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On some new results for the generalised Lucas
sequences

Dorin Andrica, Ovidiu Bagdasar and George Cătălin Ţurcaş

Abstract

In this paper we introduce the functions which count the number of
generalized Lucas and Pell-Lucas sequence terms not exceeding a given
value x and, under certain conditions, we derive exact formulae (The-
orems 3 and 4) and establish asymptotic limits for them (Theorem 6).
We formulate necessary and sufficient arithmetic conditions which can
identify the terms of a-Fibonacci and a-Lucas sequences. Finally, using
a deep theorem of Siegel, we show that the aforementioned sequences
contain only finitely many perfect powers. During the process we also
discover some novel integer sequences.

1 Introduction

The classical Fibonacci, Lucas, Pell, Pell-Lucas sequences (and their numerous
extensions) have been researched for more than two centuries. Still, numerous
interesting properties and applications are being discovered. Many of them
have significant theoretical and practical importance (see, e.g., [3], [9]).

In this paper we focus on the generalized Lucas sequence {Un(a, b)}n≥0
and its companion, the generalized Pell-Lucas sequence {Vn(a, b)}n≥0, defined
for the arbitrary integers a and b by

Un+2 = aUn+1 − bUn, U0 = 0, U1 = 1, n = 0, 1, . . . (1)

Vn+2 = aVn+1 − bVn, V0 = 2, V1 = a, n = 0, 1, . . . . (2)

Key Words: Generalised Lucas sequence, Generalised Pell-Lucas sequence, Pell equa-
tion, Special Pell Equation, Negative Pell equation.
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The standard method for analysing these sequences involves the roots of the
quadratic z2 − az + b = 0 and its discriminant D = a2 − 4b. We will consider
the case D 6= 0, when this equation has the distinct roots

α =
a+
√
D

2
, β =

a−
√
D

2
.

From Viéte’s relations, one obtains α+ β = a, αβ = b, while α− β =
√
D.

In these notations, the following Binet-type formulae hold

Un =
αn − βn

α− β
=

1√
D

(αn − βn) , n = 0, 1, . . . , (3)

Vn = αn + βn, n = 0, 1, . . . . (4)

These expressions extend naturally to negative indices. For example, we have

U−1 =
1√
D

(
α−1 − β−1

)
= −1

b
, V−1 = α−1 + β−1 =

a

b
,

and in general, the relations below hold for any integer n ≥ 0

U−n =
1√
D

(
α−n − β−n

)
= − 1

bn
Un, V−n = α−n + β−n =

1

bn
Vn.

When b = −1 and a is a positive integer one obtains the a-Fibonacci
and a-Lucas numbers from Fa,n = Un(a,−1) and La,n = Vn(a,−1), where
D = a2 + 4. The Fibonacci and Lucas numbers are obtained for a = 1 as
Fn = Un(1,−1) and Ln = Vn(1,−1) with D = 5, while the Pell and Pell-
Lucas numbers are given by Pn = Un(2,−1) and Qn = Vn(2,−1), for a = 2
where D = 8.

Arithmetic properties of the sequences {Un(a, b)}n∈Z and {Vn(a, b)}n∈Z
were investigated in [4], generalising earlier work on Fibonacci and Lucas se-
quences in [5]. In [10] Lehmer studied some arithmetic properties of further
generalisations of these sequences, where he allows a to be a quadratic alge-
braic integer.

The structure of the present paper is as follows. In Section 2 we give
conditions on the parameters a and b for which the sequences {Un(a, b)}n≥0
and {Vn(a, b)}n≥0 are increasing. This information is used to derive exact
formulae for the functions defined by the number of generalised Lucas and
Pell-Lucas terms smaller than a given value. Asymptotic formulae for these
functions are given in Section 3. In the paper [1], the authors explore various
quadratic Diophantine equations whose solutions are expressed in terms of
Fibonacci and Lucas sequences. This is the starting point of Section 4, which
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deals with the identification of the a-Fibonacci and a-Lucas numbers. As a
consequence of a deep theorem which asserts the finiteness of integral points on
curves due to Siegel, we show that the sequences of a-Fibonacci and a-Lucas
numbers contain only finitely many perfect powers. Some novel associated
integer sequences are investigated in Section 5.

2 The functions u(a, b;x) and v(a, b;x)

We aim to find expressions for the number of terms of generalised Lucas se-
quences which are less or equal than a positive real number x. Define

u(a, b;x) = card{n ∈ N : Un ≤ x} (5)

v(a, b;x) = card{n ∈ N : Vn ≤ x}. (6)

Clearly, whenever the sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0 are increas-
ing, one has u(a, b;x) = n whenever Un−1 ≤ x < Un, and v(a, b;x) = n when
Vn−1 ≤ x < Vn. Throughout this paper we shall assume that a > 0 and
D > 0, in which case α >| β |, hence limn→∞ Un = limn→∞ Vn =∞.

