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On an improved computational solution for the
3D HCIR PDE in finance
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Abstract

The aim of this work is to tackle the three–dimensional (3D) Heston–
Cox–Ingersoll–Ross (HCIR) time–dependent partial differential equation
(PDE) computationally by employing a non–uniform discretization and
gathering the finite difference (FD) weighting coefficients into differ-
entiation matrices. In fact, a non–uniform discretization of the 3D
computational domain is employed to achieve the second–order of ac-
curacy for all the spatial variables. It is contributed that under what
conditions the proposed procedure is stable. This stability bound is novel
in literature for solving this model. Several financial experiments are
worked out along with computation of the hedging quantities Delta and
Gamma.

1 Introduction and motivation

In option pricing, basically a set of stochastic differential equations (SDEs)
corresponding to spatial variables, e.g., stock, rate of interest, and volatility,
is taken into account for modeling derivative products, [14]. Accordingly,
the option pricing for derivatives can be tackled via this set of SDEs or via
the corresponding PDE formulations. On the other hand, since analytical
solutions for such models are not mainly known, computational methods by
virtue of simulations or discretizations must be taken into consideration, see
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e.g. [10, 18, 22, 24]. For some discussions concerning the problem of pricing
option, an interested reader may refer to the work [5].

One improvement of the Black–Scholes model was discussed by Heston in
[12] by considering the stochastic volatility. Recently, the Heston’s stochastic
volatility problem was thoroughly applied in the field of reinsurance, for instance
refer to [32].

The presence of foreign exchange products which all have a long lifetime
as well as so sensitive to implied volatilities or skews in the market, make it
necessary and requisite to study and develop revised models with stochastic
interest rates, like the Heston–Cox–Ingersoll–Ross (HCIR) problem or the
Power–Reverse Dual–Currency (for more, refer to [26] and the references
therein).

The classical Cox–Ingersoll–Ross (CIR) process for non–negative stochastic
variable R(τ) was introduced in [4] as comes next:

dR(τ) =κ(η −R(τ))dτ + θ
√
R(τ)dW (τ), (1)

R(0) =R0,

wherein W (τ) is the standard process of Wiener and κ, η, θ are the speed of
adjustment, the mean and the volatility, respectively.

It is requisite to develop and consider interest rates to be stochastic to have
a better outlook of the option price in market, see e.g., [1, 7, 16]. The HCIR
hybrid model was discussed in [9] by proposing approximations based on the
characteristic functions. Actually, the resulting method for pricing takes the
merit of quicker evaluations for characteristic function.

The HCIR model [9] as a system of three SDEs is given by:

dS(τ) =R(τ)S(τ)dτ + S(τ)
√
V (τ)dW (1)(τ),

dV (τ) =κ(η − V (τ))dτ + σ1

√
V (τ)dW (2)(τ), (2)

dR(τ) =a(b(τ)−R(τ))dτ + σ2

√
R(τ)dW (3)(τ),

0 < τ ≤ T, T > 0,

where S(τ), V (τ), and R(τ) stand for the asset price, its variance and rate
of interest at τ , respectively. Furthermore, b > 0 is a function in terms of
time. And, it should match the current term structure of the interest rates.
This consideration is also an extension over (1), at which the function b was
considered to be constant.

Here the parameters κ, η, σ1, σ2, a are positive parameters, while W (1)(τ),
W (2)(τ), W (3)(τ) are the three continuous independent Wiener processes. The
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correlation parameters are −1 ≤ ρ12, ρ13, ρ23 ≤ 1, and form the following
symmetric positive semi–definite correlation matrix:

M =

 1 ρ12 ρ13

∗ 1 ρ23

∗ ∗ 1

 . (3)

As discussed in [9], the fair pricing procedure should be carried out by
computational schemes since the corresponding high–dimensional PDEs, con-
structed for such options, do not admit any analytical or semi–analytical
solutions.

In [11], the author investigated how a non–uniform discretization can be
applied for pricing the HCIR PDE. In fact, the convergence speed of their
estimations is only 1 for the second derivative and 2 for the first derivative
terms, though their FD approximations have second–order truncation error,
[20]. This motivates us to focus on solving this problem efficiently.

The contributions of this work are organized as comes next.

� Considering a non–uniform discretization using a special grid with a
focus on the important area for option pricing under the HCIR PDE. To
this end, the 3D time–dependent linear PDE is semi–discretized (refer
to [21]) along the state variables using a non–uniform structure of the
points via a completely second–order finite difference (FD) formulas.

� Toward this goal, we attain a system of coupled ODEs under an initial
condition, which could efficiently be computed via the time–marching
methods. It is proposed that the presented numerical scheme is quadrati-
cally convergent in space and time.

� We contribute that the new method is stable under several conditions.
This is also novel in contrast to the existing papers for this model, see
for example [11].

� Studying the convergence of our non–uniform (adaptive) FD method is
another contribution of this work.

The remaining parts of this article are summarized as comes next. In
Section 2, the Heston stochastic volatility problem alongside stochastic interest
rate for option pricing is introduced as a 3D time–varying 2nd–order PDE
subject to (non–smooth) payoffs. Section 3 presents a (totally) second–order
FD procedure for semi–discretization of the PDE.

