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Adaptive algorithm for solving the SCFPP of
demicontractive operators without a priori

knowledge of operator norms

Duangkamon Kitkuan, Poom Kumam, Vasile Berinde and
Anantachai Padcharoen

Abstract

In this paper, we study the split common fixed point problem in
Hilbert spaces. We find a common solution of the split common fixed
point problem for two demicontractive operators without a priori knowl-
edge of operator norms. A strong convergence theorem is obtained un-
der some additional conditions and numerical examples are included
to illustrate the applications in signal compressed sensing and image
restoration.

1 Introduction

LetH be a real Hilbert space. The convex feasibility problem (shortly, (CFP))
is defined as follows:

find x∗ ∈ H such that x∗ ∈
m⋂
i=1

Ci,

where m ≥ 1 is an integer and each Ci is a nonempty closed convex subset of
H.
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A special case of the problem (CFP) is the following split feasibility problem
(shortly, (SFP)):

find x∗ ∈ C such that Ax∗ ∈ Q,

where C and Q are two closed convex subsets of two Hilbert spaces H1 and
H2, respectively, and A : H1 → H2 is a bounded linear operator.

Byrne [2] introduced a very popular algorithm {xn} that solves the problem
(SFP):

xn+1 = PC(xn − γA∗(I − PQ)Axn)

for each n ≥ 0, where PC and PQ are metric projections onto C and Q,
respectively, A∗ denotes the adjoint of the mapping A : H1 → H2 and γ ∈
(0, 2

λ ) with λ being the spectral radius of the mapping A∗A.

If C = F (T ) and Q = F (S), then, from the problem (SFP), we have the split
common fixed point problem (shortly, (SCFPP)) which is defined as follows:

find a point x∗ ∈ F (T ) such that Ax∗ ∈ F (S),

where F (T ), F (S) stand for the fixed point sets of the mappings T : H1 → H1,
S : H2 → H2, respectively, and A : H1 → H2 is a bounded linear operator.
We denote the set of solutions of the problem (SCFPP) by

Γ := {y∗ ∈ C : Ay∗ ∈ Q} = C ∩A−1(Q).

Let T : H1 → H1 and S : H2 → H2 be two mappings such that

C := F (T ) = {x∗ ∈ H1 : Tx∗ = x∗} 6= ∅

and
Q := F (S) = {x∗ ∈ H2 : Sx∗ = x∗} 6= ∅.

In this paper, we prove a result on the existence of solutions of the split
common fixed point problem (SCFPP) for two demicontractive mappings
T : H1 → H1 and S : H2 → H2 with C := F (T ) 6= ∅ and Q := F (S) 6= ∅ and
obtain the solution by a new algorithm {xn}.

Censor and Segal [3] introduced, in finite-dimensional spaces, the following
algorithm {xn} for solving the problem (SCFPP):

xn+1 = T (xn + τAt(S − I)Axn) (1.1)

for each n ≥ 1, where τ ∈ (0, 2
γ ) with γ being the largest eigenvalue of the

matrix AtA (At is matrix transposition).



Adaptive algorithm for solving the SCFPP of demicontractive operators 155

Moudafi [18] proved some weak convergence theorems in Hilbert spaces when
two mappings T and S are quasi-nonexpansive mappings by using the following
relaxed algorithm {xn}:{

yn = xn + τA∗(S − I)Axn,

xn+1 = (1− αn)yn + αnTyn

for each n ≥ 1, where αn ∈ (0, 1) and τ ∈ (0, 1
βγ ) with γ being the spectral

radius of the operator A∗A and β ∈ (0, 1).

Moudafi [17] also proposed an iterative algorithm {xn} to solve the problem
(SCFPP), where S and T are demicontractive mappings as follows:{

un = xn + τA∗(S − I)Axn,

xn+1 = (1− αn)un + αnTun

for each n ≥ 1, where αn ∈ (0, 1) and τ ∈
(
0, 1−µ

γ

)
with γ being the spectral

radius of the operator A∗A and β ∈ (0, 1).

In particular, it was noted that the problem (SCFPP) is equivalent to solving
the following fixed point problem

x = x− τ((x− Tx) +A∗(I − S)A)x, (1.2)

where τ > 0 is a constant and T and S are directed operators.

