

\$ sciendo Vol. 29(1),2021, 201–209

Topological Transversality Coincidence Theory for Multivalued Maps with Selections in a Given Class

Donal O'Regan

Abstract

This paper presents the topological transversality coincidence theorem for general multivalued maps who have selections in a given class of maps.

1. Introduction.

Fix a map Φ . To consider a coincidence problem between a complicated map F and Φ (i.e. to find an x with $F(x) \cap \Phi(x) \neq \emptyset$) the idea in this paper is to try and relate it to a simpler and solvable coincidence problem between a map G and Φ where G is homotopic (in an appropriate way) to F and from this hope to deduce a coincidence between F and Φ . In this paper we consider multivalued maps F and G with selections in a given class of maps and $F \cong G$ in this setting. The topological transversality theorem will state that F is Φ -essential if and only if G is Φ -essential (essential maps were introduced by Granas [2] and extended by many authors [1, 3, 4, 5]). By introducing our notion of a Φ -essential (or d- Φ -essential) map we establish a simple result which will immediately yield the topological transversality theorem in this setting.

Key Words: essential maps, coincidence points, topological principles

²⁰¹⁰ Mathematics Subject Classification: Primary 47H10; Secondary 54H25.

Received: 03.04.2020

Accepted: 03.05.2020

2. Topological transversality theorems.

Let E be a completely regular topological space and U an open subset of E.

We will consider classes **A**, **B** and **D** of maps.

Definition 2.1. We say $F \in D(\overline{U}, E)$ (respectively $F \in B(\overline{U}, E)$) if $F : \overline{U} \to 2^E$ and $F \in \mathbf{D}(\overline{U}, E)$ (respectively $F \in \mathbf{B}(\overline{U}, E)$); here 2^E denotes the family of nonempty subsets of E and \overline{U} denotes the boundary of U in E.

In this paper we use bold face only to indicate properties of our maps and usually $D = \mathbf{D}$ etc. Examples of $F \in \mathbf{D}(\overline{U}, E)$ might be that $F : \overline{U} \to K(E)$ is a upper semicontinuous compact map with convex (or acyclic) values or it might be that $F : \overline{U} \to E$ is a single valued continuous compact map; here K(E) denotes the family of nonempty compact subsets of E.

Definition 2.2. We say $F \in A(\overline{U}, E)$ if $F : \overline{U} \to 2^E$ and $F \in \mathbf{A}(\overline{U}, E)$ and there exists a selection $\Psi \in D(\overline{U}, E)$ of F.

In this section we fix a $\Phi \in B(\overline{U}, E)$ and now we present the notion of coincidence free on the boundary and the notion of homotopy.

Definition 2.3. We say $F \in A_{\partial U}(\overline{U}, E)$ (respectively $F \in D_{\partial U}(\overline{U}, E)$) if $F \in A(\overline{U}, E)$ (respectively $F \in D(\overline{U}, E)$) with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 2.4. Let E be a completely regular (respectively, normal) topological space and let $\Psi, \Lambda \in D_{\partial U}(\overline{U}, E)$. We say $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$ if there exists a map $H : \overline{U} \times [0,1] \to 2^E$ with $H \in \mathbf{D}(\overline{U} \times [0,1], E)$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_t(x) = H(x,t)$), $\{x \in \overline{U} : \Phi(x) \cap H(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is compact (resp., closed), for any continuous map $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$ we have $\{x \in \overline{U} : \Phi(x) \cap H(x,t\eta(x)) \neq \emptyset$ for some $t \in [0,1]\}$ is closed, $H_0 = \Psi$ and $H_1 = \Lambda$. In addition here we assume for any map $\Theta \in \mathbf{D}(\overline{U} \times [0,1], E)$ and $\Theta \circ f \in \mathbf{D}(\overline{U} \times [0,1], E)$; here \mathbf{C} denotes the class of single valued continuous functions.

Remark 2.5. (a). In our results below alternatively we could use the following definition for \cong in $D_{\partial U}(\overline{U}, E)$: $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$ if there exists a map $H: \overline{U} \times [0,1] \to 2^E$ with $H(.,\eta(.)) \in \mathbf{D}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$, $\{x \in \overline{U}: \Phi(x) \cap H(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is compact (respectively, closed), for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$ we have that $\{x \in \overline{U}: \Phi(x) \cap H(x,t\eta(x)) \neq \emptyset$ for some $t \in [0,1]\}$ is closed, $H_0 = \Psi$ and $H_1 = \Lambda$ (here $H_t(x) = H(x, t)$).

