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δss-supplemented modules and rings

Burcu Nişancı Türkmen and Ergül Türkmen

Abstract

In this paper, we introduce the concept of δss-supplemented modules
and provide the various properties of these modules. In particular, we
prove that a ring R is δss-supplemented as a left module if and only
if R

Soc(RR)
is semisimple and idempotents lift to Soc(RR) if and only

if every left R-module is δss-supplemented. We define projective δss-
covers and prove the rings with the property that every (simple) module
has a projective δss-cover are δss-supplemented. We also study on δss-
supplement submodules.

1 Introduction

Throughout this paper, all rings are associative with identity and all modules
are unitary left modules. Let R be such a ring and M be an R-module. The
notation N ⊆ M means that N is a submodule of M . Soc(M) and Rad(M)
will stand for the socle of M and the radical of M . Let M be a module.
A submodule L ⊆ M is said to be essential in M , denoted as L E M , if
L ∩ N 6= 0 for every non-zero submodule N ⊆ M . A module M is called
singular if M ∼= N

L for some module N and an essential submodule L E N .
As a dual to the notion of an essential submodule, a submodule N of M is
said to be small in M , denoted by N � M , if M 6= N + K for every proper
submodule K of M ([13, 19.1]). A non-zero module M is called hollow if every
proper submodule of M is small in M , and it is called local if it is hollow and
finitely generated.
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Let M be a module and U, V be submodules of M . The submodule V is
said to be supplement of U in M or U is said to have a supplement V in M if
V is minimal with respect to M = U + V . It is well known that a submodule
V of M is a supplement of U in M if and only if M = U +V and U ∩V � V .
M is called supplemented if every submodule U of M has a supplement in M .
A submodule U of M has ample supplements in M if every submodule L of
M such that M = U +L contains a supplement of U in M . The module M is
called amply supplemented if every submodule of M has ample supplements in
M . Semisimple modules and hollow modules are (amply) supplemented ([13,
41]).

Zhou [15] generalizes small submodules to δ-small submodules of a module
M as follows. A submodule N ⊆M is said to be δ-small in M and indicated
by N �δ M if M 6= N + K for every proper submodule K of M with M

K
singular. It is clear that every small submodule or projective semisimple sub-
module of M is δ-small in M . By δ(M) we will denote the sum of all δ-small
submodules of M as in [15, Lemma 1.5 (2)]. Since Rad(M) is the sum of all
small submodules of M , it follows that Rad(M) ⊆ δ(M) for a module M . For
an arbitrary ring R, let δ(R) = δ(RR).

Let M be a module. In [7], M is said to be δ-supplemented if every
submodule U of M has a δ-supplement V in M , that is, M = U + V and
U∩V �δ V . The module M is called amply δ-supplemented if, whenever M =
U + V , U has a δ-supplement V

′ ⊆ V . Clearly, every (amply) supplemented
module is (amply) δ-supplemented. For characterizations of supplemented and
δ-supplemented modules we refer to [1], [7] and [13].

In [6], the authors define ss-supplemented modules as a proper general-
ization of semisimple modules. A module M is said to be ss-supplemented if
every submodule U of M has a supplement V in M such that U∩V is semisim-
ple. They give in the same paper the structure of ss-supplemented modules.
In particular, it is shown in [6, Theorem 41] that a ring R is semiperfect and
Rad(R) ⊆ Soc(RR) if and only if every left R-module is ss-supplemented if
and only if RR is the finite sum of strongly local submodules. Here a module
M is called strongly local if it is local and the radical is semisimple ([6]).

Motivated by these results, we introduce the concept of δss-supplemented
modules. In this paper, we study on δss-supplemented modules and we obtain
the various properties of these modules. We show that strongly δ-local (see
below) modules are δss-supplemented. Every direct sum of strongly δ-local
modules and projective semisimple modules is coatomic. The class of δss-
supplemented modules is closed under finite sums and factor modules. We
prove that a module M with δ-small δ(M) is δss-supplemented if and only
if it δ-supplemented and δ(M) ⊆ Soc(M). We study on the rings with the
property that every left module is δss-supplemented and call these rings left
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δss-perfect. We also show that a ring R is left δss-perfect if and only if RR is
δss-supplemented if and only if R

Soc(RR) is semisimple and idempotents lift to

Soc(RR) if and only if for any module every maximal submodule has a δss-
supplement in the module. We define projective δss-covers and prove that a
ring is left δss-perfect if and only if every left module has a projective δss-cover
if and only if every semisimple left module has a projective δss-cover if and
only if every simple left R-module has a projective δss-cover. We also study
on δss-supplement submodules.

The following lemma follows from [15, Lemma 1.2] and we will use it
throughout the paper.

Lemma 1.1. Let M be a module. A submodule N ⊆M is δ-small in M if and
only if whenever X + N = M there exists a projective semisimple submodule
N

′
of N such that X ⊕N ′

= M .

It is obvious that a module M is projective semisimple if and only if M �δ

M . A ring R is called local if RR (or RR) is a local module.

Remark 1.2. Let R be a commutative domain (which is not field) or a local
ring and M be a non-zero R-module. Suppose that a submodule N of M is
δ-small in M . Let M = N + K for some submodule K of M . Then there
exists a projective semisimple submodule N

′
of N such that M = N

′⊕K. By
[12, Proposition 2.5], we get that N

′
= 0 and so K = M . It means that N is

a small submodule of M .

2 Strongly δ-Local Modules

It is well known that M is local if and only if Rad(M) � M and Rad(M) is
maximal. Using this characterization, δ-local modules are defined in [4]. A
module M is called δ-local if δ(M) �δ M and δ(M) is maximal. Maybe, it
is expected that local modules are also δ-local. But unfortunately, it is not
the case. Let S be a simple module. Since S is projective or singular, it is
δ(S) = S or δ-local. It follows that a projective simple module is local but not
δ-local.

As we have mentioned in the introduction, a module M is strongly local if
it is local and Rad(M) is semisimple ([6]). Note that every simple module is
strongly local.

We say that a module M strongly δ-local if it is δ-local and δ(M) ⊆
Soc(M). It is clear that every strongly δ-local module is δ-local but the con-
verse is not true in general. For example, let M be the left Z-module Z8. Then
M is δ-local but not strongly δ-local. Then we have the following implications
on modules:
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singular simple

vv ))
strongly local

��

strongly δ − local

��
local δ − local

We start the next lemma which are taken from [15, Lemma 1.3 and Lemma
1.5]. Recall that a module M coatomic if every proper submodule of M is
contained in a maximal submodule of M . Note that a coatomic module has
small radical.