Afterward in Section 4, the method–of–lines technique is considered to
build a set of ODEs with time–varying system matrix. All the side conditions
are imposed therein as well.
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Thence, a method to march along time for the set of ODEs is provided
in Section 5 and it is analytically illustrated that the presented numerical
procedure is conditionally time–stable when b is not changing by time.

We illustrate the efficiency and stability of the new scheme in Section 6.
It is noted that Greeks, i.e., the hedging quantities are significant in practice
and the proposed scheme should furnish the option price and these hedging
quantities to be not only accurate but also to be stable.

In fact, each Greek contributes to a various dimension of risk and the
objective of a trader is to handle the Greeks such that all risks are taken into
account. Here the Greeks, Gamma and Delta, which are defined as follows:

∆ =
∂u

∂s
, Γ =

∂2u

∂s2
, u(s, v, r, t) is the pricing function, (4)

are computed using the proposed scheme. Lastly, in Section 7, several conclu-
sions are provided.

2 PDE–based problem via Heston model with stochastic
interest rate

The PDE problem associated with the SDE model (2) for fair values of European–
type options is given as a convection–diffusion–reaction (CDR) PDE [9] in
what follows:

∂u(s, v, r, t)

∂t
=

1

2
s2v

∂2u(s, v, r, t)

∂s2
+

1

2
σ2

1v
∂2u(s, v, r, t)

∂v2
+

1

2
σ2

2r
∂2u(s, v, r, t)

∂r2

+ ρ12σ1sv
∂2u(s, v, r, t)

∂s∂v
+ ρ13σ2s

√
vr
∂2u(s, v, r, t)

∂s∂r

+ ρ23σ1σ2

√
vr
∂2u(s, v, r, t)

∂v∂r

+ rs
∂u(s, v, r, t)

∂s
+ κ(η − v)

∂u(s, v, r, t)

∂v

+ a(b(T − t)− r)∂u(s, v, r, t)

∂r
− ru(s, v, r, t),

(5)

wherein τ = T − t.
Here, the test of Feller is often taken into account to be satisfied. For the

process of variance, this criterion is given by

2κη > σ2
1 , (6)
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and for the process of interest rate, it is as comes next:

2ab(τ) > σ2
2 , ∀ 0 ≤ τ ≤ T. (7)

Here a merit of the discussed method in this work is that it does not demand
for the criteria (6) and (7) to be satisfied in order to give an accurate numerical
solution.

For call and put options, the payoffs are provided as follows:

u(s, v, r, 0) = (s− E)+, (8)

and
u(s, v, r, 0) = (E − s)+, (9)

wherein E is the price of strike, respectively.
The side conditions (for a call option) along s are defined by:

u(s, v, r, t) = 0, s = 0, (10)

∂u

∂s
(s, v, r, t) = 1, s = smax. (11)

See also [17] for some discussions about alternative choices of the boundary
conditions. Noting that at the boundary v = vmax, the following condition of
Dirichlet is imposed:

u(s, v, r, t) = s, v = vmax. (12)

The important point is that the HCIR PDE at the boundary v ↓ 0 is degenerate,
and thus no boundary is prescribed. Therefore, we take into account that the
discretized PDE at these boundary nodes holds true, see the spirit of such
a consideration in [6]. Recalling again that for these boundaries, we do not
impose the reduced PDE (although many of the 2nd order derivative terms in
(5) vanish once v, r ↓ 0).

The system of SDEs (2) for v and r in (2) are of the same type and, thus,

also the 1st– and 2nd–order derivatives ∂u
∂r , ∂2u

∂r2 and their coefficients in the
PDE (5) are of the same form as for v. Therefore, at r ↓ 0, the HCIR model
has degeneracy and no side condition is prescribed. Therefore, the obtained
equations at such boundaries are taken into account for the boundary nodes.

Once r = rmax, the boundary condition of Neumann type is imposed:

∂u

∂r
(s, v, r, t) = 0, r = rmax. (13)

Similar relations could be defined for the put–type options.
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Generally speaking, the PDE (5) is given in an unbounded domain, which
is (s, v, r, t) ∈ Ω× (0, T ], where Ω = [0,+∞) ×[0,+∞)× [0,+∞). To deal with
this numerically, we must localize it into a numerical truncated domain ([19]).
Because, the problem is well–posed and a solution exist [2], the numerical
domain could be taken into account to be bounded, for example,

Ω = [0, smax]× [0, vmax]× [0, rmax], (14)

wherein smax, vmax, rmax are three positive real constants and assumed to be
large enough.

Recently, the author in [11] generalized the numerical grid of nodes proposed
previously in [15] to tackle (5). However, the investigated numerical method
is only of linear convergence rate to estimate the 2nd derivative terms in (5).
Here the aim is to apply the non–uniform computational grid generated in [11],
but with higher order FD formulas on these non–equidistant grids so as to
keep the second convergence rate along the fully discretized set of equations.