(b). Throughout we assume \cong in $D_{\partial U}(\overline{U}, E)$ is a reflexive, symmetric relation.

Definition 2.6. Let $F, G \in A_{\partial U}(\overline{U}, E)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if for any selection $\Psi \in D_{\partial U}(\overline{U}, E)$ (respectively, $\Lambda \in D_{\partial U}(\overline{U}, E)$) of F (respectively, of G) we have $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$.

Next we present the notion of Φ -essentiality which is more general than notions considered in the literature.

Definition 2.7. We say $F \in A_{\partial U}(\overline{U}, E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if for any selection $\Psi \in D(\overline{U}, E)$ of F and any map $J \in D_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \Psi|_{\partial U}$ and $J \cong \Psi$ in $D_{\partial U}(\overline{U}, E)$ there exists a $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$.

Remark 2.8. If $F \in A_{\partial U}(\overline{U}, E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$ and if $\Psi \in D(\overline{U}, E)$ is any selection of F then there exists an $x \in U$ with $\Psi(x) \cap \Phi(x) \neq \emptyset$ (take $J = \Psi$ in Definition 2.7), and $\emptyset \neq \Psi(x) \cap \Phi(x) \subseteq F(x) \cap \Phi(x)$.

Theorem 2.9. Let E be a completely regular (respectively, normal) topological space, U an open subset of E, $F \in A_{\partial U}(\overline{U}, E)$ and $G \in A_{\partial U}(\overline{U}, E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$. Also suppose

(2.1)

 $\begin{cases} \text{for any selection } \Psi \in D_{\partial U}(\overline{U}, E) \text{ (respectively, } \Lambda \in D_{\partial U}(\overline{U}, E)) \\ \text{of } F \text{ (respectively, of } G) \text{ and any map } J \in D_{\partial U}(\overline{U}, E) \text{ with} \\ J|_{\partial U} = \Psi|_{\partial U} \text{ and } J \cong \Psi \text{ in } D_{\partial U}(\overline{U}, E) \text{ we have} \\ \Lambda \cong J \text{ in } D_{\partial U}(\overline{U}, E). \end{cases}$

Then F is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof: Let $\Psi \in D_{\partial U}(\overline{U}, E)$ be any selection of F and consider any map $J \in D_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \Psi|_{\partial U}$ and $J \cong \Psi$ in $D_{\partial U}(\overline{U}, E)$. We must show there exists an $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$. Let $\Lambda \in D_{\partial U}(\overline{U}, E)$ be any selection of G. Now (2.1) guarantees that there exists a map $H : \overline{U} \times [0,1] \to 2^E$ with $H \in \mathbf{D}(\overline{U} \times [0,1], E)$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_t(x) = H(x,t)$), $\{x \in \overline{U} : \Phi(x) \cap H(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is compact (resp., closed), for any continuous map $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$ we have that $\{x \in \overline{U} : \Phi(x) \cap H(x,t\eta(x)) \neq \emptyset$ for some $t \in [0,1]\}$ is closed, $H_0 = \Lambda$ and $H_1 = J$. Let

$$\Omega = \left\{ x \in \overline{U} : \Phi(x) \cap H(x,t) \neq \emptyset \text{ for some } t \in [0,1] \right\}.$$

Now since G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ then Remark 2.8 (note $H_0 = \Lambda$) guarantees that $\Omega \neq \emptyset$. Also Ω is compact (respectively, closed) if E is a completely regular (respectively, normal) topological space. Next note $\Omega \cap$

 $\begin{array}{l} \partial U = \emptyset \text{ so there exists a continuous map } \mu : \overline{U} \to [0,1] \text{ with } \mu(\partial U) = 0 \\ \text{and } \mu(\Omega) = 1. \text{ Define a map } R \text{ by } R(x) = H(x,\mu(x)) = H \circ g(x) \text{ for } x \in \overline{U}; \\ \text{here } g : \overline{U} \to \overline{U} \times [0,1] \text{ is given by } g(x) = (x,\mu(x)). \text{ Note } R \in \mathbf{D}(\overline{U},E) \\ \text{and in fact } R \in D_{\partial U}(\overline{U},E) \text{ with } R|_{\partial U} = H_0|_{\partial U} = \Lambda|_{\partial U}. \text{ We now show } \\ \Lambda \cong R \text{ in } D_{\partial U}(\overline{U},E). \text{ To see this let } Q : \overline{U} \times [0,1] \to 2^E \text{ be given by } \\ Q(x,t) = H(x,t\mu(x)) = H \circ f(x,t) \text{ where } f: \overline{U} \times [0,1] \to \overline{U} \times [0,1] \text{ is given } \\ \text{by } f(x,t) = (x,t\mu(x)). \text{ Note } Q \in \mathbf{D}(\overline{U} \times [0,1],E), Q_0 = \Lambda, Q_1 = R \text{ and } \\ \Phi(x) \cap H_t(x) = \emptyset \text{ for any } x \in \partial U \text{ and } t \in (0,1) \text{ (note if } x \in \partial U \text{ and } t \in (0,1) \\ \text{and } \emptyset \neq \Phi(x) \cap H(x,t\mu(x)) = \Phi(x) \cap H_t(x)), \text{ also} \end{array}$