Lemma 2.1. Let M be a module.

(1) For any submodules N and L of M , N+L�δ M if and only if N �δ M
and L�δ M .

(2) If K �δ M and f : M −→ N is a homomorphism, then f(K) �δ N .
In particular, if M ⊆ N , then K �δ N .

(3) If f : M −→ N is a homomorphism, then f(δ(M)) ⊆ δ(N).

(4) If M =
⊕

i∈IMi, then δ(M) =
⊕

i∈I δ(Mi).

(5) If M is coatomic, then δ(M) is the unique largest δ-small submodule of
M .

It is well known that every (strongly) local module is indecomposable. On
the other hand, the following theorem gives a characterization of a semisimple
module which is strongly δ-local. Firstly we need the following facts.

Lemma 2.2. Let M be a module and let N be a semisimple submodule of M
such that N ⊆ δ(M). Then N �δ M .

Proof. Let K be a submodule such that M = N +K. Since N is semisimple,
then there exists a semisimple submodule X of N such that N = (N ∩K)⊕X.
Therefore M = [(N ∩K)⊕X] +K = X ⊕K.

Next we prove that X is projective. Let X = ⊕i∈ISi, where I is some
index set and each Si is simple. Since X ⊆ N ⊆ δ(M), by the modular law,
we have δ(M) = δ(M)∩M = δ(M)∩ (X⊕K) = X⊕ (K∩δ(M)) = X⊕δ(K).
Note that, by Lemma 2.1 (4), δ(M) = δ(X) ⊕ δ(K) . Therefore X = δ(X).
Let πi : X −→ Si be the canonical projection. It follows from Lemma 2.1 (3)
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that Si = πi(X) = πi(δ(X)) ⊆ δ(Si) and so δ(Si) = Si, for all i ∈ I. This
implies that each Si is projective for all i ∈ I. Then X = ⊕i∈ISi is projective
as the direct sum of projective submodules. Hence N �δ M .

Observe from Lemma 2.2 that a module M is strongly δ-local if and only
if δ(M) is maximal and semisimple. It follows that a semisimple module is
strongly δ-local if and only if δ(M) is maximal. The following result is a direct
consequence of Lemma 2.2.

Corollary 2.3. Let M be a module. Then M is semisimple and δ(M) = M
if and only if it is projective semisimple.

Theorem 2.4. Let M be a semisimple module. Then M is strongly δ-local if
and only if M has the decomposition M = M1⊕M2, where M1 is a projective
semisimple submodule and M2 is a singular simple submodule.

Proof. (=⇒) Let M be a strongly δ-local module. Since δ(M) is maximal
and M is semisimple, there exists a simple submodule M2 of M such that
M = δ(M) ⊕M2. Put M1 = δ(M). Since M1 = δ(M) �δ M , it follows
from Lemma 2.1 (2) that M1 �δ M1 and so M1 is semisimple projective by
Corollary 2.3. Therefore δ(M2) ⊆ δ(M)∩M2 = 0 and so δ(M2) = 0. It means
that M2 is singular. Hence we get the decomposition M = M1⊕M2 as desired.

(⇐=) Clearly, δ(M1) = M1 �δ M1 and δ(M2) = 0�δ M . It follows from
Lemma 2.1 (2)-(4) that δ(M) = δ(M1) ⊕ δ(M2) = M1 ⊕ 0 is δ-small in M .
Since δ(M) is maximal, we deduce that M is strongly δ-local.

Observe from Theorem 2.4 that any factor module (in particular, direct
summand) of a strongly δ-local module need not be strongly δ-local in general.

Proposition 2.5. Let M be an indecomposable module. If M is strongly
δ-local, then it is strongly local.

Proof. If M is simple, then it is singular simple because M is strongly δ-
local. Suppose that M is not singular simple. Since M is indecomposable, we
get that Soc(M) ⊆ Rad(M). This implies that Soc(M) � M . Since M is
strongly δ-local, we have δ(M) ⊆ Soc(M) and so δ(M) = Soc(M) is maximal.
Therefore Soc(M) = Rad(M). Thus M is strongly local.

Proposition 2.6. Let R be a local ring. If M is a strongly δ-local R-module,
then it is a strongly local R-module.

Proof. By Remark 1.2.

Proposition 2.7. Let M be a module. Assume that M
δ(M) is semisimple. Then

M is coatomic if and only if δ(M) is δ-small in M .
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Proof. (=⇒) By Lemma 2.1 (5).
(⇐=) If δ(M) = M , then clearly M �δ M and so M is projective semisim-

ple. Let δ(M) 6= M and let U be any submodule of M . If U + δ(M) = M ,
then there exists a (projective) semisimple submodule S of δ(M) such that
U ⊕ S = M . Let S = ⊕i∈ISi, where (i ∈ I) Si is simple and I is some index
set. For some i0 ∈ I, put U

′
= U ⊕ (⊕i∈I\{i0}Si). Then clearly U ⊆ U

′
.

Therefore M
U ′
∼= Si0 and hence U

′
is a maximal submodule of M . Suppose

that U + δ(M) 6= M . Then U+δ(M)
δ(M) is a proper submodule of M

δ(M) . Since
M
δ(M) is semisimple, there exists a maximal submodule K

δ(M) of M
δ(M) such that

U+δ(M)
δ(M) ⊆ K

δ(M) . So K is a maximal submodule of M which contains U . It

means that M is coatomic.

Recall that a module M is called radical if M has no maximal submodules,
that is, M = Rad(M). Let P (M) be the sum of all radical submodules of M .
It is easy to see that P (M) is the largest radical submodule of M . If P (M) = 0,
M is called reduced.

Corollary 2.8. Any strongly δ-local module is reduced and coatomic.

Proof. Let M be a strongly δ-local module. Therefore δ(M) ⊆ Soc(M). Since
Rad(M) ⊆ δ(M), it follows that M is reduced. Since M

δ(M) is simple, we get

M is coatomic by Proposition 2.7.

Theorem 2.9. Let M = ⊕i∈IMi, where each Mi is either strongly δ-local or
projective semisimple. Then M is coatomic.

Proof. Note that M
δ(M) = π(M) ∼=

⊕
i∈I

Mi

δ(Mi)
. Let i0 ∈ I. If Mi0 is projective

semisimple, then δ(Mi0) = Mi0 and so the factor module
Mi0

δ(Mi0
) = 0. It

follows that we can consider the module M
δ(M) is the direct sum of simple

modules Mk

δ(Mk) , where (k ∈ Λ) Mk is strongly δ-local and Λ ⊆ I. Thus M
δ(M)

is semisimple.
By Proposition 2.7, it is enough to prove that δ(M) is δ-small in M . By

the hypothesis, we have δ(Mi) ⊆ Soc(Mi). Applying Lemma 2.1 (4) and [13,
21.2 (5)], we obtain that δ(M) = ⊕i∈Iδ(Mi) ⊆ ⊕i∈ISoc(Mi) = Soc(M). That
is, δ(M) is semisimple. It follows from Lemma 2.2 that δ(M) is δ-small in M .
This completes the proof.