Let us denote by n0(a, b) and n′0(a, b) the first indices where consecutive
terms are ordered increasingly

n0(a, b) = min{n ∈ N : Un+1 > Un},
n′0(a, b) = min{n ∈ N : Vn+1 > Vn}.

Clearly, these sets are not empty. We prove that for certain choices of the pa-
rameters a and b, the sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0 are increasing
when n ≥ n0(a, b), or n ≥ n′0(a, b), respectively.

More precisely, we have the following result.

Lemma 1. Let a > 0 and b be integers, such that a ≥ b+ 1. Then
1◦ The sequence {Un(a, b)}n≥0 is increasing for n ≥ n0(a, b), where

n0(a, b) =

{
0 if a ≥ 2 and a ≥ b+ 1

2 if a = 1 and b < 0.

2◦ The sequence {Vn(a, b)}n≥0 is increasing for n ≥ n′0(a, b), where

n′0(a, b) =

{
0 if a ≥ 3 and a ≥ b+ 1

1 if a = 1, 2 and b ≤ 0.

Proof. 1◦ One may write the recurrence relation (1) as

Un+2 − Un+1 = (a− 1)Un+1 − bUn, n = 0, 1, . . . .
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The sequence {Un}n≥0 starts with U0 = 0, U1 = 1, U2 = a and U3 = a2 − b.

Case 1. b < 0. Here (a − 1)Un+1 ≥ 0 whenever Un+1 ≥ 0, and −bUn > 0 if
Un > 0. Clearly, Un+2 − Un+1 > 0 for n ≥ 1, and {Un}n≥2 is increasing for
a = 1, while {Un}n≥0 is increasing for a ≥ 2.

Case 2. b = 0. Here Un = an−1 for n ≥ 1, and the sequence {Un}n≥0 is
increasing for a ≥ 2.

Case 3. b > 0. In this case, (a − 1)Un+1 ≥ bUn+1 for Un+1 ≥ 0, and for
a − 1 ≥ b one has Un+2 − Un+1 ≥ b(Un+1 − Un) > 0, whenever Un+1 > Un.
Since U1 > U0, this condition ensures that the sequence {Un}n≥0 is increasing.

2◦ The recurrence relation (2) can be written as

Vn+2 − Vn+1 = (a− 1)Vn+1 − bVn, n = 0, 1, . . . .

The sequence {Vn}n≥0 begins with the terms V0 = 2, V1 = a, V2 = a2 − 2b.
We distinguish a few cases.

Case 1′. b < 0. Here (a − 1)Vn+1 ≥ 0 whenever Vn+1 ≥ 0, and −bVn > 0
whenever Vn > 0. The condition Vn > 0 is valid even for n = 0, hence {Vn}n≥1
is increasing. Moreover, when a ≥ 3, the sequence {Vn}n≥0 is increasing.

Case 2′. b = 0. Vn = an, n ≥ 1, and {Vn}n≥1 is increasing for a = 2, and
{Vn}n≥0 is increasing for a ≥ 3.

Case 3′. b > 0. In this case, (a−1)Vn+1 ≥ bVn+1 whenever Vn+1 ≥ 0, and for
a− 1 ≥ b ≥ 1 one has Vn+2 − Vn+1 ≥ b(Vn+1 − Vn) > 0, whenever Vn+1 > Vn.
If a ≥ 3, we have V1 − V0 = a− 2 > 0, so {Vn}n≥0 is increasing. When a = 2
and b = 1 the sequence is constant, as whenever a−1 = b, we have Vn = bn+1
for n ≥ 0, which is only increasing for b ≥ 2.

Various bounds for β can be established in terms of a and b.

Lemma 2. Let a ≥ 1 and b be integers such that D = a2 − 4b > 0. The
following assertions hold

1◦ | β |≤ 1 if and only if | b+ 1 |≤ a.
2◦ | β |< 1 if and only if | b+ 1 |< a.

3◦ | β |<
√
2
2 if and only if a = 1 and b > − 1+

√
2

2 , or a ≥ 2 and (2b+ 1)2 <
2a2.

4◦ | β |< 1
2 if and only if a = 1 and b > − 3

4 , or a ≥ 2 and | 4b+ 1 |< 2a.

Proof. 1◦ Since β = a−
√
D

2 , the condition | β |≤ 1 is equivalent to

a− 2 ≤
√
D ≤ a+ 2.
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When a = 1, the left-hand side condition is fulfilled, while the other gives
b ≥ −2. Same happens for a = 2, when the condition satisfied by b is b ≥ −3.

When a ≥ 3, by squaring we obtain a2 − 4a + 4 ≤ a2 − 4b ≤ a2 + 4a + 4,
which is written equivalently as

−a− 1 ≤ b ≤ a− 1,

that is | b + 1 |≤ a. In fact, this condition unifies all the cases a = 1, 2, . . . .
Clearly, when b = −1 (such as for example for the a-Fibonacci numbers), the
condition is satisfied for all positive integers a.