Remark 2.1. A smooth grid mapping affects on truncation errors in Taylor
expansions and the arising FD formulas, which make the consistency order of
all the approximations in [11, 20] to be at least two, but not the convergence
order of these approximations obtained by expanding them via Taylor series.

In practice, the option price is needed at a specific point of the domain,
also known as the hot area (specially for the at–the–money case). This hotzone
for (5) is a part of the domain where s, v and r tend to the strike price and
zero, respectively.

Let {si}mi=1 be a set of non–uniform nodes along s as follows [11]:

si = ϕ(ξi), 1 ≤ i ≤ m, (15)

where m > 1 and ξmin = ξ1 < ξ2 < · · · < ξm = ξmax are m equi–distant points

with the following characteristics: ξmin = sinh−1
(
smin−sleft

d1

)
, ξint =

sright−sleft
d1

,

ξmax = ξint + sinh−1
(
smax−sright

d1

)
, wherein smin = 0. Here d1 > 0 controls the

density of the nodes around s = E. We also have:

ϕ(ξ) =

 sleft + d1 sinh(ξ), ξmin ≤ ξ < 0,
sleft + d1ξ, 0 ≤ ξ ≤ ξint,
sright + d1 sinh(ξ − ξint), ξint < ξ ≤ ξmax.

(16)

Throughout this work, we used the same value for d1 = E
20 while sleft =

max{0.5, exp{−0.25T}} × E, [sleft, sright] ⊂ [0, smax], sright = E and smax =
14E.
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The nodes along v, i.e., {vj}nj=1 are defined by:

vj = d2 sinh(ςj), 1 ≤ j ≤ n, (17)

where d2 > 0 controls the density of the mesh points around v = 0. Here, we
apply d2 = vmax

500 , whereas vmax = 10. Additionally, here ςj are uniform nodes

defined as follows: ςj = (j− 1)∆ς, ∆ς = 1
n−1 sinh−1

(
vmax

d2

)
, for any 1 ≤ j ≤ n.

The non–uniform nodes along r are defined as follows:

rk = d3 sinh(ζk), 1 ≤ k ≤ o, (18)

whereas d3 = Rmax

500 is a positive parameter and Rmax = 1. We also have

ζk = (k− 1)∆ζ, ∆ζ = 1
o−1 sinh−1

(
rmax

d3

)
. Note that denser mesh points in the

important area could circumvent the problems happening in solving (5), like
non–smoothness of payoffs (8)-(9) at s = E, and the degeneracy at v = r = 0.

The final non–equidistant computational grid with a focus around the
important area is obtained applying a Cartesian product of the grids for s by
(15), v by (17) and r by (18) as follows:

Discretized grid = {si} × {vj} × {rk}, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ o.
(19)

3 Non–uniform discretization

To attain FD formulations, which are quadratically convergent for all the first
and second derivative terms in (5), they should be constructed via interpolating
polynomials [8, chapters 2]). The order of the proposed formulas is higher
than the existing ones, which are mainly used in the literature related to
computational finance and are of second order for the 1st derivative and first
order formulas for the 2nd derivative terms, [15].

To do this analytically, first assume that f(x) is a sufficiently smooth func-
tion and {x1, x2, · · · , xm−1, xm} is a smooth non–uniform grid. To estimate the
1st derivative by applying three adjacent points {{xi−1, f(xi−1)}, {xi, f(xi)},
{xi+1, f(xi+1)}}, the formula can be written applying a 2nd order interpolation
polynomial going from the three points, as comes next [28]:

f ′(xi) = f [xi−1, xi]− f [xi+1, xi−1] + f [xi, xi+1] + O
(
h2
)
, (20)

where h is the maximum local grid spacing. We also have f [xl, xq] = (f(xl)−
f(xq))/∆xl,q with ∆xl,q = xl−xq. Furthermore note that, a FD approximation
using m nodes are exact for polynomial functions which are of degree m− 1.
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In a similar way, we can obtain the quadratic convergence–rate formulas
for the points locating on the boundaries as follows:

f ′(x1) = f [x1, x2] + f [x1, x3]− f [x3, x2] + O
(
h2
)
, (21)

and

f ′(xm) = f [xm−2, xm] + f [xm−1, xm]− f [xm−1, xm−2] + O
(
h2
)
. (22)

To tackle the cross derivative terms in (5) as elegantly as possible, first
differentiation matrices for each dimension is constructed and subsequently the
Kronecker product (denoted by ⊗) of these matrices should be used.

To find the FD formulations possessing quadratic convergence for the
second derivative of the function, one more point should be considered. Since
the quadratical convergence on non–uniform meshes can be seen once there
are four adjacent nodes, i.e., {{xi−2, f(xi−2)}, {xi−1, f(xi−1)}, {xi, f(xi)},
{xi+1, f(xi+1)}}. Thus, the formulas with quadratic convergence is derived by
(here 3 ≤ i ≤ mj − 2) as follows:

f ′′(xi) =
2 (∆xi−1,i + ∆xi+1,i)

∆xi−1,i−2∆xi,i−2∆xi+1,i−2
f (xi−2) +

2 (∆xi−2,i + ∆xi+1,i)

∆xi−2,i−1∆xi−1,i∆xi−1,i+1
f (xi−1)

+
2 (∆xi−2,i + ∆xi−1,i + ∆xi+1,i)

∆xi−2,i∆xi,i−1∆xi,i+1
f (xi) +

2 (∆xi−2,i + ∆xi−1,i)

∆xi−2,i+1∆xi+1,i−1∆xi+1,i
f (xi+1)

+ O
(
h2

)
.