Based on the fixed point equation approach, Wang [24] suggested the following
algorithm {xn}:

xn+1 = xn − τ((xn − Txn) +A∗(I − S)Axn),

where T : Rn → Rn and S : Rn → Rn are two directed operators and the step

size τ is in the interval

(
0,

1

max{0, ‖A‖2}

)
and proved some weak convergence

theorems of the sequence {xn} to a solution of the problem (SCFPP).

In 2006, Marino and Xu [15] introduced a new iterative which combines the
viscosity approximation method and is defined as follows:

xn+1 = (I − αnA)Txn + αnγf(xn)

where {αn} is a sequence in (0, 1) satisfying suitable conditions. They proved
that {xn} converges strongly to a fixed point x of T which solves the variational
inequality

〈(A− γf)x, x− z〉 ≤ 0, z ∈ F (T ).
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Equivalently, PF (T )(I −A+ γf)x = x.
Inspired by the work mentioned above, we propose a new self-adaptive algo-
rithm for solving the (SCFPP) with two demicontractive mappings in Hilbert
spaces. We prove a strong convergence theorem for our proposed algorithm
and present some numerical examples to illustrate our main results and their
applications.

2 Preliminaries

Let T : H → H be a mapping. A point x ∈ H is said to be a fixed point of
T provided that Tx = x. In this paper, we denote by F (T ) the fixed point
set of T . The symbols → and ⇀ denote the strong convergence and the weak
convergence, respectively. The mapping T : H → H is said to be:
a) quasi-nonexpansive if

‖Tx− Tp‖ ≤ ‖x− p‖, for all x ∈ H and p ∈ F (T ).

b) strictly pseudocontractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(x− y)− (Tx− Ty)‖2, for all x ∈ H.

c) pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(x− y)− (Tx− Ty)‖2, for all x ∈ H.

d) demicontractive (or k-demicontractive) if there exists k < 1 such that

‖Tx− Tp‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2, for all x ∈ H and p ∈ F (T ). (2.1)

Remark 2.1. It is clear that, in a real Hilbert space H, (2.1) is equivalent to

〈x− p, x− Tx〉 ≥ 1− k
2
‖x− Tx‖2, for all x ∈ H and p ∈ F (T ). (2.2)

Now, we give some definitions and lemmas needed to prove our main results.

Definition 2.2. A mapping T : H → H is said to be demiclosed at 0 if, for
each sequence {xn} in H, the conditions that the sequence {xn} converges
weakly to y and the sequence {Txn} converges strongly to 0 imply Ty = 0.

Lemma 2.3. Let H be a real Hilbert space. Then the following results hold:

(1) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, for all x, y ∈ H.



Adaptive algorithm for solving the SCFPP of demicontractive operators 157

(2) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2, for all x, y ∈ H.

(3) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, for all
x, y ∈ H and α ∈ R.

Lemma 2.4. [25] Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

an+1 ≤ (1− αn)an + αnσn

for each n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R
such that

(a)
∑∞
n=1 αn =∞;

(b) limn→∞ σn ≤ 0 or
∑∞
n=0 |σnαn| <∞.

Then limn→∞ an = 0.

Lemma 2.5. [16] Let q > 1. Then the following inequality holds:

ab ≤ 1

q
aq +

q − 1

q
b

q

q − 1

for arbitrary positive real number a and b.

3 The Main Results

In this section, we first construct an iterative algorithm for solving the SCFPP
under the following hypotheses.

(A1) H1 and H2 are two real Hilbert spaces;

(A2) A : H1 → H2 is a bounded linear operator with its adjoint operator A∗.

(A3) D : H1 → H1 is a strongly positive bounded linear operator with coeffi-
cient r > 0.

(A4) f : H1 → H1 is a k-contraction;

(A5) S : H1 → H1 and T : H2 → H2 are two demicontractive operators with
coefficients β ∈ [0, 1) and µ ∈ [0, 1), respectively;

(A6) S : H1 → H1 and T : H2 → H2 are Lipschitz continuous with Lipschitz
constant L > 1.



Adaptive algorithm for solving the SCFPP of demicontractive operators 158

We use Ω to denote the solution set of problem SCFPP, that is,

Ω := {u∗ : u∗ ∈ F (S) and Au∗ ∈ F (T )}.