2◦ One can just replace ≤ by < in the proof for 1◦.

3◦ The condition | β |<
√
2
2 is equivalent to a−

√
2 ≤
√
D ≤ a+

√
2.

When a = 1, the left-hand side condition is fulfilled automatically, while

the other side gives b > − 1+
√
2

2 . Clearly, the case a = 1, b = −1 required for
Fibonacci and Lucas sequences falls in this category.

For a ≥ 2, we get −2
√

2a < −4b − 2 < 2
√

2a, which is equivalent to
| 2b+ 1 |<

√
2a, or (2b+ 1)2 < 2a2.

4◦ The condition | β |< 1
2 is equivalent to a− 1 <

√
D < a+ 1.

When a = 1, the left inequality is automatically fulfilled, while the right
one gives b > − 3

4 . For a ≥ 2, we get−2a < −4b−1 < 2a, i.e., | 4b+1 |< 2a.

Theorem 3. Let a and b be integers satisfying | b + 1 |≤ a and
√
D > 2.

When x > 1, the following identity holds

u(a, b;x) =

 ln
(√

Dx+ 1
)

lnα

+ 1. (7)

Proof. By Lemma 1, as a ≥ b + 1 the sequence (Un)n≥0 is increasing. For
x > 1 we can find n for which Un−1 ≤ x < Un, that is u(a, b;x) = n. To prove
the desired identity it suffices to show that

n ≤
ln
(√

DUn + 1
)

lnα
≤

ln
(√

D (Un+1 − 1) + 1
)

lnα
< n+ 1.

The left-hand inequality reduces to αn ≤ αn − βn + 1. By Lemma 2 1◦ we
have | β |≤ 1, hence | βn |≤ 1.

The second inequality holds since Un ≤ Un+1 − 1.
The right-hand inequality is equivalent to

αn+1 − βn+1 −
√
D + 1 < αn+1,

which is true since 1− βn+1 <
√
D holds for

√
D > 2 and | β |≤ 1.
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Theorem 4. Let a and b be integers such that a ≥ b+1 and | β |<
√
2
2 . When

x > max{2, a}, then we have

v(a, b;x) =

⌊
ln
(
x+ 1

2

)
lnα

⌋
+ 1. (8)

Proof. By Lemma 1, the sequence (Vn)n≥2 is increasing, hence for x large
enough one can find n such that Vn−1 ≤ x < Vn, in which case v(a, b;x) = n.
To prove this it suffices to show that

n ≤
ln
(
Vn + 1

2

)
lnα

≤
ln
(
(Vn+1 − 1) + 1

2

)
lnα

< n+ 1.

The left inequality reduces to

αn ≤ αn − βn +
1

2
,

or equivalently, βn ≤ 1
2 . This holds since | βn |=| β |n≤| β |2< 1

2 , for n ≥ 2.
The middle inequality holds since the sequence Vn ≤ Vn+1 − 1.
The right inequality is equivalent to

αn+1 + βn+1 − 1 +
1

2
< αn+1,

or βn+1 < 1
2 , which holds for n ≥ 1 by the previous argument.

Remark 5. In the particular case when b = −1, we recover results which hold
for the sequences of a-Fibonacci and a-Lucas numbers.

3 Asymptotic results for u(a, b;x) and v(a, b;x)

Theorem 6. If a and b are integers satisfying a > 0, a ≥ b + 1 and D =
a2 − 4b > 0, then the following asymptotic formulae hold

lim
x→∞

u(a, b;x)

lnx
= lim
x→∞

v(a, b;x)

lnx
=

1

lnα
. (9)

Proof. From the Binet-type formulae (3) and (4) we have

αn =
1

2

(
Vn + Un

√
D
)
, n = 0, 1, . . . (10)

Since a ≥ b+ 1, by Lemma 1 the sequences {Un}n≥2 and {Vn}n≥2 are increas-
ing. For x ≥ max{U2, V2}, one can find m such that Um ≤ x < Um+1, that is
u(a, b;x) = m+ 1.
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Since a > 0 and D > 0 we have α >| β |, hence | βα |< 1, we can write

lim
n→∞

Un
Vn

=
1√
D

lim
n→∞

αn − βn

αn + βn
=

1√
D

lim
n→∞

1−
(
α
β

)n
1 +

(
α
β

)n =
1√
D
,

so the sequence
(
Un

Vn

)
n≥0

is bounded, hence we can find k1 and k2 such that

0 < k1 ≤
Un
Vn
≤ k2, n = 1, 2, . . . . (11)

Using (10) and (11), it follows that

αm =
1

2

(
Vm + Um

√
D
)
≤ 1

2

(
1

k1
Um + Um

√
D

)
≤ 1

2

(
1

k1
+
√
D

)
x, (12)

and

αm+1 =
1

2

(
Vm+1 + Um+1

√
D
)
≥ 1

2

(
1

k2
Um+1 + Um+1

√
D

)
(13)

=
1

2

(
1

k2
+
√
D

)
Um+1 >

1

2

(
1

k2
+
√
D

)
x.