(23)

In a similar ways, for the four nodes {{x1, f(x1)}, {x2, f(x2)}, {x3, f(x3)},
{x4, f(x4)}}, we can obtain

f ′′(x1) =
2(∆x1,2 + ∆x1,3 + ∆x1,4)

∆x1,2∆x1,3∆x1,4
f (x1) +

2(∆x3,1 + ∆x4,1)

∆x1,2∆x2,3∆x2,4
f (x2)

+
2(∆x2,1 + ∆x4,1)

∆x1,3∆x3,2∆x3,4
f (x3) +

2(∆x2,1 + ∆x3,1)

∆x1,4∆x4,2∆x4,3
f (x4) + O

(
h2
)
,

(24)

and

f ′′(x2) =
2(∆x2,3 + ∆x2,4)

∆x1,2∆x1,3∆x1,4
f (x1) +

2(∆x1,2 + ∆x3,2 + ∆x4,2)

∆x1,2∆x2,3∆x2,4
f (x2)

+
2(∆x1,2 + ∆x4,2)

∆x1,3∆x3,2∆x3,4
f (x3) +

2(∆x1,2 + ∆x3,2)

∆x1,4∆x4,2∆x4,3
f (x4) + O

(
h2
)
.

(25)



ON AN IMPROVED COMPUTATIONAL SOLUTION FOR
THE 3D HCIR PDE IN FINANCE 215

Note that x2 is not on the boundary but in order to have overall quadratical
speed, we require a FD formulation for this node going through {{x1, f(x1)},
{x2, f(x2)}, {x3, f(x3)}, {x4, f(x4)}}.

Similarly, the non–equidistant FD formulas of quadratically convergent for
the nodes {xm−1, xm} for estimating the 2nd derivative can be deduced as
comes next:

f ′′(xm−1) =
2 (∆xm−3,m−1 + ∆xm−2,m−1)

∆xm−3,m∆xm,m−2∆xm,m−1
f (xm)

+
2 (∆xm−3,m−1 + ∆xm−2,m−1 + ∆xm,m−1)

∆xm−3,m−1∆xm−1,m−2∆xm−1,m
f (xm−1)

+
2 (∆xm−3,m−1 + ∆xm,m−1)

∆xm−3,m−2∆xm−2,m−1∆xm−2,m
f (xm−2)

+
2 (∆xm−2,m−1 + ∆xm,m−1)

∆xm−2,m−3∆xm−1,m−3∆xm,m−3
f (xm−3) + O

(
h2
)
,

(26)

and

f ′′(xm) =
2 (∆xm−3,m + ∆xm−2,m + ∆xm−1,m)

∆xm−3,m∆xm,m−2∆xm,m−1
f (xm)

+
2 (∆xm−3,m + ∆xm−2,m)

∆xm−3,m−1∆xm−1,m−2∆xm−1,m
f (xm−1)

+
2 (∆xm−3,m + ∆xm−1,m)

∆xm−3,m−2∆xm−2,m−1∆xm−2,m
f (xm−2)

+
2 (∆xm−2,m + ∆xm−1,m)

∆xm−2,m−3∆xm−1,m−3∆xm,m−3
f (xm−3) + O

(
h2
)
.

(27)

4 The semi–discrete system

One way for imposing the impact of (20)–(27) is with matrices including the
weights of (20)–(27), i.e., the non–equidistant second–order FD weights, as
their elements. A matrix which shows an estimation to the differential operator
is called as a matrix of differentiation [8]. Forming and implementing the
proposed scheme based on these matrices are invaluable as aids for analysis.

Hence, the PDE (5) is discretized along the spatial variables, and we can
write

∂U(t)

∂t
= A(t)U(t), 0 ≤ t ≤ T, (28)

at which U(t) = (u1,1,1(t), u1,1,2(t), . . . , um,n,o−1(t), um,n,o(t)︸ ︷︷ ︸
N elements

)∗, is the un-

knowns vector and N = m × n × o. The coefficient matrix A(t) is time
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varying because b is time–varying. The semi–discretization matrix A(t) is
defined by:

A(t) =
1

2
S2V(Dss ⊗ Iv ⊗ Ir) +

1

2
σ2

1V(Is ⊗Dvv ⊗ Ir)

+
1

2
σ2

2R(Is ⊗ Iv ⊗Drr) + ρ12σ1SV(Ds ⊗Dv ⊗ Ir)

+ ρ13σ2S(VR)
1
2 (Ds ⊗ Iv ⊗Dr) + ρ23σ1σ2(VR)

1
2 (Is ⊗Dv ⊗Dr)