Algorithm 3.1. Choose an arbitrary initial guess x0. Assume xn has been
constructed. If

‖xn − Sxn +A∗(I − T )Axn‖ = 0,

then stop; otherwise, continue and construct xn+1 via the formula:{
yn = xn − ρn[xn − Sxn +A∗(I − T )Axn],

xn+1 = αnγf(xn) + (I − αnD)yn,

where γ ∈ (0,min{1 − β, 1 − µ}) is a positive constant and ρn ⊂ (0,∞) is
chosen self-adaptively as

ρn = σn
‖xn − Sxn‖2 + ‖Axn − TAxn‖2

‖xn − Sxn +A∗(I − T )Axn‖2
.

We need two lemmas to complete the convergence analysis of our proposed
algorithm. The first lemma shows that the proposed algorithm is well defined.

Lemma 3.2. If the equality

‖xn − Sxn +A∗(I − T )Axn‖ = 0,

holds for some n ≥ 0, then xn is a solution of problem (SCFPP).

Proof. For any z ∈ S, we have

‖xn − Sxn +A∗(I − T )Axn‖‖xn − z‖
≥ 〈xn − Sxn +A∗(I − T )Axn〉〈xn − z〉
= 〈xn − Sxn, xn − z〉+ 〈A∗(I − T )Axn, xn − z〉
= 〈xn − Sxn, xn − z〉+ 〈(I − T )Axn, Axn −Az〉

≥ 1− β
2
‖xn − Sxn‖2 +

1− µ
2
‖(I − T )Axn‖2.

Since β, µ ∈ [0, 1), we deduce xn ∈ F (S) and Axn ∈ F (T ).

Lemma 3.3. If the sequence {xn} satisfies

lim
n→∞

(‖xn − Sxn‖2 + ‖Axn − TAxn‖2)2

‖xn − Sxn +A∗(I − T )Axn‖2
= 0

then
lim
n→∞

‖xn − Sxn‖ = lim
n→∞

(I − T )Axn = 0.
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Proof. By our hypotheses, we have

(‖xn − Sxn‖2 + ‖Axn − TAxn‖2)2

‖xn − Sxn +A∗(I − T )Axn‖2

≥ (‖xn − Sxn‖2 + ‖Axn − TAxn‖2)2

2(‖xn − Sxn‖2 + ‖A‖2‖(I − T )Axn‖2)

≥ (‖xn − Sxn‖2 + ‖Axn − TAxn‖2)2

2 max(1, ‖A‖2)(‖xn − Sxn‖2 + ‖Axn − TAxn‖2)

=
‖xn − Sxn‖2 + ‖Axn − TAxn‖2

2 max(1, ‖A‖2)
.

Taking n→∞, we have

lim
n→∞

‖xn − Sxn‖ = lim
n→∞

(I − T )Axn = 0.

Theorem 3.4. Assume the following conditions are satisfied

(i)
∑∞
n=1 ρn =∞ and

∑∞
n=1 ρ

2
n <∞;

(ii) 0 < r <
1

αn
, 0 < γ <

r

k
.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to a
solution u∗ of problem SCFPP, where u∗ = PΩ(I −D + γf)u∗.

Proof. Setting wn = xn − Sxn +A∗(I − T )Axn. Analogously, we have

〈wn, xn − u∗〉 = 〈xn − Sxn +A∗(I − T )Axn, xn − u∗〉
= 〈xn − Sxn, xn − u∗〉+ 〈A∗(I − T )Axn, xn − u∗〉
= 〈xn − Sxn, xn − u∗〉+ 〈(I − T )Axn, Axn −Au∗〉

≥ 1− β
2
‖xn − Sxn‖2 +

1− µ
2
‖(I − T )Axn‖2

≥ 1

2
min{1− β, 1− µ}(‖xn − Sxn‖2 + ‖(I − T )Axn‖2).

(3.1)

From yn = xn − ρn[xn − Sxn +A∗(I − T )Axn] and (3.1), we have
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‖yn − u∗‖2 = ‖xn − ρnwn − u∗‖2

≤ ‖xn − u∗‖2 − 2ρn〈wn, xn − u∗〉+ ρ2
n‖wn‖2

≤ ‖xn − u∗‖2 + ρ2
n‖xn − Sxn +A∗(I − T )Axn‖2

− 2ρn
1

2
min{1− β, 1− µ}(‖xn − Sxn‖2 + ‖(I − T )Axn‖2)

≤ ‖xn − u∗‖2 −
(‖xn − Sxn‖2 + ‖(I − T )Axn‖2)2

‖xn − Sxn +A∗(I − T )Axn‖2
.

