA4 A1FA2

EA2A3A
†
4A5 EA2A3FA4 0

EA4
A5 0 0

 = 0. (19)

Expanding the three equalities in (18) and (19) and applying Lemma 1.2(a)
and (b) lead to the six statements in (c).

The equivalence of (iv) of (c) and (iv) of (d), as well as the equivalence of
(v) of (c) and (v) of (d) follow from Lemma 1.2(d). By Lemma 1.2(c),

r

[
A3 A2

A4 0

]
= r(A2) + r(A4)⇔ EA2

A3FA4
= 0, (20)

establishing the equivalence of the last term in (vi) of (c) and the last rank
equality in (vi) of (d). By (20),

r

([
A3 A2

A4 0

][
A∗4 0
0 Im2

])
= r

[
A3A

∗
4 A2

A4A
∗
4 0

]
= r

[
0 A2

A4A
∗
4 0

]
= r(A2) + r(A4) = r

[
A3 A2

A4 0

]
, (21)

r

([
A∗3 A∗4
A∗2 0

][
A2 0
0 Im5

])
= r

[
A∗3A2 A∗4
A∗2A2 0

]
= r

[
0 A∗4

A∗2A2 0

]
= r(A2) + r(A4) = r

[
A∗3 A∗4
A∗2 0

]
. (22)

Applying (14) to (21) and (22) yields

R

[
A3A

∗
4 A2

A4A
∗
4 0

]
= R

[
A3 A2

A4 0

]
, R

[
A∗3A2 A∗4
A∗2A2 0

]
= R

[
A∗3 A∗4
A∗2 0

]
. (23)
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Applying (6) and (7) to the {1,2}-block A1A
†
2A3FA4 and {2,1}-block

EA2
A3A

†
4A5 in (19) and simplifying, respectively, we obtain

r(A1A
†
2A3FA4) = r

[
A4

A1A
†
2A3

]
− r(A4) = r

([
0
A1

]
A†2A3 +

[
A4

0

])
− r(A4)

= r

A∗2A2 A∗2A3

0 A4

A1 0

− r(A2)− r(A4) (by R(A∗1) ⊆ R(A∗2) and (12))

= r

A3 A2

A4 0
0 A1

− r

[
A3 A2

A4 0

]
(by (13), (20), and (23)), (24)

r(EA2A3A
†
4A5) = r[A2, A3A

†
4A5]− r(A2) = r([A2, 0] + A3A

†
4[ 0, A5])− r(A2)

= r

[
A4A

∗
4 0 A5

A3A
∗
4 A2 0

]
− r(A2)− r(A4) (by R(A5) ⊆ R(A4) and (11))

= r

[
A3 A2 0
A4 0 A5

]
− r

[
A3 A2

A4 0

]
(by (13), (20), and (23)). (25)

Setting both sides of (24) and (25) equal to zero and applying Lemma 1.2(a)
and (b) lead to the second and third range inclusions in (vi) of (d), respectively.

Various consequences can be derived from Theorem 2.1 on invariance prop-
erties of quintuple matrix products involving two generalized inverses. In par-
ticular, the rank and range formulas can be simplified further when the five
matrices are given in certain specified forms. We next give some direct conse-
quences of Theorem 2.1.

Corollary 2.1. Let A1 ∈ Cm1×m2 , A2 ∈ Cm3×m2 , A3 ∈ Cm4×m3 , A4 ∈
Cm4×m5 , and A ∈ Cm1×m5 . Then the following four statements are equivalent:

(a) A1A
−
2 A
−
3 A4 ≡ A.

(b) A1A
−
2 A
−
3 A4 is invariant with respect to the choice of A−2 and A−3 and

A = A1A
†
2A
†
3A4.

(c) One of the following three assertions holds:

(i) A1 = 0 and A = 0.

(ii) A4 = 0 and A = 0.

(iii) A = A1A
†
2A
†
3A4, R(A∗1) ⊆ R(A∗2), R(A4) ⊆ R(A3), R[(A1A

†
2)∗] ⊆

R(A∗3), R(A†3A4) ⊆ R(A2), and EA2FA3 = 0.
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(d) One of the following three assertions holds:

(i) A1 = 0 and A = 0.

(ii) A4 = 0 and A = 0.

(iii) A = A1A
†
2A
†
3A4, R(A∗1) ⊆ R[(A3A2)∗], R(A4) ⊆ R(A3A2), and

N (A3) ⊆ R(A2).

The equivalence of (a) and (c) in Corollary 2.1 was established in [1, Theo-
rem]; the equivalence of (b) and (c) in Corollary 2.1 was established in [7, The-
orem 5].

Corollary 2.2. Let A1 ∈ Cm1×m2 , A2 ∈ Cm1×m3 , and A3 ∈ Cm4×m3 be three
nonzero matrices. Then A−1 A2A

−
3 is invariant with respect to the choice of

A−1 and A−3 if and only if r(A1) = m2, r(A3) = m4, R(A2) ⊆ R(A1), and
R(A∗2) ⊆ R(A∗3).

Two well-known mixed reverse-order laws for the matrix products AB and
ABC are given by

(AB)− = B−A−, (ABC)− = (BC)−B(AB)−. (26)

Some special forms of (26) were approached in [5, 10, 13, 15]. Concerning
the invariance properties of the products ABB−A−AB, (BC)−B(AB)− and
ABC(BC)−B(AB)−ABC, we are able to derive from Theorem 2.1 the fol-
lowing consequences.

Corollary 2.3 ( [6]). Let A ∈ Cm×n and B ∈ Cn×p. Then ABB−A−AB ≡
AB ⇔ ABB−A−AB ≡ ABB†A†AB ⇔ AB = 0 or r(AB) = r(A)+r(B)−n.

Corollary 2.4. Let A, B, and C be three nonzero matrices of the appropriate
sizes. Then the AA−BC−C is invariant with respect to the choice of A− and
C− if and only if both R(B) ⊆ R(A) and R(B∗) ⊆ R(C∗).

Corollary 2.5. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q be three nonzero
matrices. Then the following two results hold.

(a) (BC)−B(AB)− ≡ (BC)†B(AB)† ⇔ r(ABC) = r(B) = m = q.

(b) ABC(BC)−B(AB)−ABC ≡ ABC(BC)†B(AB)†ABC
⇔ ABC(BC)−B(AB)−ABC ≡ ABC
⇔ ABC = 0 or r(ABC) = r(AB) + r(BC)− r(B).

We have characterized a matrix product identity that involve the mixed
products of five matrices and their generalized inverses using the block matrix
representation method and the matrix rank method, and have featured several
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examples that shed new perspectives on the invariance problems of matrix
products involving generalized inverses. In addition, it would be of interest to
approach the matrix product equalities

A1A
(i,...,j)
2 A3A

(k,...,l)
4 A5 = A

for different generalized inverses of A
(i,...,j)
2 and A

(k,...,l)
4 , as well as, other

matrix equalities

A(i,...,j) = B(k,...,l), A(i,...,j) = B(k,...,l)C(s,...,t),

A(i,...,j) = B(k,...,l) + C(s,...,t),

A1A
(i2,...,j2)
2 · · ·Ap−1A

(ip,...,jp)
p Ap+1 = A,

A(A
(i1,...,j1)
1 + A

(i2,...,j2)
2 + · · ·+ A(ip,...,jp)

p )A = A,

(cf. [11,12]). Also recall that generalized inverses of elements can symbolically
be defined in many other algebraic structures. Thus it would be of interest
to consider invariance properties of algebraic expressions involving generalized
inverses of elements in other algebraic structures by means of analogous meth-
ods developed in [6] and this note.
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