+ RS(Ds ⊗ Iv ⊗ Ir) + κ(ηI −V)(Is ⊗Dv ⊗ Ir)
+ a(b(T − t)I −R)(Is ⊗ Iv ⊗Dr)− rI,

(29)

wherein
I = Is ⊗ Iv ⊗ Ir, (30)

is an identity matrix of the size N × N , Is is the unit matrix of the size
m×m along s, and similarly for Iv and Ir. The other identity matrices are
defined similarly. The square matrices Ds, Dv, Dr, Dss, Dvv, Drr are sparse
differentiation matrices built via the non–equidistant weighting coefficients in
Section 3. The diagonal matrices S, V and R are defined as:

S = diag(s1, s2, · · · , sm)⊗ Iv ⊗ Ir, (31)

V = Is ⊗ diag(v1, v2, · · · , vn)⊗ Ir, (32)

R = Is ⊗ Iv ⊗ diag(r1, r2, · · · , ro). (33)

All the FD formulas used to construct A(t) are of second–order accuracy in
space.

Remark 4.1. One novelty of this work in this section was to first find the
weighting coefficients for the fully second order non–uniform (adaptive) grid of
discretization points and second to gather all the weights into differentiation
matrices to come up with sparse matrices which are much useful in calculations
(as will be observed in the next subsection) in terms of computational speed–up.

4.1 Boundary treatment

As of yet, the matrix AN×N (t) has been constructed without incorporating
the side conditions. The boundary condition is a set of constraints that define
the behavior of unknown solution on the spatial boundary of the domain, [9].
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By incorporating these conditions (see for instance [27]), we have the
following set of linear homogenous ODEs for our new method:

∂U(t)
∂t = Ā(t)U(t) = G(t, U(t)), 0 ≤ t ≤ T,

U(s, v, r, 0) = (8) or (9),

(34)

wherein Ā(t) is the system matrix with the boundaries involved.

5 Temporal discretization

The system matrix Ā(t) in (34) is time varying and continuous on some I ⊆ R.
Since the IVP (34) homogenous and reads the criterion of the existence and
uniqueness theorem [23], viz, we obtain

|Ā(t)U(t)| ≤ ‖Ā(t)‖|U(t)| ≤ L|U(t)|, L > 0, (35)

we can mention that if the matrix function Ā(t) be continuous on some interval
I ⊆ R, then due to the theory of matrix functions [13], the solution extends
to the whole working interval. Noting that it is necessary that Ā(t) has
boundedness or has monotonicity/positivity property.

For linear homogeneous system (34), a näıve solution under several strict
conditions [25, Chapter 6] is written as comes next:

U(t) = exp

(∫ t

0

Ā(τ)dτ

)
U(0). (36)

Noting that based on principle of superposition [23], if x1, x2 solve (34) then
their linear combination α1x1 + α2x2 also solves (34). Although the solution
of the problem (34) could be obtained via (36) under several strict conditions,
the computation of one Cauchy integral and a matrix exponential function
which is based on a very large banded matrix makes us to depend on time
discretization by computational time–stepping solvers.

Assume that uι is a numerical solution to the true solution u(tι). By
considering $ + 1 temporal nodes, a temporal step size ∆t = T

$ > 0, we
consider:

tι+1 = tι + ∆t, 0 ≤ ι ≤ $, (37)

and u0 = u(s, v, r, 0). Then, second–order explicit Runge–Kutta method [3,
page 95], which is a member of the Runge–Kutta iterations, can be given as
follows:

uι+1 = uι + ψ2 + O(∆t3), (38)
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wherein

ψ2 = ∆tG

(
tι +

1

2
∆t,uι +

1

2
ψ1

)
, (39)

and
ψ1 = ∆tG(tι,uι). (40)

Remark 5.1. The motivation for selecting (38) is to obtain a general quadrat-
ical convergence for the fully discretized system of equation. This order of
accuracy is consistent with the order of accuracy for spatial discretization dis-
cussed in Section 3. Furthermore, the calculation of the derivatives for the
time–stepping solver is not required in this case.

5.1 A stability bound

In the sequel, we study that under what criteria the numerical discretized
solution does not blow up. The following theorem is one of the contributions
of this work. This is given for the time–independent case, i.e., when Ā(t) = Ā.

Theorem 5.1. Let the function G(t, U) = ĀU(t) satisfies (35). Then, the
presented numerical method to option price (5) when b is constant, h→ 0, by
(34)&(38) is A–stable conditionally.