(3.2)
In particular, we have ‖yn − u∗‖ ≤ ‖xn − u∗‖. In what follows, we divide the
proof into four steps.
Step 1. Show that {xn} is bounded. To see this, we observe

‖xn+1 − u∗‖ = ‖αnγf(xn) + (I − αnD)yn − u∗‖
= ‖αnγ(f(xn)−Du∗) + (I − αnD)(yn − u∗)‖
≤ αn(γ‖f(xn)− f(u∗)‖+ ‖γf(u∗)−Du∗‖) + (1− αnr)‖yn − u∗‖
≤ αnγk‖xn − u∗‖+ αn‖γf(u∗)−Du∗‖+ (1− αnr)‖yn − u∗‖
≤ (1− αn(r − kγ))‖xn − u∗‖+ αn‖γf(u∗)−Du∗‖

≤ (1− αn(r − kγ))‖xn − u∗‖+ αn(r − kγ)
‖γf(u∗)−Du∗‖

r − kγ

≤ max
{
‖xn − u∗‖,

‖γf(u∗)−Du∗‖
r − kγ

}
...

≤ max
{
‖x0 − u∗‖,

‖γf(u∗)−Du∗‖
r − kγ

}
.

(3.3)

Therefore {xn} is a bounded sequence. Furthermore, {yn} and {f(xn)} are
also bounded sequences.
Step 2. Show that the following inequality holds:

an+1 ≤ (1− αn)an + αnbn (3.4)

where we define an := ‖xn − u∗‖2 and
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bn :=
2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xn+1 − u∗〉

− 1− αnr
αn(r − γk)

(‖xn − Sxn‖2 + ‖(I − T )Axn‖2)2

‖xn − Sxn +A∗(I − T )Axn‖2
.

(3.5)

Indeed, it follows that

‖xn+1 − u∗‖2 = ‖αnγf(yn) + (I − αnD)yn − u∗‖2

= ‖αnγ(f(yn)−Du∗) + (I − αnD)(yn − u∗)‖2

≤ ‖(I − αnD)(yn − u∗)‖2 + 2αn〈γf(yn)−Du∗, xn+1 − u∗〉
≤ ‖I − αnD‖2‖yn − u∗‖2 + 2αn〈γf(yn)−Du∗, xn+1 − u∗〉
≤ (1− αnr)2‖yn − u∗‖2 + 2αn〈γf(yn)−Du∗, xn+1 − u∗〉
≤ (1− αnr)‖yn − u∗‖2 + 2αn〈γf(yn)−Du∗, xn+1 − u∗〉.

(3.6)
From Lemma 2.5, we have

〈γf(yn)−Du∗, xn+1 − u∗〉 = 〈γf(yn)− γf(u∗), xn+1 − u∗〉
+ 〈γf(u∗)−Du∗, xn+1 − u∗〉
≤ γk‖yn − u∗‖‖xn+1 − u∗‖

+ 〈γf(u∗)−Du∗, xn+1 − u∗〉

≤ γk
(1

2
‖yn − u∗‖2 +

1

2
‖xn+1 − u∗‖2

)
+ 〈γf(u∗)−Du∗, xn+1 − u∗〉.

(3.7)

Substitute (3.7) into (3.6), we have

‖xn+1 − u∗‖2 ≤ (1− αnr)‖yn − u∗‖2 + 2αn

(
γk
(1

2
‖yn − u∗‖2 +

1

2
‖xn+1 − u∗‖2

)
+ 〈γf(u∗)−Du∗, xn+1 − u∗〉

)
≤ (1− αnr)‖yn − u∗‖2 + αnγk‖yn − u∗‖2 + αnγk‖xn+1 − u∗‖2

+ 2αn〈γf(u∗)−Du∗, xn+1 − u∗〉

≤
(

1− αn(r − γk)

1− αnγk

)
‖yn − u∗‖2

+
αn(r − γk)

1− αnγk
2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xn+1 − u∗〉.