3 δss-Supplement Submodules

Let M be a module. By Socs(M) we denote the sum of all simple submodules
of M that are small in M as in [14]. Since every small submodule of M
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is δ-small in M , the notation motives us to introduction the sum all simple
submodules of M that are δ-small in M . For a module M , let

Socδ(M) =
∑
{S ⊆M |S is simple andS �δ M }.

The properties of Socδ(M) for a module M are given in the next proposi-
tion.

Proposition 3.1. Let R be a ring and M be a left R-module. Then:

(1) Socδ(M) = Soc(M) ∩ δ(M),

(2) Socδ(M)�δ M ,

(3) Rad(Socδ(M)) = 0,

(4) Socδ(M) = M if and only if M is projective semisimple,

(5) If M
′

is a left R-module and f : M −→ M
′

is a homomorphism, then
f(Socδ(M)) ⊆ Socδ(f(M)).

Proof. (1) Let x ∈ δ(M)∩Soc(M). Then Rx�δ M and Rx is semisimple. So
there exist m ∈ Z+ and simple submodules Si of M for every i ∈ {1, 2, . . . ,m}
such that Rx = S1 ⊕ S2 ⊕ · · · ⊕ Sm by [10, Proposition 3.3]. Since Rx�δ M ,
it follows from Lemma 2.1 (2) that each Si �δ M . Thus x ∈ Rx ⊆ Socδ(M).
The converse is clear by the definition of Socδ(M).

(2) Clearly, Socδ(M) is semisimple. Then the proof follows from Lemma
2.2.

(3) Since semisimple modules have zero radical, it is clear.
(4) Let Socδ(M) = M . By (1), we get M is semisimple and δ(M) = M .

Hence M is projective semisimple by Corollary 2.3. The converse is clear.
(5) Let f : M −→M

′
be a homomorphism of modules and x ∈ f(Socδ(M)).

Then x = f(m) for some element m ∈ Socδ(M). Applying (1), we obtain that
m ∈ Soc(M)∩δ(M). Therefore x = f(m) ∈ f(Rm) ⊆ Soc(f(M)) by [13, 21.2
(1)] and x = f(m) ∈ f(Rm) ⊆ δ(f(M)) by Lemma 2.1 (3). It means that
x ∈ Soc(f(M))∩ δ(f(M)). Again applying (1), we have x ∈ Socδ(f(M)).

Let M be a module and S be a simple submodule of M . Then S �M or
we have the decomposition M = S ⊕K for some submodule K of M . Using
this fact we have:

Corollary 3.2. Let M be a module and let S be a simple submodule of M .
Then S �δ M if and only if S is projective or small in M .

Proof. Let S �δ M . Suppose that S is not small in M . Then we get M =
S⊕K. By the assumption, S is projective as desired. The converse is clear.
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Let M be a module and U, V be submodules of M . Following [6], V is
called ss-supplement of U in M if M = U +V and U ∩V ⊆ Socs(V ). For any
left module X, we have Socs(X) ⊆ Socδ(X) and so it is natural to introduce
another notion that we called δss-supplement. A submodule V of M is called
δss-supplement of U in M if M = U + V and U ∩ V ⊆ Socδ(V ). Under given
definitions we obtain the following diagram:

ss− supplement

vv ))
supplement

((

δss − supplement

uu
δ − supplement

Modifying of [6, Lemma 3] we characterize δss-supplement submodules of
a module M . Note that we shall freely use the next lemma without reference
in this paper.

Lemma 3.3. Let M be a module and U, V be submodules of M . Then the
following statements are equivalent.

(1) V is a δss-supplement of U in M ,

(2) M = U + V , U ∩ V ⊆ δ(V ) and U ∩ V is semisimple,

(3) M = U + V , U ∩ V �δ V and U ∩ V is semisimple.

Proof. Using Proposition 3.1, we have clearly (1)⇒ (2) and (3)⇒ (1).
(2)⇒ (3) It follows from Lemma 2.2.

Proposition 3.4. Let M be a module and U be a maximal submodule of M .
If U has a δss-supplement V in M , then V is strongly δ-local or projective
semisimple

Proof. Let V be a δss-supplement of U in M . Then M = U+V , U ∩V ⊆ δ(V )
and U ∩ V is semisimple. Note that M

U
∼= V

U∩V is simple and thus U ∩ V is a
maximal submodule of V . Hence δ(V ) = U ∩V or δ(V ) = V . If δ(V ) = U ∩V ,
then δ(V ) ⊆ Soc(V ). Therefore V is strongly δ-local. Now suppose that
δ(V ) = V . By [11, Lemma 2.22], we get that V is projective semisimple.

Proposition 3.5. Let M be module and let V ⊆ M be a δss-supplement in
M .
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(1) If L is a submodule of V , then V
L is a δss-supplement in M

L ,

(2) Whenever V ⊆ K ⊆M , V is also a δss-supplement in K,

(3) Socδ(V ) = V ∩ Socδ(M).

Proof. Since V is a δss-supplement in M , then there exists a submodule U of
M such that M = U + V , U ∩ V �δ V and U ∩ V is semisimple.

(1) Since M = U + V , we have M
L = (U+L

L ) + V
L . Let π : V −→ V

L
be the canonical homomorphism. Then by Lemma 2.1 (2), we obtain that

π(U ∩ V ) = (U∩V )+L
L = (U+L)∩V

L = (U+L
L ) ∩ V

L �δ
V
L . It follows from [5,

8.1.5 (2)] that π(U ∩ V ) = (U+L
L ) ∩ V

L is semisimple. It means that V
L is a

δss-supplement of U+L
L in M

L .
(2) By the modular law, we have K = K ∩M = K ∩ (U +V ) = U ∩K+V .

Therefore (U ∩K) ∩ V = U ∩ V ⊆ Socδ(V ).
(3) It follows from Proposition 3.1, [4, Corollary 2.5] and [13, 21.2 (2)] that

we can write V ∩Socδ(M) = V ∩[Soc(M)∩δ(M)] = [V ∩Soc(M)]∩[V ∩δ(M)] =
Soc(V ) ∩ δ(V ) = Socδ(V ).