By (12) and (13) we obtain

ln 1
2

(
1
k2

+
√
D
)

+ lnx

lnα
< u(a, b;x) ≤

ln 1
2

(
1
k1

+
√
D
)

+ lnx

lnα
+ 1,

hence limx→∞
u(a,b;x)

ln x = 1
lnα .

For the second limit, we assume that Vl ≤ x < Vl+1, i.e., v(a, b;x) = l+ 1.
Similarly, by (11) we obtain

αl =
1

2

(
Vl + Ul

√
D
)
≤ 1

2

(
1 + k2

√
D
)
Vl ≤

1

2

(
1 + k2

√
D
)
x,

αl+1 =
1

2

(
Vl+1 + Ul+1

√
D
)
≥ 1

2

(
1 + k1

√
D
)
Vl+1 >

1

2

(
1 + k1

√
D
)
x.

Therefore,

ln 1
2

(
1 + k1

√
D
)

+ lnx

lnα
< v(x) ≤

ln 1
2

(
1 + k2

√
D
)

+ lnx

lnα
+ 1,

hence limx→∞
v(a,b;x)

ln x = 1
lnα , which ends the proof.
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Remark 7. The limits (9) can also be obtained from the exact formulae (7)
and (8), using the inequality t − 1 ≤ btc ≤ t, provided that the hypotheses of
Theorems 3 and 4 are satisfied.

The limits obtained for some classical sequences are given in Table 1. The
limit is the same for (a, b) = (1,−2), (a, b) = (3, 2), this phenomena being

explained by the fact that the pairs give the same value for α = a+
√
a2−4b
2 .

Table 1: Sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0 and asymptotic limits of
the functions u(a, b;x) and v(a, b;x).

4 Identifying generalized Lucas and Pell-Lucas numbers

Here we discuss the next identification question: given a positive integer N ,
can one decide whether N is a term of {Un(a, b)}n≥0 or {Vn(a, b)}n≥0?

4.1 Motivation

Recall that {Un(2,−1)}n≥0 and {Vn(2,−1)}n≥0 are the sequences of Pell num-
bers, and Pell-Lucas numbers, respectively. The following proposition will
serve as a motivating example for the aforementioned question.

Proposition 8. 1◦ A positive integer N is a Pell number if and only if 2N2±1
is a perfect square.

2◦ A positive integer N is a Pell-Lucas number if and only if 2N2 ± 2 is a
perfect square.

Proof. 1◦ We have that 2N2 ± 1 = M2, where M ∈ Z. Rearranging, one
obtains the Pell (or negative Pell) equation

M2 − 2N2 = ±1,
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so N is a Pell number by definition.
2◦ Note that if 2N2±2 = M2 with M ∈ Z, then M = 2M1 where M1 ∈ Z.

Dividing by 2 and rearranging we get the Pell (or negative Pell) equation

N2 − 2M2
1 = ∓1,

so N is a Pell-Lucas number. The converse trivially holds.
The numbers N obtained from the positive (negative) equation corre-

spond to even (odd) terms in the respective sequences {Un(2,−1)}n≥0 and
{Vn(2,−1)}n≥0.

Let us now explore a more general setting.

Lemma 9. The following relation holds for every integer n ≥ 0

V 2
n −DU2

n = 4bn. (14)

Proof. From (3) and (4) we get Vn +
√
DUn = 2αn and Vn −

√
DUn = 2βn,

therefore V 2
n −DU2

n = 4(αβ)n = 4bn, for every n ≥ 0.

Corollary 10. For every n ≥ 0, the general Pell equations

x2 −Dy2 = 4bn (15)

are solvable.

Proof. We just note that (Vn, Un) is a solution to (15).

Corollary 11. The following statements hold.

1◦ If N is a term of {Un(a, b)}n≥0, then DN2 + 4bn is a perfect square for
some m ∈ N.

2◦ If N is a term of {Vn(a, b)}n≥0 then DN2− 4Dbk is a perfect square for
some k ∈ N.

Proof. For 1◦, notice that if N = Um, then by using (14) we conclude that
DN2 + 4bm = DU2

m + 4bm = V 2
m.

Similarly for 2◦, if N = Vk, using again formula (14), one can deduce that
DN2 − 4Dbk = DV 2

k − 4Dbk = (DUk)2, and the conclusion follows.

Such relations in the particular case b = −1 are found in [12, Chapter 8],
where the study of converse implications is also mentioned.

We will restrict (without loosing generality) on square free integers D > 1.
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4.2 The quadratic ring Z[
√
D] and Pell-type equations

Let us denote by Z[
√
D] = {a + b

√
D : a, b ∈ Z}. This is a subring of the

algebraic integers in the quadratic field Q(
√
D). The conjugate of an element

α = a+b
√
D ∈ Z[

√
D] is denoted by α = a−b

√
D, while the notation Z[

√
D]×

represents the group of multiplicative units in the ring Z[
√
D].