(3.8)
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By inequality (3.2), this yields

‖xn+1 − u∗‖2 ≤
(

1− αn(r − γk)

1− αnγk

)
‖xn − u∗‖2

+
αn(r − γk)

1− αnγk
2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xn+1 − u∗〉

≤
(

1− αn(r − γk)

1− αnγk

)
‖xn − u∗‖2

+
αn(r − γk)

1− αnγk

[2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xn+1 − u∗〉

− 1− αnr
αn(r − γk)

(‖xn − Sxn‖2 + ‖(I − T )Axn‖2)2

‖xn − Sxn +A∗(I − T )Axn‖2
]
.

(3.9)
Hence, the desired inequality at once follows. Step 3. Show that −δ ≤
limn→∞bn < +∞ for some δ > 0, which indicate that limn→∞bn is finite.
Since {xn} is bounded, we have

bn ≤
2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xn+1 − u∗〉

≤ 2(1− αnγk)

r − γk
‖γf(u∗)−Du∗‖‖xn+1 − u∗‖

< +∞

(3.10)

so that this implies −δ ≤ limn→∞bn < +∞. We next prove limn→∞bn ≥ −δ.
To this aim, we processed by contradiction. Assume that limn→∞bn < −δ,
which implies that there exists n0 ∈ N such that bn ≤ −δ for all n ≥ n0, it
follows from that

an+1 ≤ (1− αn)an + αnbn

≤ (1− αn)an − αnδ
= an − αn(an + δ)

≤ an −
αn(1− γk)δ

1− αnγk
.

(3.11)

for all n ≥ n0. By induction, we have

an+1 ≤ an0 −
( (1− γk)δ

∑n
i=n0

αi

1− γk
∑n
i=n0

αi

)
. (3.12)

Hence, taking lim as n→∞ in the last inequality, we have

limn→∞an ≤ limn→∞

[
an0
−
( (1− γk)δ

∑n
i=n0

αi

1− γk
∑n
i=n0

αi

)]
= −∞ (3.13)
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which clearly contradicts the fact that {an} is a nonnegative real sequence.
Thus, limn→∞bn ≥ −δ and it is finite.

Step 4. Show that {xn} converges to z. Since limn→∞bn is finite, we can
take a subsequence {nk} such that

limn→∞bn = lim
k→∞

bnk

= lim
k→∞

[2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xnk+1 − u∗〉

− 1− αnr
αn(r − γk)

(‖xnk
− Sxnk

‖2 + ‖(I − T )Axnk
‖2)2

‖xnk
− Sxnk

+A∗(I − T )Axnk
‖2

]
.

(3.14)

Since 〈γf(u∗)−Du∗, xnk+1 − u∗〉 is a bounded real sequence, without loss of
generality, we may assume there exists the limit:

lim
k→∞

〈γf(u∗)−Du∗, xnk+1 − u∗〉. (3.15)

Consequently, from (3.14), the following limit also exists:

lim
k→∞

1− αnr
αn(r − γk)

(‖xnk
− Sxnk

‖2 + ‖(I − T )Axnk
‖2)2

‖xnk
− Sxnk

+A∗(I − T )Axnk
‖2

(3.16)

which implies that the sequence

1

αn(r − γk)

(‖xnk
− Sxnk

‖2 + ‖(I − T )Axnk
‖2)2

‖xnk
− Sxnk

+A∗(I − T )Axnk
‖2

(3.17)

is bounded. So, by condition αn → 0, we have

lim
k→∞

(‖xnk
− Sxnk

‖2 + ‖(I − T )Axnk
‖2)2

‖xnk
− Sxnk

+A∗(I − T )Axnk
‖2

= 0. (3.18)

By Lemma 3.3, we have

lim
nk→∞

‖xnk
− Sxnk

‖ = lim
nk→∞

‖Axnk
− TAxnk

‖ = 0. (3.19)

By the definition of xnk+1, we deduce that

lim
k→∞

‖xnk
− ynk

‖ = lim
k→∞

ρnk
‖xnk

− Sxnk
+A∗(I − T )Axnk

‖

= lim
k→∞

(‖xnk
− Sxnk

‖2 + ‖(I − T )Axnk
‖2)2

‖xnk
− Sxnk

+A∗(I − T )Axnk
‖2

= 0
(3.20)
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which further implies

‖xnk+1 − xnk
‖ = ‖αnk

γf(xnk
) + (I − αnk

B)ynk
− xnk

‖
≤ αnk

‖γf(xnk
)−Dxnk

‖+ (1− αnk
r)‖ynk

− xnk
‖

→ 0.