Lemma 3.6. Let M be a module and let K be a direct summand of M . Then a
submodule V ⊆ K is a δss-supplement in K if and only if it is a δss-supplement
in M .

Proof. (=⇒) By the hypothesis, we have M = K ⊕ L where L ⊆ M . Since
V is a δss-supplement in K, then there exists a submodule U of K such that
K = U + V , U ∩ V <<δ V and U ∩ V is semisimple. So M = (U + V )⊕ L =
(U ⊕ L) + V . It can be seen that (U ⊕ L) ∩ V = U ∩ V . Hence V is a
δss-supplement of U ⊕ L in M .

(⇐=) By Proposition 3.5 (2).

Theorem 3.7. Let M be a module. Then M is a δss-supplement in every
extension if and only if it is a δss-supplement in E(M), where E(M) is the
injective hull of M .

Proof. One direction is clear. Conversely, let M ⊆ N . Then we have E(M) ⊆
E(N). So by [10, Theorem 2.15], E(N) = E(M) ⊕ L for some submodule L
of E(N). Since M is a δss-supplement in E(M), it follows from Lemma 3.6
that it is a δss-supplement in E(N). Hence M is a δss-supplement in N by
Proposition 3.5 (2).

Proposition 3.8. Let M be a module with Socδ(M) = 0. Then M is a
δss-supplement in E(M) if and only if it is injective.
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Proof. Let M be a δss-supplement in E(M). Then there exists a submodule
N of E(M) such that E(M) = N + M and N ∩ M ⊆ Socδ(M). Since
Socδ(M) = 0, we obtain that N ∩M = 0. Thus E(M) = N ⊕M . It means
that M is injective. The converse is clear.

Let R be a commutative domain and M be an R-module. We denote
by Tor(M) the set of all elements m of M for which there exists a non-zero
element r of R such that rm = 0, i.e. Ann(m) 6= 0. Then Tor(M), which is a
submodule of M , called the torsion submodule of M . If M = Tor(M), then M
is called a torsion module and M is called torsion-free provided Tor(M) = 0.

Let R be a commutative domain which is not field and M be an R-module.
Suppose that S is a simple submodule of M . Let m be a non-zero element
of S. Then Rm = S and so we can write S ∼= R

Ann(m) . Since R is not field,

Ann(m) 6= 0. Therefore, for some non-zero element r ∈ R, we get rm = 0.
So m ∈ Tor(M). It means that Soc(M) ⊆ Tor(M). Using this fact and
Proposition 3.8, we obtain that the next result. By Remark 1.2, we get that
δss-supplements are ss-supplements in this case.

Corollary 3.9. Let R be a commutative domain which is not field and M be
a torsion-free R-module. Then M is a ss-supplement in E(M) if and only if
it is injective.

Proof. Since M is torsion-free, we get that Socδ(M) = 0. It follows from
Proposition 3.8 that the proof is clear.

Let R be a commutative domain which is not field. R is said to be one
dimensional if, for every non-zero ideal I of R, R

I is an artinian ring.

Corollary 3.10. Let R be a one dimensional domain and M be a torsion-free
R-module. Then the following statements are equivalent:

(1) M is a ss-supplement in E(M) ,

(2) M is injective,

(3) M is radical, i.e. M has no maximal submodules.

Proof. By Corollary 3.9 and [2, Lemma 4.4]

Proposition 3.11. Let R be a Dedekind domain and M be an R-module.
Then M is a ss-supplement in E(M) if and only if it is injective.

Proof. Let M be a ss-supplement of some submodule N in E(M). For every
non-zero element r ∈ R, we can write E(M) = rE(M) = rN + rM = N + rM
and so, by the minimality of M , we obtain that M is divisible. By [2, Lemma
4.4], M is injective.
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A module M is said to be π-projective if whenever U and V are submodules
of M such that M = U + V , there exists an endomorphism f of M such that
f(M) ⊆ U and (1 − f)(M) ⊆ V . Hollow (local) modules and self-projective
modules are π-projective.

Lemma 3.12. Let M be a π-projective module and U, V be submodules of
M . If U and V are mutual δ-supplements in M , then they are mutual δss-
supplements in M .

Proof. It follows from [7, Lemma 2.15].

Recall from [13, 41.16 (1)] that every supplement submodule of a π-projective
supplemented module is a direct summand. Analogous to that we have:

Corollary 3.13. Let M be a π-projective and δ-supplemented module. Then
every δ-supplement in M is δss-supplement in M .

Proof. Let V be a δ-supplement of some submodule U in M . Then M = U+V
and U ∩V �δ V . Since M is π-projective and δ-supplemented, it follows from
[1, Theorem 4.4] that it is amply δ-supplemented. So V has a δss-supplement
U

′ ⊆ U in M . Therefore V and U
′

are mutual δ-supplements in M . Thus by
Lemma 3.12, V is a δss-supplement in M .

Theorem 3.14. The following conditions are equivalent for a module M with
non-zero δ(M).

(1) every cyclic submodule of M is a δss-supplement in M ,

(2) every cyclic submodule of M is a δ-supplement in M ,

(3) M is projective semisimple.

Proof. (3) =⇒ (1) and (1) =⇒ (2) are clear.
(2) =⇒ (3) Let 0 6= m ∈ δ(M). By (2), there exists a submodule U of

M such that M = U + Rm and U ∩ Rm �δ Rm. Since Rm �δ M , we
can write M = X ⊕ Rm, where X is a projective semisimple submodule of
U . Since Rm is a δ-supplement in M , it follows from [4, Corollary 2.5] that
δ(Rm) = Rm ∩ δ(M) = Rm. By Lemma 2.1 (2), we get δ(Rm) = Rm �δ

Rm and so Rm is projective semisimple. Hence M = X ⊕ Rm is projective
semisimple.

Theorem 3.15. The following conditions are equivalent for a module M with
zero δ(M).

(1) every (resp., cyclic) submodule of M is a δss-supplement in M ,
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(2) every (resp., cyclic) submodule of M is a δ-supplement in M ,

(3) M is (resp., regular) semisimple.

Proof. (3) =⇒ (1) and (1) =⇒ (2) are clear.
(2) =⇒ (3) Since δ(M) = 0, every (cyclic) submodule of M is a direct

summand of M and so M is (regular) semisimple.

It is well known that a ring R is semisimple if and only if, for every left
R-module, every submodule is direct summad (see [13, 20.7]). Using Theorem
3.14 and Theorem 3.15, we generalize this fact.

Corollary 3.16. Let R be a ring. Then R is semisimple if and only if, for
every left R-module M , every submodule of M is δss-supplement in M .