Definition 12. The norm of α ∈ Z[
√
D] is defined as Norm(α) = α · α ∈ Z.

One can easily check that Norm is multiplicative on Z[
√
D]. Moreover,

N(α) = ±1 if and only if α belongs to Z[
√
D]×. The equations

X2 −DY 2 = 1, (16)

X2 −DY 2 = −1 (17)

are called the (positive), and the negative Pell equations, respectively.
The elements α ∈ Z[

√
D]× that have positive norm are in bijection with

the integer solutions to (16), whereas α ∈ Z[
√
D]× of negative norm are in a

one-to-one correspondence with the integer solutions to (17).
An old algebraic result (see, e.g., [8]) asserts that Z[

√
D]× ∼= Z/2Z × Z,

where the finite part consists of the roots of unity {−1, 1} in Z[
√
D], whereas

the infinite part is composed of all the integer powers of εD, an element which
is called the fundamental unit.

For every square-free D > 1, there are elements α ∈ Z[
√
D]× which have

norm 1, as one can see by computing the norm of ε2D. This explains why Pell’s
equation (16) is solvable for any such D. On the other hand, the question of
whether there are elements α ∈ Z[

√
D]× such that Norm(α) = −1, i.e. the

solvability of the negative Pell equation (17) is much more complicated. For
example, one can see that such an α does not exist if D contains a prime factor
p ≡ 3 (mod 4), since −1 is not a quadratic residue modulo such primes. Note
that X2 −DY 2 = −1 is solvable if and only if Norm(εD) = −1.

We now prove the following result which emphasises the connection be-
tween the units Z[

√
D]×, the set of solutions to Pell equation (16) and the set

of solutions to the negative Pell equation (17).

Proposition 13. 1◦ If X2 −DY 2 = −1 is solvable, then the set of solutions
are in bijection with {±εkD : k ∈ Z is odd}. In this case, the set of solutions of
X2 −DY 2 = 1 are in bijection with {±εkD : k is even}.

2◦ If the equation X2−DY 2 = −1 is not solvable, then the set of solutions
of X2 −DY 2 = 1 are in bijection with Z[

√
D]× = {±εkD : k ∈ Z}.

Proof. First, notice that the restriction Norm : Z[
√
D]× → {−1, 1} is a group

homomorphism.
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1◦ The equation X2 −DY 2 = −1 is solvable if and only if the homomor-
phism above is surjective, i.e., if and only if Norm(εD) = −1. Every solution
(x, y) ∈ Z2 to the negative Pell equation X2 − DY 2 = −1 corresponds to
an element x + y

√
D ∈ Z[

√
D]× of norm −1. By the structure of the group

Z[
√
D]×, we have that x+ y

√
D = ±εkD, where k is odd.

Here, the solutions (x, y) ∈ Z2 to the Pell equation X2 −DY 2 = 1 corre-
spond to elements x+ y

√
D ∈ Z[

√
D]× having norm 1.

The set of all such elements make up for the kernel of the restricted Norm
homomorphism above, an index 2 subgroup of Z[

√
D]×. By the structure of

the unit group Z[
√
D]×, every such element x+ y

√
D is equal to ±εkD, where

k is an even integer.
2◦ The equation X2 −DY 2 = −1 is not solvable if and only if the kernel

of the restricted Norm homomorphism is the whole group of units Z[
√
D]×.

To be precise, any solution (x, y) ∈ Z2 to the Pell equation X2 − DY 2 = 1
corresponds bijectively to an element x+ y

√
D ∈ Z[

√
D]×.

Remark. If X2 − DY 2 = −1 is solvable, then it is easy to see that if we
consider the minimal solution (x0, y0), the element x0 + y0

√
D must be a

generator of the infinite part of Z[
√
D]×. In other words, x0 + y0

√
D ∈ {ε±1D }.

The minimal solution (x1, y1) to the Pell equation X2−DY 2 = 1 corresponds
to the element x1 + y1

√
D ∈ {ε±2D }. We have just showed that one can recover

all the integer solutions to the Pell equation (16) by taking even powers of the
unit corresponding to the minimal solution x0 + y0

√
D to the negative Pell

equation (17) and multiplying the result by ±1.
The equations

X2 −DY 2 = 4, (18)

X2 −DY 2 = −4 (19)

are called the special Pell equation, and the negative special Pell equation,
respectively. They will play an important role in some theorems in this section.

We have the following easy corollary of Proposition 13.

Corollary 14. Let D = a2 + 4 be a square-free positive integer. There are
unique minimal solutions (a, 1) of (19) and (x1, y1) of (18). Moreover, they
satisfy the relation

2(x1 + y1
√
D) =

(
a+
√
D
)2
.