(3.21)

Since we have shown that the sequence {xn} is bounded. This implies that any
weak cluster point of {xnk+1} also belongs to Ω. Without loss of generality,
we assume that {xnk+1} converges weakly to x ∈ Ω. Now by (3.14), we infer
that

limn→∞bn = lim
k→∞

2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, xnk+1 − u∗〉

=
2(1− αnγk)

r − γk
〈γf(u∗)−Du∗, x− u∗〉 ≤ 0

(3.22)

due to the fact that u∗ = PΩ(I − D + γf)u∗ and (2.3). Finally, applying
Lemma 2.4 to (3.4), we arrive at ‖xn − u∗‖ → 0, which ends the proof.

In the cases f(xn) = u, we have the algorithm as follows

Algorithm 3.5. Choose an arbitrary initial guess u, x0. Assume xn has been
constructed. If

‖xn − Sxn +A∗(I − T )Axn‖ = 0,

then stop; otherwise, continue and construct xn+1 via the formula:{
yn = xn − ρn[xn − Sxn +A∗(I − T )Axn],

xn+1 = αnγu+ (I − αnD)yn,

where γ ∈ (0,min{1 − β, 1 − µ}) is a positive constant and ρn ⊂ (0,∞) is
chosen self-adaptively as

ρn = σn
‖xn − Sxn‖2 + ‖Axn − TAxn‖2

‖xn − Sxn +A∗(I − T )Axn‖2
.

Corollary 3.6. Assume the following conditions are satisfied

(i)
∑∞
n=1 ρn =∞ and

∑∞
n=1 ρ

2
n <∞;

(ii) 0 < r <
1

αn
, 0 < γ < r.

Then the sequence {xn} generated by Algorithm 3.5 converges strongly to a
solution u∗ of problem SCFPP, where u∗ = PΩ(u∗ −Du∗ + u).
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4 Numerical experiments

In this section, we construct a numerical example to illustrate the algorithm
(3.1) and convergence analysis of the sequences of our main result. All codes
were written in Matlab 2018a and run on Dell i-5 Core laptop.

Example 4.1. Let H1 = H2 = (R2, ‖ · ‖2). Define the mappings S : R2 → R2

and T : R2 → R2 by

S(x1, y1) = (−3x1, y1) and T (x1, y1) = −5(x1, y1), ∀x1, y1 ∈ R.

First, we show that S is a 1
2−demicontractive mapping. if x = (x1, y1) ∈ R2

and p1 = (0, a) ∈ F (S), then

‖Sx− p1‖22 = ‖(−3x1, y1)− (0, a)‖22
= (−3)2|x1|2 + |y1 − a|2

= 9|x1|2 + |y1 − p1|2

= |x1|2 + |y1 − a|2 + 8|x1|2

= ‖x− p1‖22 +
8

16
(16|x1|2)

= ‖x− p1‖22 +
1

2
‖x− Sx‖22.

Thus, S is a 1
2 -demicontractive mapping.

Second, we show that T is a 2
3−demicontractive mapping. if x = (x1, y1) ∈ R2

and p2 = (0, 0) ∈ F (T ), then

‖Tx− p2‖22 = ‖ − 5(x1, y1)− (0, 0)‖22
= 25|x1|2 + 25|y1|2

= |x1|2 + |y1|2 + 24(|x1|2 + |y1|2)

= ‖x− p2‖22 +
24

36
(36(|x1|2 + |y1|2))

= ‖x− p2‖22 +
2

3
‖x− Tx‖22.

Thus, T is a 2
3−demicontractive mapping. Next, we define the mappings

f : R2 → R2, A : R2 → R2 and D : R2 → R2 by

f(x1, y1) = (
x1

8
,
y1

8
), A(x1, y1) = 8(x1, y1), D(x1, y1) = (

x1

2
,
y1

2
), ∀x1, y1 ∈ R.

Then f is a 1
8−contraction, A is a bounded linear operator on R with adjoint

operator A∗ and D is a strongly positive bounded linear operator with coeffi-
cient ξ = 1

2 . In Algorithm (3.1), we set σn = 0.15, γ = 0.1 and αn = 1
10n+100 .
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We compare with Moudafi in [27], by set γ = 0.0018 and αn = 1
10n+100 . Then,

we have the results in Table 4.1 and Figure 4.1.