4 δss-Supplemented Modules

In this section, we define the concept of δss-supplemented modules and obtain
the basic properties of such modules.

Let M be a module. We say that M a δss-supplemented module if ev-
ery submodule U of M has a δss-supplement V in M , and M amply δss-
supplemented if in case M = U + V implies that U has a δss-supplement
V

′ ⊆ V . It is clear that every (amply) ss-supplemented module is (am-
ply) δss-supplemented, and (amply) δss-supplemented modules are (amply)
δ-supplemented.

Now we begin by giving some examples of module to seperate (amply) ss-
supplemented, (amply) δss-supplemented and (amply) δ-supplemented. Firstly
we need the following facts:

Lemma 4.1. Every strongly δ-local module is δss-supplemented.

Proof. Let M be a strongly δ-local module and U be any submodule of M . If
U ⊆ δ(M), then U is semisimple since δ(M) is semisimple. By Lemma 2.2,
we get U �δ M . Thus M is the δss-supplement of U in M . Let U * δ(M).
Since δ(M) is maximal, we can write the equality M = U + δ(M). Then there
exists a projective semisimple submodule V of δ(M) such that M = U ⊕ V
because δ(M)�δ M . Hence M is δss-supplemented.

π-projective supplemented modules are amply supplemented. Similarly, we
show that π-projective δss-supplemented modules are amply δss-supplemented.
The proof is virtually the same that of [13, 41.15], but we give it for complete-
ness.

Proposition 4.2. Let M be a π-projective and δss-supplemented module.
Then M is amply δss-supplemented.
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Proof. Let U and V be submodules of M such that M = U + V . Since M is
π-projective, there exists an endomorphism f of M such that f(M) ⊆ U and
(1−f)(M) ⊆ V . Note that (1−f)(U) ⊆ U . Let V

′
be a δss-supplement of U in

M . ThenM = f(M)+(1−f)(M) = f(M)+(1−f)(U+V
′
) ⊆ U+(1−f)(V

′
) ⊆

M , so that M = U + (1− f)(V
′
). Here (1− f)(V

′
) is a submodule of V . Let

y ∈ U ∩ (1 − f)(V
′
). Then, y ∈ U and y = (1 − f)(x) = x − f(x) for some

x ∈ V
′
. We have x = y + f(x) ∈ U so that y ∈ (1 − f)(U ∩ V ′

). Since
U ∩ V ′ �δ V

′
, we get U ∩ (1− f)(V

′
) = (1− f)(U ∩ V ′

) �δ (1− f)(V
′
) by

[15, Lemma 1.3 (2)]. Also U ∩ (1 − f)(V
′
) = (1 − f)(U ∩ V ′

) is semisimple.
Thus, (1 − f)(V

′
) is a δss-supplement of U in M . Therefore M is amply

δss-supplemented.

Combining Proposition 4.2 and Lemma 4.1, we obtain the next result:

Corollary 4.3. A projective strongly δ-local module is amply δss-supplemented.

Example 4.4. (1) Consider the non-noetherian commutative ring S which is
the direct product

∏∞
i≥1 Fi, where Fi = Z2. Suppose that R is the subring of

S generated by
⊕∞

i=1 Fi and 1S . Let M =R R. Then M is a regular module
which is not semisimple. Therefore Soc(M) is maximal. By [15, Example
4.1], we have Soc(M) = δ(M) �δ M . This means that M is strongly δ-
local. Since M is projective, it follows from Lemma 4.1 and Corollary 4.3
that M is amply δss-supplemented. On the other hand, it is not (amply)
ss-supplemented because Rad(M) = 0.

(2) Let M be the local Z-module Zpk , for p is any prime integer and k ≥ 3.
It is clearly that M is amply δ-supplemented. Since Socδ(Zpk) = Soc(Zpk) ∼=
Zp and δ(M) = Rad(M) = pZpk , M is not (amply) δss-supplemented.

It is well known that artinian modules are (amply) δ-supplemented. Ex-
ample 4.4 (2) also shows that in general artinian modules need not to be δss-
supplemented. Now, we have the following implications the classes of modules:

artinian =⇒ supplemented =⇒ δ-supplemented

and

ss− supplemented

uu **
supplemented

))

δss − supplemented

tt
δ − supplemented
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Now we study on the various properties of δss-supplemented modules.

Proposition 4.5. Let M be a δ-local module. Then M is δss-supplemented if
and only if it is strongly δ-local.

Proof. (=⇒) Since M is δ-local, it suffices to show that δ(M) ⊆ Soc(M). Let
m ∈ δ(M). Then Rm �δ M . Since M is δss-supplemented, Rm has a δss-
supplement V in M . Therefore M = Rm+ V and Rm ∩ V is semisimple. So
we can write M = S ⊕ V , where S is a projective semisimple submodule of
Rm. Applying the modular law, we have Rm = Rm ∩M = Rm ∩ (S ⊕ V ) =
S⊕(Rm∩V ). So Rm is semisimple as the sum of two semisimple submodules.
Hence Rm ⊆ Soc(M). It means that δ(M) ⊆ Soc(M).

(⇐=) By Lemma 4.1.

Proposition 4.6. Let M be a δ-supplemented module with δ(M) ⊆ Soc(M).
Then M is δss-supplemented.

Proof. Let U ⊆ M . Since M is δ-supplemented, there exists a submodule V
of M such that M = U + V and U ∩ V �δ V . Then U ∩ V ⊆ δ(V ) ⊆ δ(M).
By the hypothesis, U ∩V ⊆ Soc(M). Therefore V is a δss-supplement of U in
M . It means that M is δss-supplemented.

Proposition 4.7. Let M be a δss-supplemented module. Then M
Socδ(M) is

semisimple.

Proof. Let Socδ(M) ⊆ U ⊆ M . Since M is δss-supplemented, there exists
a submodule V of M such that M = U + V and U ∩ V ⊆ Socδ(V ). Then

U ∩ V ⊆ Socδ(M) and so the sum M
Socδ(M) = U

Socδ(M) + V+Socδ(M)
Socδ(M) is direct

sum. Hence M
Socδ(M) is semisimple.

In order to prove that every finite sum of δss-supplemented modules is
δss-supplemented, we use the following standard lemma (see, [13, 41.2]).

Lemma 4.8. Let M be a module and U be a submodule of M . Suppose that
a submodule M1 of M is δss-supplemented. If M1 + U has a δss-supplement
in M , U has also a δss-supplement in M .