Proof 5.1. The method (38) to solve (34) can also be furnished as follows:

uι+1 =

(
I + ∆tĀ+

(∆tĀ)2

2

)
uι. (41)

Accordingly, (41) is stable as long as the eigenvalues of matrix
(
I + ∆tĀ+ (∆tĀ)2

2

)
have modulus less or equal than one. Thus, we can write

1 + ∆tωi +
(∆tωi)

2

2
, (42)

where ωi are the eigenvalues of matrix Ā. Therefore, the time–stability is
reduced to ∣∣∣∣1 + ∆tωi +

(∆tωi)
2

2

∣∣∣∣ ≤ 1, i = 1, 2, . . . , N. (43)

Taking (43) into consideration, the following bounds for the real and imaginary
parts of the eigenvalues can be obtained

− 2

∆t
≤ Re(ωi) ≤ 0, (44)
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and
−Πi ≤ Im(ωi) ≤ Πi, (45)

where Re(·) and Im(·) are the real and imaginary parts, while

Πi =

√
2

√
−Re(ωi)(∆tRe(ωi) + 2)

∆t3
− Re(ωi)(∆tRe(ωi) + 2)

∆t
. (46)

Therefore, the proposed procedure is stable as long as the step size ∆t satisfy
(44) and (45) for any eigenvalues of Ā. Accordingly, a time–stability bound
can be derived by

0 < ∆t ≤ −2

ρ(Ā)
, (47)

where ρ(Ā) stands for the spectral radius of Ā (the largest negative eigenvalue
of Ā). Once needed, this spectral radius can be calculated by finding the largest
eigenvalue of Ā. As an illustration, this can be pursued real quick in Mathe-
matica programming language [30] via the command Eigenvalues[matrix, 1].
The proof is now complete. 2

Remark 5.2. At the first sight, (47) is not given in terms of the spatial
step size (viz, h as the maximum of the non–uniform step size discretization).
In fact, h is clearly affect the entries of the matrix Ā and subsequently its
eigenvalues. Due to the 3D nature of the model, high size of Ā as well as
incorporating the boundary conditions directly into the system matrix rows, the
bound (47) sounds to be a practical way for finding a stability bound.

5.2 Convergence study of the new scheme

An FD method for numerically solving a PDE problem (5) is convergent, if for
any solution to the PDE, u(s, v, r, t), and solutions to the FD procedure such
that u(t0) be the initial condition, then it converges to u(s, v, r, t) as ∆t, h→ 0.

Given a PDE of the form Pu = f and a FD method, P∆t,hU = f , it is
stated that the FD method is consistent with the PDE problem if for any
smooth function φ(s, v, r, t), the following holds:

Pφ− P∆t,hφ→ 0, ∆t, h→ 0. (48)

In the stability region, the proposed FD numerical scheme is consistent
with the well–posed linear PDE (5). Also, let that the global error at time
T = $∆t is a grid function given as follows:

E$ = Q$ − q$, ∀ι ≤ $, (49)
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wherein Qι is the computational estimation and qι is the exact solution. The
numerical scheme is shown by N(·), such that:

Qι+1 = N(Qι). (50)

Under the stability condition for the proposed FD scheme N and its linearity
feature along with the fact that Ā(t) has boundedness (the solution is also not
oscillatory in the stability region and ignoring the round–off errors, although a
drift term exist), there is a constant χ such that we have:

‖Nι‖ ≤ χ, ∀ι ≤ $ = T/∆t. (51)

On the other hand, the local truncation error can be defined as comes next:

τι =
1

∆t
[N(qι)− qι+1] . (52)

The consistency means that τι → 0, as ∆t→ 0. To show that how the method
converges, now we proceed as follows:

Eι+1 = Qι+1 − qι+1

= N(Qι)− qι+1

= N(Eι + qι)− qι+1

= N(Eι + qι)−N(qι) + N(qι)− qι+1

= N(Eι + qι)−N(qι) + ∆t τι

= N(Eι) + ∆t τι.

(53)

In fact, it is proved that ‖E$‖ → 0, as ∆t, h→ 0. Using (53), it is possible to
observe that the needs for convergence are the stability and the consistency of
the proposed computational scheme. Note that the proposed approach is of
quadratical speed, viz, O(h2)+O(∆t2) under the stability condition.

6 Financial experiments

In this section, a number of tests are provided in case of at–the–money options.
We also compare the results with the uniform FD scheme [29], which is via
2nd–order FD formulations and Euler’s time–stepping scheme (denoted by
FD), and the non–equally–spaced scheme (via Douglas method) discussed in
[11], (denoted by TM). The presented procedure (34)&(38) is denoted by PM.

The following remarks are in order:

� The specifications of our machine are 16.00 GB of RAM and Windows 7
with Intel(R) Core(TM) i5–2430M CPU 2.40GHz processor.
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Figure 1: The computed solution in Case I for u(s, v, 0.024, 1) when 0 ≤ s ≤ 200,
0 ≤ v ≤ 1 (top–left), for u(s, v, 0.024, 1) when 0 ≤ s ≤ 200, 0 ≤ v ≤ 10 (top–
right), for u(s, 0.04, r, 1) when 0 ≤ s ≤ 200, 0 ≤ r ≤ 1 (bottom–left) and for
u(100, v, r, 1) when 1 ≤ v ≤ 10, 0 ≤ r ≤ 1 (bottom–right).

� The code all the compared method in Mathematica 11.0 (one may refer
to [31, Chapter 14] to have some background).

� Computational time is shown by time in seconds.

� More importantly, all the compared schemes have been implemented in a
same environment so as to have a fair comparison.