Proof. The fact that (18) and (19) have unique minimal solutions follows from
Theorem 4.4.1 in [2]. In the ring Z[

√
D] this translates into the fact that, up

to units, the only element of norm 4 is 2 and that Norm(εD) = −1.
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Any solution (x, y) ∈ Z2 to (19) gives an element x+ y
√
D which must be

equal to 2 · ε2k+1
D for some integer k ∈ Z. Similarly, any solution (x, y) ∈ Z2

to (18) is given by 2 · ε2kD , for some integer k. The conclusion follows.

4.3 Identifying a-Fibonacci and a-Lucas numbers

As seen above, the converse of the properties 1◦ and 2◦ from Corollary 10 are
related to the structure of the unit group in the ring Z[

√
D]. Moreover, the

multiple number of ways in which one can write 4bn as a product of elements
in Z[

√
D] contributes to the difficulty. This is intimately connected with the

class group of Q(
√
d).

Here we prove the converse properties mentioned above in the special
case where b = −1. In this situation, one obtains the a-Fibonacci numbers
Un(a,−1) and the a-Lucas numbers Vn(a,−1). The main results are stated in
the following two theorems.

Theorem 15. Let a > 0 be such that D = a2 + 4 is square-free. The positive
integer N is an a-Fibonacci number if and only if (a2 + 4)N2 ± 4 is a perfect
square.

Proof. The left to right implication is contained in Corollary 11. For the
converse, suppose that (a2 + 4)N2 + 4 = M2 for some integer M . The special
Pell equation

u2 − (a2 + 4)v2 = 4 (20)

is solvable and one solution is (u1, v1) = (a2 + 2, a). However, we do not know
whether this is a minimal solution.

By Theorem 4.4.1 in [2], we obtain that (20) has just one infinite class of
solutions and, moreover, all solutions (u, v) ∈ Z2 to (20) can be recovered from

1

2
(u+ v

√
D) = ±

(
u0 + v0

√
D

2

)n
, (21)

where (u0, v0) is the minimal solution to (20) and D = a2 + 4.
On the other hand, the aforementioned theorem asserts that the negative

special Pell equation
u2 − (a2 + 4)v2 = −4 (22)

has the minimal solution (a, 1). We have explained in Corollary 14 that the
minimal solution to (20) is given by

u0 + v0
√
D =

(
a+
√
D

2

)2

= a2 + 2 + a
√
D.
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It follows that all the solutions to (20) in positive integers are

1

2
(u+ v

√
D) =

(
a+
√
D

2

)2n

, n = 1, 2, . . .

We now have

1

2
(M +N

√
D) =

(
a+
√
D

2

)2n

,

for some positive integer n. At the same time,

1

2
(M −N

√
D) =

(
a−
√
D

2

)2n

,

hence

N =
1√
D

(a+
√
D

2

)2n

−

(
a−
√
D

2

)2n
 =

1√
D

(α2n−β2n) = U2n(a,−1).

If (a2 + 4)N2 − 4 = M2 for some positive integer M , then the negative
special Pell equation (22) has all solutions given by

1

2
(u+ v

√
D) =

(
a+
√
D

2

)2n+1

, n = 0, 1, 2, . . .

Then, it follows that N = U2n+1(a,−1), for some positive integer n.

Theorem 16. Let a > 0 be an integer such that D = a2 + 4 is square-
free. A positive integer N is an a-Lucas number if and only if the number
(a2 + 4)N2 ± 4(a2 + 4) is a perfect square.

Proof. Suppose that (a2 +4)N2±4(a2 +4) = M2 for some positive integer M .
Since a2+4 is square-free, we have that a2+4 |M , hence N2±4 = (a2+4)M2

1 ,
where M1 is a positive integer. Now we use the same arguments as in the proof
of Theorem 15, for the special Pell equations (20) and (22). We obtain that
N = V2n+1(a,−1) for the positive signed equation, and N = V2n(a,−1) for
the negative signed equation, respectively.

We present the following two corollaries. The first of these recovers known
results for the sequences of Fibonacci and Lucas numbers, whereas the second
is a new result concerning the bronze Fibonacci and bronze Lucas numbers
(see subsection 5.3 for the definitions).
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Corollary 17. 1◦(Gessel, Theorem 5.4 in [9]) A positive integer N is a Fi-
bonacci number if and only if 5N2 ± 4 is a perfect square.

2◦(Wulczyn, Theorem 5.10 in [9]) A positive integer N is a Lucas number
if and only if 5N2 ± 20 is a perfect square.

Regarding 2◦, we remark that in Theorem 5.10 of [9] the authors just
presented the proof for the easy left to right implication, mentioning that they
omitted the proof of the converse since it was too complicated.

Corollary 18. 1◦ A positive integer N is a bronze Fibonacci number if and
only if 13N2 ± 4 is a perfect square.

2◦ A positive integer N is a bronze Lucas number if and only if 13N2± 52
is a perfect square.