Proof. Suppose that X is a δss-supplement of M1 + U in M and Y is a δss-
supplement of (X+U)∩M1 inM1. SoM = M1+U+X, M1 = (X+U)∩M1+Y ,
(M1 + U) ∩ Y �δ Y , (X + U) ∩ Y �δ Y , (M1 + U) ∩ Y and (X + U) ∩ Y is
semisimple. Then M = (X +U)∩M1 + Y +U +X = U +X + Y and by [11,
Lemma 2.1 (2)] U∩(X+Y ) ⊆ X∩(U+Y )+Y ∩(U+X) ⊆ X∩(U+M1)+Y ∩
(U +X)�δ X + Y . Moreover, X ∩ (Y + U) is semisimple as a submodule of
semisimple module X ∩ (Y +U). Note that Y ∩ [(X+U)∩M1] = Y ∩ (X+U)
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is semisimple. It follows from [5, 8.1.5] that (X+Y )∩U is semisimple. Hence
X + Y is a δss-supplement of U in M .

Proposition 4.9. The class of δss-supplemented modules is closed under finite
sums.

Proof. Let Mi, i = 1, 2, . . . , n be any finite collection of δss-supplemented
modules and letM = M1+M2+· · ·+Mn. To prove thatM is δss-supplemented
by induction on n, it is sufficient to prove this in the case, where n = 2. Hence,
suppose n = 2. Let M1, M2 be any submodules of a module M such that
M = M1 +M2. If M1 and M2 are δss-supplemented, M is δss-supplemented.
Let U be any submodule of M . The trivial submodule 0 is δss-supplement
of M = M1 + M2 + U in M . Since M1 is δss-supplemented, M2 + U has a
δss-supplement in M by Lemma 4.8. Again applying Lemma 4.8, we have that
U has a δss-supplement in M . This shows that M is δss-supplemented.

A submodule U of a module M is said to be cofinite if M
U is finitely gen-

erated (see [2]). Note that maximal submodules of M are cofinite.

Proposition 4.10. Let M be a module. Then the following conditions are
equivalent.

(1) M is the sum of strongly δ-local or projective semisimple submodules,

(2) M is coatomic and every cofinite submodule of M has a δss-supplement
in M ,

(3) M is coatomic and every maximal submodule of M has a δss-supplement
in M .

Proof. (1) =⇒ (2) Let M =
∑
i∈IMi, where I is some index set and each

Mi is strongly δ-local submodules or projective semisimple submodules. Put
N =

⊕
i∈IMi. It follows from Theorem 2.9 that N is coatomic. Consider the

epimorphism ψ : N −→M via ψ((mi)i∈I) =
∑
i∈I mi for all (mi)i∈I ∈ N . By

[16, Lemma 1.5 (a)], we get M is coatomic.
Let U be any cofinite submodule of M . Then M

U is finitely generated and
so there exists a finite subset Λ ⊆ I such that M = U +

∑
i∈ΛMi. By Lemma

4.1 and Proposition 4.9, we obtain that
∑
i∈ΛMi is δss-supplemented as the

finite sum of δss-supplemented submodules. Hence U has a δss-supplement in
M according to Lemma 4.8.

(2) =⇒ (3) Clear.
(3) =⇒ (1) Let X be the sum of all strongly δ-local submodules or semisim-

ple projective submodules. Suppose that X 6= M . Since M is coatomic, there
exists a submodule U of M such that X ⊆ U ⊂ M . By the assumption, U
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has a δss-supplement, say V , in M . It follows from Proposition 3.4 that V
is projective simple or V is strongly δ-local. Then V ⊆ X ⊆ U . This is a
contradiction.

It is clear that every submodule of a finitely generated module is cofinite.
Using this fact and Proposition 4.10, we obtain the following result:

Corollary 4.11. Let M be a finitely generated module. Then the following
conditions are equivalent:

(1) M =
∑n
i=1Mi, where each Mi is strongly δ-local or projective semisim-

ple,

(2) M is δss-supplemented,

(3) every maximal submodule of M has a δss-supplement in M .

Theorem 4.12. Let M be a module. Then M is δss-supplemented if and only
if every submodule U of M containing Soc(M) has a δss-supplement in M .

Proof. One direction is clear. Conversely, let U ⊆ M . By the assumption,
Soc(M)+U has a δss-supplement V in M . Since Soc(M) is δss-supplemented,
it follows from Lemma 4.8 that U has a δss-supplement in M . Hence M is
δss-supplemented.

It is trivial to show that:

Corollary 4.13. Let R be a ring and M be an R-module.
(1) Soc(M) has a δss-supplement in M if and only if Soc(M) has a δ-

supplement in M .
(2) If R is a commutative domain, then Soc(M) has a δss-supplement in

M if and only if Soc(M) has a supplement in M .

Proposition 4.14. If M is a (amply) δss-supplemented module, then every
factor module of M is (amply) δss-supplemented.

Proof. Let M be a δss-supplemented module and M
L be a factor module of

M . By the assumption, for any submodule U of M which contains L, there
exists a submodule V of M such that M = U + V , U ∩ V �δ V and U ∩ V
is semisimple. Let π : M −→ M

L be the canonical projection. Then we have

that M
L = U

L + V+L
L and U

L ∩
V+L
L = (U∩V )+L

L = π(U ∩ V ) �δ π(V ) = V+L
L

by Lemma 2.1 (2). Since U ∩ V is semisimple, it follows from [5, 8.1.5 (2)]

that π(U ∩ V ) = (U∩V )+L
L is semisimple. That is, V+L

L is a δss-supplement of
U
L in M

L , as required.

It can be proved similarly that if M is amply δss-supplemented, then M
L is

amply δss-supplemented for every submodule L of M .
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Lemma 4.15. Let M be a δss-supplemented module and N �δ M . Then
N ⊆ Socδ(M).

Proof. Let K be a δss-supplement of N in M . Then M = N+K, N∩K �δ K
and N ∩K is semisimple. Since N �δ M , there exists a semisimple projective
submodule N

′
of N such that M = N

′ ⊕K. By the modular law, we obtain
that N = N

′ ⊕ (N ∩K). Hence N is semisimple.

Corollary 4.16. Let M be a coatomic module and M be a δss-supplemented
module. Then Rad(M) ⊆ δ(M) ⊆ Soc(M).

The following result is a generalization of Corollary 2.3.

Proposition 4.17. Let M be a δss-supplemented module and δ(M) = M .
Then M is projective semisimple.

Proof. Letm be any element ofM . It follows from δ(M) = M thatRm�δ M .
By the assumption and Lemma 4.15, we have Rm ⊆ Socδ(M) ⊆ Soc(M) and
so m ∈ Soc(M). Therefore M is semisimple. Hence it is projective semisimple
by Corollary 2.3.