$$\begin{aligned} \left\{ x \in \overline{U} : \ \Phi(x) \cap Q(x,t) \neq \emptyset \ \text{ for some } t \in [0,1] \right\} \\ &= \left\{ x \in \overline{U} : \ \Phi(x) \cap H(x,t\,\mu(x)) \neq \emptyset \ \text{ for some } t \in [0,1] \right\} \end{aligned}$$

is closed so $\{x \in \overline{U} : \Phi(x) \cap Q(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is compact (respectively, closed) (note

$$\left\{ x \in \overline{U} : \ \Phi(x) \cap H(x, t \, \mu(x)) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$

$$\subseteq \left\{ x \in \overline{U} : \ \Phi(x) \cap H(x, s) \neq \emptyset \text{ for some } s \in [0, 1] \right\} ,$$

and finally for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, note if $w(x) = \eta(x) \mu(x)$ (so $w: \overline{U} \to [0,1]$ with $w(\partial U) = 0$) then

$$\left\{ x \in \overline{U} : \ \Phi(x) \cap Q(x, t \eta(x)) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$
$$= \left\{ x \in \overline{U} : \ \Phi(x) \cap H(x, t w(x)) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$

is closed. Thus $R \in D_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = \Lambda|_{\partial U}$ and $\Lambda \cong R$ in $D_{\partial U}(\overline{U}, E)$. Since G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ then there exists a $x \in U$ with $R(x) \cap \Phi(x) \neq \emptyset$ (i.e. $H_{\mu(x)}(x) \cap \Phi(x) \neq \emptyset$). Thus $x \in \Omega$, $\mu(x) = 1$ so $\emptyset \neq H_1(x) \cap \Phi(x) = J(x) \cap \Phi(x)$, and we are finished. \Box

Now with this simple result we present the topological transversality theorem. Assume

(2.2)
$$\cong$$
 in $D_{\partial U}(\overline{U}, E)$ is an equivalence relation

Theorem 2.10. Let E be a completely regular (respectively, normal) topological space, U an open subset of E, and assume (2.2) holds. Suppose F and Gare two maps in $A_{\partial U}(\overline{U}, E)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Now F is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if and only if G is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof: Assume G is Φ -essential in $A_{\partial U}(\overline{U}, E)$. We will use Theorem 2.9. Let $\Psi \in D_{\partial U}(\overline{U}, E)$ be any selection of $F, \Lambda \in D_{\partial U}(\overline{U}, E)$ be any selection of G and consider any map $J \in D_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \Psi|_{\partial U}$ and $J \cong \Psi$ in $D_{\partial U}(\overline{U}, E)$. Now since $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ (so $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$) then (2.2) guarantees that $\Lambda \cong J$ in $D_{\partial U}(\overline{U}, E)$. Thus (2.1) holds so Theorem 2.9 guarantees that F is Φ -essential in $A_{\partial U}(\overline{U}, E)$. A similar argument shows if F is Φ -essential in $A_{\partial U}(\overline{U}, E)$ then G is Φ -essential in $A_{\partial U}(\overline{U}, E)$. \Box

Now we consider a generalization of Φ -essential maps, namely the $d-\Phi$ essential maps (motivated from the notion of the degree of a map). Let E be a completely regular topological space and U an open subset of E. For any map $\Psi \in D(\overline{U}, E)$ let $\Psi^* = I \times \Psi : \overline{U} \to 2^{\overline{U} \times E}$, with $I : \overline{U} \to \overline{U}$ given by I(x) = x, and let

(2.3)
$$d: \left\{ (\Psi^{\star})^{-1} (B) \right\} \cup \{\emptyset\} \to K$$

be any map with values in the nonempty set K; here $B = \{(x, \Phi(x)) : x \in \overline{U}\}.$