We use the following criterion to check the convergence of the schemes

Error =

∣∣∣∣uapprox(s, v, r, t)− uref(s, v, r, t)

uref(s, v, r, t)

∣∣∣∣ , (54)

wherein uref and uapprox are the exact and numerical results.
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Case I Case II Case III
T 1 1 0.25
E 100 100 100
κ 3.0 0.3 1.0
η 0.12 0.04 0.09
σ1 0.04 0.90 1.00
a 0.20 0.16 0.22
σ2 0.03 0.03 0.11
ρ12 0.6 -0.5 -0.3
ρ13 0.2 0.2 -0.5
ρ23 0.4 0.1 -0.2
c1 0.05 0.055 0.034
c2 0 0 0.014
c3 0 0 2.10

Table 1: Parameter settings for the model (5).

As suggested in [30, Chapter 1.11], to increase the computational efficiency
for very large scale semi–discrete systems that we are dealing with, here we set
AccuracyGoal→ 5, PrecisionGoal→ 5.

Here, we consider more number of discretization nodes along s rather
than v and r, since its working interval is larger than the others and the
non–smoothness of the initial condition occurs along this spatial variable.

Various reports are given in Table 1 (using [11]). The non–constant b is
defined as follows:

b(τ) = c1 − c2 exp (−c3τ), τ ≥ 0, (55)

where c1, c2, c3 are constants, and τ = T − t.

Remark 6.1. Throughout this section, the timing reports as basis for methods’
performance comparison make sense, since the timing results are reported based
on Mathematica codes which have been written in a same and fair environment
and commands using Mathematica 11.0 in a same office laptop. That is to say,
all the implementations for the compared methods have been written in a same
environment via similar commands.

Table 2 reveals a comparison among the available schemes and the presented
procedure. It shows that PM is better than the FD and the TM schemes.

The reference price in Case I is taken into account via a refined mesh grid
as follows: u(100, 0.04, 0.024, 1) ' 13.444. Table 1 too show that the proposed
procedure is efficient.
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Procedure m n o Size ∆t Price Error Time
FD

10 10 10 1000 0.001 21.187 5.75 × 10−1 0.52
16 12 12 2304 0.0005 5.887 5.62 × 10−1 1.15
30 16 16 7680 0.0001 7.542 4.38 × 10−1 12.16
40 20 20 16000 0.00005 10.698 2.04 × 10−1 54.33
54 22 22 26136 0.00002 10.738 2.01 × 10−1 386.97

TM
10 10 10 1000 0.001 12.216 9.12 × 10−2 0.71
16 12 12 2304 0.0005 13.046 2.95 × 10−2 1.97
30 16 16 7680 0.0001 13.325 8.82 × 10−3 16.60
40 20 20 16000 0.00005 13.376 4.99 × 10−3 101.06
54 22 22 26136 0.00002 13.404 2.92 × 10−3 479.61

PM
10 10 10 1000 0.001 14.944 1.11 × 10−1 0.66
16 12 12 2304 0.0005 13.804 2.68 × 10−2 1.74
30 16 16 7680 0.0001 13.515 5.28 × 10−3 22.98
40 20 20 16000 0.00005 13.477 2.49 × 10−3 109.22
54 22 22 26136 0.00002 13.457 9.87 × 10−4 505.03

Table 2: Convergence history for various methods in Case I.

To check the smoothness of the computational results of PM, we illustrate
the graph of the computational solutions in Figure 1 for various kinds of
domains. Figure 1 reveal that the new method has stability by keeping the
positivity.

Figure 2 illustrates the stability and positivity of the computational solution
in two–dimensional graphs as well as the numerical approximation of the Greeks
which show a clear positivity of these important measures by the proposed
scheme for dealing with this challenging 3D problem. In Figure 3 (top), the
sparsity pattern of the coefficient matrix A(t) in Case I is brought forward for
the methods TM and PM which show a banded matrix.

The results for Case II are shown in Table 3, using various number of
discretization points. Similarly the reference price is taken into account at the
hot zone u(100, 0.04, 0.024, 1) ' 6.839. The importance of Case II is that it
leads to Greeks which are clearly non–smooth at the strike price s = E and
due to this, it is important to compute the numerical solution and then the
Greeks as efficiently and accurately as possible. In Figure 3 (bottom), the
Greeks for the Case II are given based on PM and show a clear stable and
positive behavior for the Greeks, while there is a clear non–differentiability at
the strike price. In the meantime, (5) does not satisfy the Feller condition (6)
for Case II. Although the standard FD method has an error of magnitude 2,
the point is, it does not preserve the positivity of the numerical solution as
can be observed in Figure 4.



ON AN IMPROVED COMPUTATIONAL SOLUTION FOR
THE 3D HCIR PDE IN FINANCE 224

50 100 150 200
s

20

40

60

80

100

50 100 150 200
s

20

40

60

80

100

u

Figure 2: The computed solution in Case I for u(s, 0, 0, 1) (top–left), for
u(s, 10, 1, 1) (top–right), the Greek delta (bottom–left) and Greek gamma
(bottom–right) at r = 0.024.

Remark 6.2. An explicit method, such as (38), might have trouble when
higher accuracy is requested (by increasing the number of nodes for discretizing
space), as the time stepsize needs to be particularly small. However, the stability
bound (47) can quickly give a good choice for ∆t, which is not that fine to be
time–consuming as well.