4.4 Perfect powers among {Un(a,±1)}n≥0 and {Vn(a,±1)}n≥0
In the previous subsections we have discussed methods for identifying whether
a positive integer N was a term of {Un(a, b)}n≥0 or {Vn(a, b)}n≥0. Here we
prove a result in a slightly different direction. Numerical evidence suggests that
perfect powers appear very rarely as terms of these sequences. Moreover, the
same numerical experience suggests that perfect powers appear only among the
first terms of such a sequence. We will now show that this is a consequence of
a deep theorem of Siegel. Namely, we prove that for any given k, the sequences
{Un(a, b)}n≥0 and {Vn(a, b)}n≥0 contain only finitely many kth powers.

Let us make a few remarks about the finiteness of the set of integral
points on various curves. For any bivariate polynomial f ∈ Z[X,Y ], let

Cf := {(x, y) ∈ Q2
: f(x, y) = 0} be an affine algebraic curve. For any S ⊆ Q,

we denote by Cf (S) = Cf ∩S2. Curves can be classified by their genus, a non-
negative integer associated to their projectivization. The genus is a geometric
invariant. A classical result in number theory is the the following.

Theorem 19 (Siegel, 1929). If f ∈ Z[X,Y ] defines an irreducible curve Cf
of genus g(Cf ) > 0, then Cf (Z) is finite.

We now fix b ∈ {−1, 1} and D any positive integer, not necessarily square
free. Recall from Lemma 9 that the terms Un and Vn of such a sequence satisfy
the relation Vn(a,±1)2 −DUn(a,±1)2 = 4(±1)n. We now present our result.

Theorem 20. Fix b ∈ {−1, 1} and let k ≥ 2 and D = a2 − 4b be positive
integers. The sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0 contain only finitely
many perfect kth powers.

Proof. Denote by f+ = X2 − DY 2k − 4 and by f− = X2 − DY 2k + 4 two
bivariate polynomials with integer coefficients.
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If Un(a,±1) is a perfect kth power, then the pair (Vn(a,±1), Un(a,±1))
gives an integral point on one of the hyperelliptic curves Cf+ or Cf− . Both

of the latter have genus g = 2k−2
2 = k − 1 ≥ 1, therefore by Siegel’s theorem

contain finitely many points.
We just showed that the infinite sequence Un(a,±1) contains finitely many

kth perfect powers. The proof of the analogous result for the sequence Vn(a,±1)
is similar.

Recall that for a = 1 and b = −1, the sequence {Un(1,−1)}n≥0 is the
Fibonacci sequence. On page 64 of [12], the author shows that the only perfect
squares in the Fibonacci sequence are F0 = 1, F1 = 1, F2 = 1 and F12 = 144. A
very deep result in number theory whose proof makes use of Wiles’ modularity
theorem is Theorem 1 in [7], which asserts that the only perfect powers in the
Fibonacci sequence are the perfect squares above and the cube F6 = 8.

Remark. We expect that a result analogous to Theorem 20 holds for fixed
general b ∈ Z, but its proof does not follow from Siegel’s theorem (or any result
that guarantees finiteness of integral points on a given curve). To see this, we
observe that a perfect power among the terms of the sequence {Un(a, b)}n≥0
gives rise to an integral point on the infinite family of curves Cfn , defined by
fn = X2 −DY 2k − 4bn, where D, k and b are fixed.

Although Siegel’s theorem implies that there are finitely many integral
points on each one of this curves, this does not prove that there are finitely
many integral points on the union (over n ∈ N) of the curves Cfn . In fact,
one can easily see that for even n and b ≥ 2, the point (2bn/2, 0) is always an
integral point on Cfn , hence the union of all such curves contains infinitely
many points. We would be surprised if results analogous to the aforementioned
theorem could be proved for general b without making use of a major future
breakthrough in the fields of Diophantine Equations or Arithmetic Geometry.

Let us take, for instance, a = 1 and b = −2, in which case {Un(1,−2)}n≥0
is the sequence of Jacobsthal numbers (see subsection 5.6). For every n ≥ 0,

the term Un(1,−2) is equal to 2n−(−1)n
3 . We propose following conjecture.

Conjecture. Let k ≥ 2 be a fixed integer. Then the sequence
{

2n−(−1)n
3

}
n≥0

of Jacobsthal numbers contains only finitely many kth powers.
Theorem 1 in [6] implies that for even values of n, 2n−1

3 is never a perfect
power of some integer y > 1. On the other hand, for odd values of n > 1,
the results of [11] assert that 2n+1

3 is never a perfect square. To complete our

conjecture and show that given k ≥ 2, the number 2n+1
3 is a perfect kth power

just for finitely many odd values of n seems to be a difficult task.
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5 Some associated integer sequences

In this section we are going to analyse the sequences u(a, b;x) and v(a, b;x) for
the parameter values given in Table 1, and we find some new integer sequences,
not currently indexed in the Online Encyclopedia [13]. We will compare the
exact results obtained by direct counting of terms from the definitions (5),
against the formulae proposed in Theorems 3 and 4.