Definition 2.11. Let E be a completely regular (respectively, normal) topological space and let $\Psi, \Lambda \in D_{\partial U}(\overline{U}, E)$. We say $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$ if there exists a map $H : \overline{U} \times [0,1] \to 2^E$ with $H \in \mathbf{D}(\overline{U} \times [0,1], E)$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_t(x) = H(x,t)$), $\{x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x,t)) \neq \emptyset$ for some $t \in [0,1]\}$ is compact (resp., closed), for any continuous map $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$ we have

 $\left\{x \in \overline{U}: (x, \Phi(x)) \cap (x, H(x, t\eta(x))) \neq \emptyset \text{ for some } t \in [0, 1]\right\}$

is closed, $H_0 = \Psi$ and $H_1 = \Lambda$. In addition here we assume for any map $\Theta \in \mathbf{D}(\overline{U} \times [0,1], E)$ and any maps $g \in \mathbf{C}(\overline{U}, \overline{U} \times [0,1])$ and $f \in \mathbf{C}(\overline{U} \times [0,1])$, $\overline{U} \times [0,1]$) then $\Theta \circ g \in \mathbf{D}(\overline{U}, E)$ and $\Theta \circ f \in \mathbf{D}(\overline{U} \times [0,1], E)$; here \mathbf{C} denotes the class of single valued continuous functions.

Remark 2.12. There is an analogue Remark 2.5 in this situation also.

Definition 2.13. Let $F, G \in A_{\partial U}(\overline{U}, E)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if for any selection $\Psi \in D_{\partial U}(\overline{U}, E)$ (respectively, $\Lambda \in D_{\partial U}(\overline{U}, E)$) of F (respectively, of G) we have $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11).

Definition 2.14. Let $F \in A_{\partial U}(\overline{U}, E)$ and write $F^* = I \times F$. We say $F^* : \overline{U} \to 2^{\overline{U} \times E}$ is d- Φ -essential if for any selection $\Psi \in D(\overline{U}, E)$ of F and any map $J \in D_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \Psi|_{\partial U}$ and $J \cong \Psi$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11) we have that $d\left((\Psi^*)^{-1}(B)\right) = d\left((J^*)^{-1}(B)\right) \neq d(\emptyset)$; here $\Psi^* = I \times \Psi$ and $J^* = I \times J$.

Remark 2.15. If F^* is d- Φ -essential then for any selection $\Psi \in D(\overline{U}, E)$ of F (with $\Psi^* = I \times \Psi$) we have

$$\emptyset \neq (\Psi^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, \Psi(x)) \cap (x, \Phi(x)) \neq \emptyset \},\$$

so there exists a $x \in U$ with $(x, \Psi(x)) \cap (x, \Phi(x)) \neq \emptyset$ (i.e. $\Phi(x) \cap \Psi(x) \neq \emptyset$ so in particular $\Phi(x) \cap F(x) \neq \emptyset$).

Theorem 2.16. Let *E* be a completely regular (respectively, normal) topological space, *U* an open subset of *E*, $B = \{(x, \Phi(x)) : x \in \overline{U}\}$, *d* is defined in (2.3), $F \in A_{\partial U}(\overline{U}, E)$, $G \in A_{\partial U}(\overline{U}, E)$ with $F^* = I \times F$ and $G^* = I \times G$. Suppose G^* is *d*- Φ -essential and

 $\begin{cases} \text{for any selection } \Psi \in D_{\partial U}(\overline{U}, E) \quad (\text{respectively, } \Lambda \in D_{\partial U}(\overline{U}, E)) \\ \text{of } F \quad (\text{respectively, of } G) \text{ and any map } J \in D_{\partial U}(\overline{U}, E) \\ \text{with } J|_{\partial U} = \Psi|_{\partial U} \quad \text{and } J \cong \Psi \quad \text{in } D_{\partial U}(\overline{U}, E) \\ \text{we have } \Lambda \cong J \quad \text{in } D_{\partial U}(\overline{U}, E) \quad (\text{Definition } 2.11) \text{ and} \\ d\left((\Psi^{\star})^{-1} (B)\right) = d\left((\Lambda^{\star})^{-1} (B)\right); \text{ here } \Psi^{\star} = I \times \Psi \text{ and } \Lambda^{\star} = I \times \Lambda. \end{cases}$

Then F^{\star} is d- Φ -essential.