Remark 6.3. The results presented here are for coarse and fine grid sizes and
temporal discretizations, but not as fine as the grid sizes given in [11]. This
is to show that the proposed method converge really faster than the TM, and
accordingly it is not required to refine the spatial domain more. The numerical
results are accurate in the absolute error sense up to 10−4.

To numerically observe an estimate of the computational convergence speed,
we apply the following quotient formula to give a ratio once we double the
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Figure 3: In Case I: the sparsity pattern for the TM (top–left) and for the
PM (top–right) when m = 54, n = 22, o = 22. In Case II: the Greek delta
(bottom–left) and Greek gamma (bottom–right) at r = 0.024.

number of (non–uniform) grid points for each dimension):

COC(m,n,o) '
∣∣∣∣log2

uapprox(2m, 2n, 2o)− uapprox(m,n, o)

uapprox(m,n, o)− uapprox(m/2, n/2, o/2)

∣∣∣∣ , (56)

and COC as the mean of COC(m,n,o). This ratio is given in Table 4, which
confirms a roughly quadratic convergence speed.

In the comparisons Case III is significant, because it yields to a time–
dependent A(t), which is harder to tackle with using methods for advancing
along time. It is noticed that the time stepping method is explicit, no linear
system needs to be solved, thus the computation per time–step is proportional
to the number of unknowns.
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Figure 4: Numerical solution in Case II using FD for u(s, 0, 0, 1) (left), for
u(s, 10, 1, 1) (right), which reveals that the FD scheme does not preserve the
positivity (m = 45, n = 24, o = 20).

Procedure m n o Size ∆t Price Error Time
FD

8 8 8 512 0.002 47.829 5.99 × 100 0.29
14 10 10 1400 0.0005 5.469 2.00 × 10−1 0.78
20 14 12 3360 0.00025 14.786 1.16 × 100 2.30
24 16 14 5376 0.0001 12.960 8.95 × 10−1 7.78
32 18 18 10368 0.00005 8.599 2.57 × 10−1 30.26
45 24 20 19800 0.000025 6.456 5.59 × 10−2 182.07

TM
8 8 8 512 0.002 5.010 2.67 × 10−1 0.31
14 10 10 1400 0.0005 6.440 5.83 × 10−2 0.74
20 14 12 3360 0.00025 6.672 2.43 × 10−2 2.07
24 16 14 5376 0.0001 6.729 1.59 × 10−2 7.68
32 18 18 10368 0.00005 6.797 6.02 × 10−3 35.52
45 24 20 19800 0.000025 6.830 1.28 × 10−3 188.33

PM
8 8 8 512 0.002 5.794 1.52 × 10−1 0.37
14 10 10 1400 0.0005 6.628 3.07 × 10−2 1.08
20 14 12 3360 0.00025 6.759 1.16 × 10−2 3.89
24 16 14 5376 0.0001 6.776 9.07 × 10−3 14.49
32 18 18 10368 0.00005 6.809 4.30 × 10−3 60.28
45 24 20 19800 0.000025 6.833 8.52 × 10−4 241.54

Table 3: Comparison reports in the Case II.

In Figure 5, we have plotted the numerical solution for our scheme in
different positions of the domain. The results show a stable and positive
computed solution. Figure 6 (left) is brought forward to manifest the sparsity
pattern of our scheme, at which the dark red color is dedicated to the positions,
at which b is present as a function of t. Figure 6 (right) is given to show that
our scheme is convergent by increasing the number of points at the hot zone
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m,n, o Price COC COC
4 7.9106323130 -
8 5.7940541174 -
16 6.7602509210 1.13
32 6.8300971620 3.79 2.4

Table 4: Mean of convergence ratio for PM in Case II using a fixed time
step–size ∆t = 0.00002.

(100, 0.04, 0.024, 0.25), considering:

hmax = (max{differences{si}} + max{differences{vj}} + max{differences{rk}})/3.
(57)
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Figure 5: Computational solution in Case III using PM for u(s, 0, 0, 0.25) (left),
for u(s, 10, 1, 0.25) (right), which reveals that the PM method is stable and
preserves the positivity (m = 22, n = 16, o = 16, ∆t = 0.0001).

7 Summary

The valuation of several practically significant securities, like those which are
callable or path–dependent, are subject to interest rates. This made the quant
to construct interest rate models with practical applications.

In this paper, we have applied an non–uniform discretization for the spatial
variables in the financial 3D Heston–Cox–Ingersoll–Ross PDE. To have a total
fast convergence rate, quadratically convergent discretizations were done for
all the first and second derivative terms involved in the model. In addition,
the model was introduced in a matrix form using differentiation matrices to
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Figure 6: The sparsity pattern of PM for m = 22, n = 16, o = 16 (left) and
the error decay (right) in Case III.

unify and simplify the procedure while a second–order RK method was applied
for time–stepping.

Several financial experiment were discussed and showed that the presented
computational method is reliable in terms of being fast and stable for the HCIR
PDE and it is therefore useful for situations, at which the Feller condition
holds or not and for short and long maturities.
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