Note that a hollow module is either radical or local. Observe from Propo-
sition 4.17 that a hollow-radical module is not δss-supplemented.

Proposition 4.18. Let M be a hollow module. If M is δss-supplemented,
then it is strongly local.

Proof. Let M be a δss-supplemented module. If δ(M) = M , it follows from
Proposition 4.17 that M is projective semisimple and so M is projective simple
because M is hollow. Assume that δ(M) 6= M . Since Rad(M) ⊆ δ(M) and
M is hollow, M is local. Therefore we have Rad(M) = δ(M) is maximal and
small in M . It follows from Lemma 4.15 that δ(M) ⊆ Socδ(M) ⊆ Soc(M). It
means that M is strongly local.

In the following next theorem we give the structure of a δss-supplemented
module M with δ-small δ(M) in terms of δ-supplemented modules.

Theorem 4.19. Let M be a module and δ(M) �δ M . Then the following
statements are equivalent:

(1) M is δss-supplemented,

(2) M is δ-supplemented and δ(M) has a δss-supplement in M ,

(3) M is δ-supplemented and δ(M) ⊆ Soc(M).

Proof. Clearly we have (1) =⇒ (2), and (2) =⇒ (3) follows from Lemma 4.15.
(3) =⇒ (1) By Proposition 4.6.
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5 Rings whose modules are δss-supplemented

It follows from [15] that a projective module P is called a projective δ-cover of
a module M if there exists an epimorphism f : P −→M with Ker(f)�δ P .
A ring R is called δ-semiperfect if every simple R-module has a projective
δ-cover, and it is called δ-perfect if every left R-module has a projective δ-
cover. It is proven in [7, Theorem 3.3 and Theorem 3.4] that a ring R is
δ-perfect (respectively, δ-semiperfect) if and only if every left (respectively,
finitely generated) R-module is δ-supplemented. Now we characterize the
rings the property that every left R-module is (amply) δss-supplemented.

Lemma 5.1. Let M be a module. If every submodule of M is δss-supplemented,
then M is amply δss-supplemented.

Proof. Let U and V be submodules of M such that M = U+V . Since V is δss-
supplemented, there exists a submodule V

′
of V such that V = (U ∩ V ) + V

′
,

U ∩ V ′ �δ V
′

and U ∩ V ′
is semisimple. Note that M = U + V = U + (U ∩

V ) + V
′

= U + V
′
. It means that U has ample δss-supplements in M . Hence

M is amply δss-supplemented.

A module M is called locally projective in case whenever g : N −→ K is
an epimorphism and f : M −→ K is a homomorphism then for every finitely
generated submodule M0 of M there exists a homomorphism h : M −→ N
such that gh|M0

= f |M0
. Every projective module is locally projective. Also,

a finitely generated locally projective module is projective.

Proposition 5.2. Let M be a locally projective module and N ⊆ Soc(M).
Then N �δ M .

Proof. Let M = N +K for some submodule K of M . Since N is semisimple,
we can write N = (N ∩ K) ⊕ X where X is a semisimple submodule of N .
Therefore the sum M = X + K is direct sum. Since being locally projective
is inherited by direct summands, it follows that every direct summand of
X is locally projective and so every simple submodule of X is projective.
Therefore X is projective as the direct sum projective simple submodules.
Hence N �δ M .

Theorem 5.3. Let R be a ring. Then the following statements are equivalent.

(1) RR is δss-supplemented,

(2) R is a δ-semiperfect ring and δ(R) = Soc(RR),

(3) R
Soc(RR) is semisimple and idempotents lift to Soc(RR),
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(4) every projective left R-module is δss-supplemented,

(5) every left R-module is (amply) δss-supplemented,

(6) for every left R-module M every maximal submodule has δss-supplement
in M ,

(7) every left maximal ideal of R has a δss-supplement in R.

Proof. (1) =⇒ (2) By the hypothesis, RR is δ-supplemented and so it follows
from [7, Theorem 3.3] that R is a δ-semiperfect ring. Since RR is coatomic,
it follows from Lemma 2.1 (5) that δ(R) is δ-small in RR. Applying Theorem
4.19, we get that δ(R) ⊆ Soc(RR). On the other hand, by Proposition 5.2,
Soc(RR) ⊆ δ(R) and so we obtain that the equality δ(R) = Soc(RR).

(2) =⇒ (3) By [15, Theorem 3.6].
(3) =⇒ (4) Let P be a projective left R-module. Since R

Soc(RR) is artinian

semisimple, it follows from [15, Corollary 1.7] that δ(R) = Soc(RR) and so
δ(P ) = δ(R)P = Soc(RR)P ⊆ Soc(P ) by [15, Theorem 1.8]. According to
Proposition 4.6, it suffices to prove that P is δ-supplemented. Since semisimple
rings are perfect, it follows from assumption and [15, Theorem 3.8] that R is
a δ-perfect ring. By [7, Theorem 3.4], we obtain that P is δ-supplemented.

(4) =⇒ (5) Let M be a left R-module. Since every left R-module is a
homomorphic image of a free left R-module, it follows from Proposition 4.14
that every submodule of M is δss-supplemented. By Lemma 5.1, it is amply
δss-supplemented.

(5) =⇒ (6) and (6) =⇒ (7) Clear.
(7) =⇒ (1) By Corollary 4.11.

Hence we have the following strict containments of classes of rings:

{rings in [6, Theorem 41]} ⊂ {rings in Theorem 5.3} ⊂ {δ-perfect rings}

Examples for showing these implications are not invertible can be found
[15, Example 4.1 and Example 4.3]. So we say that a ring R is left δss-perfect
if the equal conditions satisfy in the above theorem. Right δss-perfect rings
are defined similarly. R is said to be δss-perfect if it is both a right and a left
δss-perfect.

Proposition 5.4. Let R be a left δss-perfect ring. Then Rad(R) is semisimple.
In particular, (Rad(R))2 = 0.

Proof. Since R is a left δss-perfect ring, it follows from Theorem 5.3 that
Rad(R) ⊆ δ(R) = Soc(RR). It means that Rad(R) is semisimple. By [13,
21.12 (4)], we obtain that (Rad(R))2 = 0.
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A ring R is called a left max ring if every left R-module has a maximal
submodule. It is well known that a ring R is left max if and only if every
non-zero left R-module is coatomic.

Proposition 5.5. Let R be a left δss-perfect ring. Then it is a left max ring.