Proof: Let $\Psi \in D_{\partial U}(\overline{U}, E)$ be any selection of F and consider any map $J \in D_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \Psi|_{\partial U}$ and $J \cong \Psi$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11). We must show $d\left((\Psi^*)^{-1}(B)\right) = d\left((J^*)^{-1}(B)\right) \neq d(\emptyset)$; here $\Psi^* = I \times \Psi$ and $J^* = I \times J$. Let $\Lambda \in D_{\partial U}(\overline{U}, E)$ be any selection of G and let $\Lambda^* = I \times \Lambda$. Now (2.4) guarantees that there exists a map $H : \overline{U} \times [0, 1] \to 2^E$ with $H \in \mathbf{D}(\overline{U} \times [0, 1], E), \ \Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0, 1)$ (here $H_t(x) = H(x, t)$), $\{x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t)) \neq \emptyset$ for some $t \in [0, 1]\}$ is compact (resp., closed), for any continuous map $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$ we have

$$\left\{x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t \eta(x))) \neq \emptyset \text{ for some } t \in [0, 1]\right\}$$

is closed, $H_0 = \Lambda$ and $H_1 = J$ and $d\left(\left(\Psi^\star\right)^{-1}(B)\right) = d\left(\left(\Lambda^\star\right)^{-1}(B)\right)$. Let

$$\Omega = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t)) \neq \emptyset \text{ for some } t \in [0, 1] \right\}.$$

Now $\Omega \neq \emptyset$ since G^* is $d-\Phi$ -essential (and $H_0 = \Lambda$). Also Ω is compact (respectively, closed) if E is a completely regular (respectively, normal) topological space. Next note $\Omega \cap \partial U = \emptyset$ so there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define a map R by $R(x) = H(x, \mu(x))$ for $x \in \overline{U}$ and write $R^* = I \times R$. Note $R \in D_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = H_0|_{\partial U} = \Lambda|_{\partial U}$. Next we show $\Lambda \cong R$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11). To see this let $Q: \overline{U} \times [0,1] \to 2^E$ be given by $Q(x,t) = H(x, t \mu(x))$. Now as in Theorem 2.9 note $Q \in \mathbf{D}(\overline{U} \times [0,1], E)$, $Q_0 = \Lambda$, $Q_1 = R$ and $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0, 1)$, also

$$\left\{ x \in \overline{U} : \ (x, \Phi(x)) \cap (x, Q(x, t)) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$
$$= \left\{ x \in \overline{U} : \ (x, \Phi(x)) \cap (x, H(x, t \, \mu(x))) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$

is closed so $\{x \in \overline{U} : (x, \Phi(x)) \cap (x, Q(x, t)) \neq \emptyset$ for some $t \in [0, 1]\}$ is compact (respectively, closed) (note

$$\begin{aligned} \left\{ x \in \overline{U} : \ (x, \Phi(x)) \cap (x, H(x, t\,\mu(x))) \neq \emptyset \ \text{ for some } t \in [0, 1] \right\} \\ & \subseteq \left\{ x \in \overline{U} : \ (x, \Phi(x)) \cap (x, H(x, s)) \neq \emptyset \ \text{ for some } s \in [0, 1] \right\}), \end{aligned}$$

and finally for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, note if $w(x) = \eta(x) \mu(x)$ (so $w: \overline{U} \to [0,1]$ with $w(\partial U) = 0$) then

$$\left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, Q(x, t \eta(x))) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$
$$= \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t w(x))) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$

is closed. Thus $R \in D_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = \Lambda|_{\partial U}$ and $\Lambda \cong R$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11). Since G^* is d- Φ -essential then

(2.5)
$$d\left(\left(\Lambda^{\star}\right)^{-1}(B)\right) = d\left(\left(R^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$$

Now since $\mu(\Omega) = 1$ we have

$$(R^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, \mu(x))) \neq \emptyset \}$$

= $\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, 1)) \neq \emptyset \} = (J^{\star})^{-1} (B),$

so from (2.5) we have $d\left((\Lambda^{\star})^{-1}(B)\right) = d\left((J^{\star})^{-1}(B)\right) \neq d(\emptyset)$. Now combine with the above and we have $d\left((\Psi^{\star})^{-1}(B)\right) = d\left((J^{\star})^{-1}(B)\right) \neq d(\emptyset)$. \Box

Now assume

(2.6) \cong in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11) is an equivalence relation.