5.1 (a, b) = (1,−1) (Fibonacci and Lucas sequences)

If n ≥ 0 is an integer, then Un(1,−1) and Vn(1,−1) are the nth Fibonacci
and Lucas numbers. The sequence u(1,−1;n) counting the Fibonacci num-
bers Fk ≤ n is indexed as A108852 in [13]. The number of Lucas terms Lk
less or equal to n given by v(1,−1;n) is indexed as A130245 in [13]. The
encyclopedia gives little information about these sequences, but this includes
some formulae which are particular cases of (7) and (8). The Fibonacci and
Lucas sequences satisfy the conditions in Theorems 3 and 4, so the formulae
(7) and (8) are in perfect agreement with the exact count. The starting values
for these sequences are given in Table 2.

Table 2: Values for Fibonacci and Lucas sequences.

5.2 (a, b) = (2,−1) (Pell and Pell-Lucas sequences)

If n ≥ 0 is an integer, then Un(2,−1) and Vn(2,−1) are the nth Pell and
Pell-Lucas numbers. The sequences u(2,−1;n) counting the terms for which
Pk ≤ n, and v(2,−1;n) counting the terms with Qk ≤ n are not in [13].

The Pell and Pell-Lucas sequences satisfy the conditions in Theorems 3 and
4, hence the formulae (7) and (8) match the count for {Un}n≥0 and {Vn}n≥1.
The first terms of these sequences are shown in Table 3.
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Table 3: Values for Pell and Pell-Lucas sequences.

5.3 (a, b) = (3,−1) (bronze Fibonacci and bronze Lucas sequences)

When n ≥ 0 is an integer, Un(3,−1) is the nth bronze Fibonacci number
(linked fatty acids [14]), while Vn(3,−1) is the nth bronze Lucas number.
The sequences u(3,−1;n) counting the terms Uk(3,−1) ≤ n, and v(3,−1;n)
counting the terms which Vk(3,−1) ≤ n, are not currently indexed in [13].

The Pell and Pell-Lucas sequences satisfy the conditions in Theorems 3
and 4, so the formulae (7) and (8) match the exact count for {Un}n≥0 and
{Vn}n≥2. The first terms of these sequences are shown in Table 4.

Table 4: Values for bronze Fibonacci and bronze Lucas sequences.

5.4 (a, b) = (3, 1) (bisection of Fibonacci and of Lucas sequences)

If n ≥ 0 is an integer, then Un(3, 1) and Vn(3, 1) are the nth term of the
bisection of Fibonacci, and the bisection of Lucas numbers, respectively. The
sequence u(3, 1;n) counting the terms for which Uk(3, 1) ≤ n, is indexed as
A130260, while the sequence v(3, 1;n) counting Vk(3, 1) ≤ n is new.
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The bisection of Fibonacci and Lucas sequences satisfy the conditions in
Theorems 3 and 4, so the formulae (7) and (8) match the exact count once
{Un}n≥0 and {Vn}n≥1 are increasing. The first terms are shown in Table 5.

Table 5: The bisection of Fibonacci and bisection of Lucas sequences.

5.5 (a, b) = (3, 2) (Mersenne and Pisot numbers)

If n ≥ 0 is an integer, then Un(3, 2) and Vn(3, 2) are the nth Mersenne and
Pisot numbers. The sequences u(3, 2;n) counting how many terms satisfy
Uk(3, 2) ≤ n, and v(3, 2;n) counting terms which satisfy Vk(3, 2) ≤ n are new.

The Mersenne sequence satisfies (barely) the conditions in Theorem 3,
hence the formula (7) is in perfect agreement with the exact count for {Un}n≥0.
The Pisot sequence does not meet the conditions in Theorem 4, and the results
from formula (8) for {Vn}n≥1 deviate from the exact count for v(3, 2;n).

The first terms of these sequences are shown in Table 6.

Table 6: Values for the Mersenne and Pisot sequences.
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5.6 (a, b) = (1,−2) (Jacobsthal and Jacobsthal-Lucas numbers)

When n ≥ 0 is an integer, Un(1,−2) and Vn(1,−2) are the nth Jacobsthal
and Lucas-Jacobsthal numbers. The sequence u(1,−2;n) counting the terms
for which Uk(1,−2) ≤ n, is indexed as A130253 in [13], where the following
formulae are also given u(1,−2, n) = blog2(3n+ 1)c+ 1 = dlog2(3n+ 2)e .

The sequence v(1,−2;n) counting terms with Vk(1,−2) ≤ n is new. The
Jacobsthal sequence satisfies (barely, β = −1) the conditions in Theorem 3,
hence the formula (7) is in perfect agreement with the exact count for {Un}n≥0.
The Jacobsthal-Lucas sequence does not meet the conditions in Theorem 4,
hence the results from (8) for {Vn}n≥1 deviate from the exact count.

The first terms of these sequences are shown in Table 7.

Table 7: Values for the Jacobsthal and Jacobsthal-Lucas sequences.
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