Table 4.1: Result of Example 4.1.

(x1, y1) Algorithm 3.1 Moudafi

No. of Iter. 6 15
(−9, 9) Approximation (-0.000000, 0.000000) (-0.000000, 0.000000)

‖xn+1 − xn‖2 0.000000 0.000000
Time 0.036015 0.025440

No. of Iter. 6 15
(20, 10) Approximatio (0.000000, 0.000000) (0.000000, 0.000000)

‖xn+1 − xn‖2 0.000000 0.000001
Time 0.027071 0.015959

No. of Iter. 6 14
(−6,−2) Approximatio (0.000000, -0.000000) (-0.000000, -0.000000)

‖xn+1 − xn‖2 0.000000 0.000001
Time 0.036619 0.015571

4.1 Compressed sensing

Compressed sensing is a very active domain of research and applications, based
on the fact that an K-sample signal x with M ≤ N < K. The sampling matrix
A ∈ RM×N (M < N) is stimulated by standard Gaussian distribution and
vector z = Ax0 + b, where b is additive noise. The most common form of
disorder technique is l1 regularization as:

min
x∈RN

{1

2
‖Ax− z‖2 + α‖x‖1}, (4.1)

where is α a positive parameter and ‖ · ‖1 denotes the sum of the absolute
values of the components. By means of convex analysis, one is able to show
that a solution to the constrained least squares problem:

min
x∈RN

{1

2
‖Ax− z‖2} subjet to ‖x‖1 ≤ t, (4.2)

for any nonnegative real number t, is a minimizer of (4.1) (see [9]). Clearly
problem (4.2) is a particular case of problem (SFP) where C = {x ∈ RN :
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(a) (x1, y1) = (−9, 9) (b) (x1, y1) = (−9, 9)

(c) (x1, y1) = (20, 10) (d) (x1, y1) = (20, 10)

(e) (x1, y1) = (−6,−2) (f) (x1, y1) = (−6,−2)

Figure 4.1: Result of Example 4.1.
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‖x‖1 ≤ t} and Q = {z}. and thus can be solved by the proposed algorithm.
In this case, PC is the projection onto the closed l1-ball in Rn (see [7]).

Algorithm 4.2. Choose an arbitrary initial guess x0. Assume xn has been
constructed. If

‖xn − PCxn +A∗(Axn − z)‖ = 0,

then stop; otherwise, continue and construct xn+1 via the formula:{
yn = xn − ρn[xn − PCxn +A∗(Axn − z)],
xn+1 = αnγf(xn) + (I − αnD)yn,

where γ ∈ (0, 1) is a positive constant, σn ∈ (0, 1) and ρn ∈ (0, 1) is chosen
self-adaptively as

ρn = σn
‖xn − PCxn‖2 + ‖Axn − z‖2

‖xn − PCxn +A∗(Axn − z)‖2
.

Theorem 4.3. Let {xn} be the sequence generated by Algorithm 4.2. If the
sequence {ρn} satisfies

∑∞
n=1 ρn =∞ and

∑∞
n=1 ρ

2
n <∞, then {xn} converges

weakly to a solution u∗ of split feasibility problem .

Proof. Take S = PC and T = PQ in Theorem 3.4.

In our experiment, we set the hits of a signal x ∈ RN is N = 212. There exist
K = 50 spikes with amplitude ±1 distributed in the whole domain randomly.
Then we set the observation dimension M = 210 with white Gaussian noise
of variance ε2 = 10−4. The process is started with initial signal x0 = A∗z and
finishes with 400 iterations. The restoration accuracy is measured by means

of the mean squared error: MSE = ‖x∗−x‖2
N , where x∗ is an estimated signal

of x. All codes were written in Matlab 2018a and run on Dell i-5 Core laptop.
We compare the performances of Algorithm 4.2 by f(x) = 1

8x, D(x) = 1
2x, σn =

0.15, γ = 0.1 and αn = 1
10n+100 . with Byrne’ s algorithm [2] by γ = 0.1 are

reported in Figure 4.2.