Theorem 2.17. Let E be a completely regular (respectively, normal) topological space, U an open subset of E, $B = \{(x, \Phi(x)) : x \in \overline{U}\}$, d is defined in (2.3), and assume (2.6) holds. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, E)$ with $F^* = I \times F$, $G^* = I \times G$ and $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ (Definition 2.13). Then F^* is d- Φ -essential if and only if G^* is d- Φ -essential.

Proof: Assume G^* is d- Φ -essential. Let $\Psi \in D_{\partial U}(\overline{U}, E)$ be any selection of $F, \Lambda \in D_{\partial U}(\overline{U}, E)$ be any selection of G and consider any map $J \in D_{\partial U}(\overline{U}, E)$

with $J|_{\partial U} = \Psi|_{\partial U}$ and $J \cong \Psi$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11). If we show (2.4) then F^* is d- Φ -essential from Theorem 2.16. Now since $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ (Definition 2.13) (so $\Psi \cong \Lambda$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11)) then (2.6) guarantees that $\Lambda \cong J$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11). To complete (2.4) it remains to show $d\left((\Psi^*)^{-1}(B)\right) = d\left((\Lambda^*)^{-1}(B)\right)$; here $\Psi^* = I \times \Psi$ and $\Lambda^* = I \times \Lambda$. We will show this by following the argument in Theorem 2.16. Note $G \cong F$ in $A_{\partial U}(\overline{U}, E)$ (Definition 2.13) so let $H : \overline{U} \times [0, 1] \to 2^E$ with $H \in \mathbf{D}(\overline{U} \times [0, 1], E), \ \Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0, 1)$ (here $H_t(x) = H(x, t)), \ \{x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t)) \neq \emptyset$ for some $t \in [0, 1]\}$ is compact (resp., closed), for any continuous map $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) =$ 0 we have

$$\left\{x \in \overline{U}: (x, \Phi(x)) \cap (x, H(x, t\eta(x))) \neq \emptyset \text{ for some } t \in [0, 1]\right\}$$

is closed, $H_0 = \Lambda$ and $H_1 = \Psi$. Let

$$\Omega = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t)) \neq \emptyset \text{ for some } t \in [0, 1] \right\}.$$

Now $\Omega \neq \emptyset$ and there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define the map R by $R(x) = H(x, \mu(x))$ and write $R^* = I \times R$. Note (as in Theorem 2.16) $R \in D_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = \Lambda|_{\partial U}$ and $\Lambda \cong R$ in $D_{\partial U}(\overline{U}, E)$ (Definition 2.11) so since G^* is d- Φ -essential then $d\left((\Lambda^*)^{-1}(B)\right) = d\left((R^*)^{-1}(B)\right) \neq d(\emptyset)$. Now since $\mu(\Omega) = 1$ we have (see the argument in Theorem 2.16) $(R^*)^{-1}(B) = (\Psi^*)^{-1}(B)$ and as a result we have $d\left((\Psi^*)^{-1}(B)\right) = d\left((\Lambda^*)^{-1}(B)\right)$. \Box

Remark 2.18. It is also easy to extend the above ideas to other natural situations [3, 4]. Let E be a (Hausdorff) topological vector space (so automatically completely regular), Y a topological vector space, and U an open subset of E. Also let $L : dom L \subseteq E \to Y$ be a linear (not necessarily continuous) single valued map; here dom L is a vector subspace of E. Finally $T : E \to Y$ will be a linear, continuous single valued map with $L+T : dom L \to Y$ an isomorphism (i.e. a linear homeomorphism); for convenience we say $T \in H_L(E,Y)$. We say $F \in A(\overline{U}, Y; L, T)$ if $(L + T)^{-1}(F + T) \in A(\overline{U}, E)$ and we could discuss Φ -essential and d- Φ -essential in this situation.

References.

[1]. G. Gabor, L. Gorniewicz and M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, *Set-Valued Anal.*, **17**(2009), 1–19. [2]. A. Granas, Sur la méthode de continuité de Poincaré, C.R. Acad. Sci. Paris, **282**(1976), 983–985.

[3]. D. O'Regan, Essential maps and coincidence principles for general classes of maps, *Filomat*, **31**(2017), 3553–3558.

[4]. D. O'Regan, Topological transversality principles and general coincidence theory, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 25(2017), 159–170.

[5]. R. Precup, On the topological transversality principle, Nonlinear Anal., **20**(1993), 1–9.

Donal O'Regan, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland. Email: donal.oregan@nuigalway.ie TOPOLOGICAL TRANSVERSALITY COINCIDENCE THEORY FOR MULTIVALUED MAPS WITH SELECTIONS IN A GIVEN CLASS