Proof. Let M be a radical module, that is, Rad(M) = M . Then δ(M) =
M . Since R is a left δss-perfect ring, by Theorem 5.3, R

Soc(RR) = R
δ(R) is a

semisimple ring. By [15, Theorem 1.8], we obtain that δ(M) = δ(R)M =
Soc(RR)M ⊆ Soc(M). Then M = Soc(M). Since semisimple modules are
zero radical, we get M = Rad(M) = 0. This means that R is a left max
ring.

Now we characterize the left δss-perfect rings via a different kind of pro-
jective δ-covers. Let M be a module and f : P −→ M be an epimorphism.
We call the module P a δss-cover of M if ker(f) is semisimple and δ-small in
P , and call a δss-cover P a projective δss-cover of M in case P is projective.

Theorem 5.6. Let M be a projective module. Then the following conditions
are equivalent.

(1) M is δss-supplemented,

(2) every submodule of M has a δss-supplement that is a direct summand of
M ,

(3) for any submodule N of M , M has the decomposition M = N
′ ⊕K such

that N
′ ⊆ N and N ∩K ⊆ Socδ(M),

(4) every factor module of M has a projective δss-cover.

Proof. (1) =⇒ (4) Let U be a submodule of M . It follows that U has a δss-
supplement, say V , in M . Since M = U +V , the homomorphism g : V −→ M

U

via g(v) = v + U is an epimorphism. Let π : M −→ M
U be the canonical

projection. Since M is projective, there exists a homomorphism f : M −→ V
such that gf = π. Then it can be seen that M = U + f(M). Applying the
modular law, we get V = U∩V +f(M). Therefore we can write V = S⊕f(M)
for some projective semisimple submodule S of V because U ∩V �δ V . Since
U ∩ f(M) ⊆ U ∩ V �δ V , then U ∩ f(M) �δ V by Lemma 2.1 (2). It
follows from [15, Lemma 1.3 (3)] that U ∩ f(M) �δ f(M) since f(M) is a
direct summand of V . This means that f(M) is a δss-supplement of U in M .
Since M is projective and δss-supplemented, by Proposition 4.2, it is amply
δss-supplemented and so f(M) has a δss-supplement U

′ ⊆ U in M . Therefore
f(M) and U

′
are mutual δss-supplements in M . Using [7, Lemma 2.15], we

obtain that f(M) is projective.
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Now we consider the epimorphism ϕ : f(M) −→ M
U via ϕ(x) = x + U for

all x ∈ f(M). Since M = U + f(M), we obtain that ker(ϕ) = U ∩ f(M) is
semisimple and δ-small in f(M). Hence f(M) is a projective δss-cover of M

U
as desired.

(4) =⇒ (3) It follows from [15, Lemma 2.4].
(3) =⇒ (2) and (2) =⇒ (1) Clear.

The next result is crucial.

Corollary 5.7. The following conditions are equivalent for a ring R.

(1) R is a left δss-perfect ring,

(2) every left R-module has a projective δss-cover,

(3) every semisimple left R-module has a projective δss-cover,

(4) every simple left R-module has a projective δss-cover.

Proof. (1) =⇒ (2) Let M be a left R-module. Then there exist a projective
module P and an epimorphism Ψ : P −→M . By the assumption and Theorem
5.3, we get that P is δss-supplemented. It follows from Theorem 5.6 that M
has a projective δss-cover as a factor module of P .

(2) =⇒ (3) and (3) =⇒ (4) are clear.
(4) =⇒ (1) It follows from [15, Lemma 2.4] and Theorem 5.3.

Proposition 5.8. A commutative δss-perfect domain is field.

Proof. Let R be a commutative δss-perfect domain and a ∈ R. It follows
that R is a local ring. If a ∈ R\Rad(R), we have that Ra = R and so a is
an invertible element of R. Suppose that a ∈ Rad(R). By Proposition 5.4,
a2 ∈ (Rad(R))2 = 0. Therefore a = 0 since R is a domain. Thus R is field.

Let R be a ring. Next we will give a necessary and sufficient condition for
the δss-perfect ring R to be ss-supplemented as a left R-module. Recall from
Lomp [8] that a module M is said to be semilocal if M

Rad(M) is semisimple, and

a ring R is said to be semilocal if it is semilocal as a left (right) module over
itself. It is shown in [8, Teorem 3.5] that a ring R is semilocal if and only if
every left R-module is semilocal.

It is shown in [4, Proposition 4.2] that a projective semilocal, δ-supplemented
module M with small radical is supplemented. From this fact we see that the
condition ”small radical” is necessary for M to be a supplemented. How-
ever, we show by the following proposition that a projective semilocal, δss-
supplemented module is ss-supplemented without necessity of this condition.
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Proposition 5.9. Let M be a projective module. If M is semilocal and δss-
supplemented, then it is ss-supplemented.

Proof. Let M be a semilocal and δss-supplemented module. Then Soc(M) =
X ⊕ Socs(M), where X ⊆ Soc(M). Since M is semilocal, we can write M =
X + Y and X ∩ Y ⊆ Rad(M) for some submodule Y of M . Now X ∩ Y ⊆
X ∩ Rad(M) = [X ∩ Soc(M)] ∩ Rad(M) = X ∩ [Soc(M) ∩ Rad(M)] = X ∩
Socs(M) = 0. Therefore M = X⊕Y and Soc(Y ) ⊆ Rad(Y ) = Rad(M). Then
Y is projective as a direct summand of the projective module M . By the proof
of [4, Proposition 4.2], we have Rad(Y ) = δ(Y ). Since M is δss-supplemented,
it follows from Proposition 4.14 that Y is δss-supplemented.

Let U be a submodule of Y . By Theorem 5.6, there exists a direct summand
V of Y such that Y = U + V and U ∩ V ⊆ Socδ(V ). Then U ∩ V ⊆ δ(V ) ⊆
δ(Y ) = Rad(Y ) and hence U ∩ V is small in Y . It follows from [13, 19.3 (5)]
that U ∩ V � V . This means that Y is ss-supplemented. Hence M = X ⊕ Y
is ss-supplemented by [6, Corollary 3.13].

For a ring R, let X(R) = Soc(RR)
Socs(RR) as in [4].

Corollary 5.10. Let R be a ring. Then the following statements are equiva-
lent:

(1) RR is ss-supplemented,

(2) R is left δss-perfect and semilocal,

(3) R is left δss-perfect and X(R) is finitely generated.

Proof. (1)⇐⇒ (2) By Proposition 5.9.
(2)⇐⇒ (3) It follows from [4, Lemma 4.1].

Observe from Corollary 5.10 that if a left δss-perfect ring is left noetherian,
then it is a left artinian ring.
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