4.2 Image restoration

We apply the algorithm 4.2 in the paper to image restoration. The observation
model can also be described as (4.1), we wish to estimate an original image
x from an observation z, while matrix A represents the blur operator (’mo-
tion’,15,60), and b is random noise. The signal to noise ratio (SNR) is used to
measure the quality of the restored images. They are defined as follows:

SNR = 20 log
‖x‖

‖x− xn‖
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Figure 4.2: From top to bottom: original signal, reconstruction signals respec-
tively by Algorithm 4.2 and Byrne’ s algorithm

where x, z and xn are the original image, the observed image and estimated
image at iteration n, respectively. The process is started with initial signal
x0 = Ax+b and finishes with 100 iterations. All codes were written in Matlab
2018a and run on Dell i-5 Core laptop.
We compare the performances of Algorithm 4.2 by f(x) = 1

8x, D(x) = 1
2x, σn =

0.2, γ = 0.9 and αn = 1
10n+100 with Byrne’s algorithm [2] by γ = 0.9 are re-

ported in Figure 4.3 and Figure 4.4.

5 Conclusions

In this article, we proposed a new iterative scheme for finding common solu-
tions of demicontractive operators. Under some suitable conditions imposed
on parameters, we proved some strong convergence theorems of the proposed
algorithm and, finally, we presented some numerical results to show that our
algorithm performs better than some existing methods.
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(a) original image (b) blur and noisy image

(c) Algorithm 4.2 (SNR=50.30, 100 iter,
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(d) Byrne’s algorithm (SNR=46.35, 100
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Figure 4.3: Result of restoration image size 192× 256: (a) original image, (b)
blur and noisy image, (c) restoration by Algorithm 4.2 and (d) restoration by
Byrne’ s algorithm
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(a) signal image at (x, y) = (:, 10) (b) signal image at (x, y) = (:, 50)

(c) signal image at (x, y) = (:, 100) (d) signal image at (x, y) = (:, 150)

Figure 4.4: Signal of restoration: (a) signal of position (x, y) = (:, 10), (b)
signal of position (x, y) = (:, 50), (c) signal of position (x, y) = (:, 100) and (d)
signal of position (x, y) = (:, 150)
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[23] Ţicală, C., Approximating fixed points of asymptotically demicontrac-
tive mappings by iterative schemes defined as admissible perturbations.
Carpathian J. Math. 33 (2017), no. 3, 381–388.

[24] Wang F.: A new iterative method for the split common
fixed point problem in Hilbert spaces, Optimization (2017) DOI:
10.1080/02331934.2016.1274991

[25] Xu, H.K.: Iterative algorithm for nonlinear operators, J. Lond. Math.
Soc. 66, 1–17 (2002).

[26] Yang, X. N., Xu, H.-K., Projection algorithms for composite minimiza-
tion. Carpathian J. Math. 33 (2017), no. 3, 389–397.

[27] Yao, Y., Liou, Y.C., Postolache, M.: Self-adaptive algorithms for the
split problem of the demicontractive operators, Optimization, (2017),
DOI: 10.1080/02331934.2017.1390747

[28] Xu H.-K.: Viscosity approximation methods for nonexpansive mappings,
J. Math. Anal. Appl. vol. 298, no. 1, pp. 279–291, 2004.

Duangkamon Kitkuan,
KMUTTFixed Point Research Laboratory,
Department of Mathematics,
Room SCL 802 Fixed Point Laboratory,
Science Laboratory Building, Faculty of Science,
King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand.
Email: or duangkamon@hotmail.com

Poom Kumam,
KMUTT-Fixed Point Theory and Applications Research Group,
Theoretical and Computational Science Center (TaCS),
Science Laboratory Building, Faculty of Science,
King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pracha Uthit Rd., Bang Mod, Thrung Khru,Bangkok 10140, Thailand.
Email: poom.kum@kmutt.ac.th



Adaptive algorithm for solving the SCFPP of demicontractive operators 175

Vasile Berinde,
Technical University of Cluj-Napoca,
North University Center of Baia Mare,
Department of Mathematics and Computer Science, Romania.
Academy of Romanian Scientists.
Email: vberinde@cunbm.utcluj.ro

Anantachai Padcharoen,
KMUTTFixed Point Research Laboratory,
Department of Mathematics,
Room SCL 802 Fixed Point Laboratory,
Science Laboratory Building, Faculty of Science,
King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand.
Email: apadcharoen@yahoo.com



Adaptive algorithm for solving the SCFPP of demicontractive operators 176


