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Bipartite Graphs Associated with Pell,
Mersenne and Perrin Numbers

Ahmet (")teleg,

Abstract

In this paper, we consider the relationships between the numbers
of perfect matchings (1-factors) of bipartite graphs and Pell, Mersenne
and Perrin Numbers. Then we give some Maple procedures in order to
calculate the numbers of perfect matchings of these bipartite graphs.

1 Introduction

The well-known integer sequences (e.g., Fibonacci, Pell) provide invaluable
opportunities for exploration, and contribute handsomely to the beauty of
mathematics, especially number theory [1, 2].

The Pell sequence {P (n)} is defined by the recurrence relation, for n > 2

P(n)=2P(n—-1)+P(n—2) (1)

with P (0) =0 and P (1) = 1 [3]. The number P (n) is called nth Pell number.
The Pell sequence is named as A000129 in [4].
The Mersenne sequence {M (n)} is defined by the recurrence relation, for
n>2
Mm)=2M(n—-1)+1 (2)

with M (0) =0 and M (1) =1 [5]. The number M (n) is called nth Mersenne
number. The Mersenne sequence is named as 4000225 in [4].
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The Perrin sequence {R (n)} is defined by the recurrence relation, for n > 2
R(n)=R(n—2)+R(n—3)

with R(0) =3, R(1) = 0 R(2) = 2. The number R (n) is called nth Perrin
number [6]. The Perrin sequence is named as A001608 in [4].
The first few values of these sequences can be seen at the following table:

n [0 1 2 3 4 5 6 7 8 9 10
P(n) [0 1 2 5 12 29 70 169 408 935 2378
M(n)|0 1 3 7 15 31 63 127 255 511 1023
R(n)|3 0 2 3 2 5 5 7 10 12 17

The investigation of the properties of bipartite graphs was begun by Konig.
His work was motivated by an attempt to give a new approach to the investiga-
tion of matrices on determinants of matrices. As a practical matter, bipartite
graphs form a model of the interaction between two different types of objects.
For example; social network analysis, railway optimization problem, marriage
problem, etc [7]. The enumeration or actual construction of perfect match-
ing of a bipartite graph has many applications, for example, in maximal flow
problems and in assignment and scheduling problems arising in operational
research [8]. The number of perfect matchings of bipartite graphs also plays
a significant role in organic chemistry [9].

A bipartite graph G is a graph whose vertex set V' can be partitioned into
two subsets V; and V5 such that every edge of GG joins a vertex in V; and a
vertex in V,. A perfect matching (or 1 -factor) of a graph is a matching in
which each vertex has exactly one edge incident on it. Namely, every vertex in
the graph has degree 1. Let A(G) be adjacency matrix of the bipartite graph
G and p(G) denote the number of perfect matchings of G. Then, one can find
the following fact in [8]: pu(G) = v/per (A(Q)).

Let G be a bipartite graph whose vertex set V is partitioned into two
subsets V7 and Vs such that |[Vi| = |Vo| = n. We construct the bipartite
adjacent matrix B(G) = (b;;) of G as following: b;; = 1 if and only if G
contains an edge from v; € V4 to v; € V,, and otherwise b;; = 0. Then, the
number of perfect matchings of bipartite graph G is equal to the permanent
of its bipartite adjacency matrix [8].

The permanent of an n x n matrix A = (a;;) is defined by

per (4) = Z Haia(i)

oceS, i=1

where the summation extends over all permutations o of the symmetric group
Sy. The permanent of a matrix is analogous to the determinant, where all of
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the signs used in the Laplace expansion of minors are positive. One can find
the basic properties and more applications of permanents [8, 9, 10, 11, 12, 13].

Permanents have many applications in physics, chemistry and electrical
engineering. Some of the most important applications of permanents are via
graph theory. A more difficult problem with many applications is the enumer-
ation of perfect matchings of a graph [8]. Therefore, counting the number of
perfect matchings in bipartite graphs has been very popular problem.

One can find so many studies on the relationship between the number of
perfect matchings of bipartite graphs and the well-known integer sequences
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

In this paper, we define three n x n (0, 1)-matrices which correspond to the
adjacency matrices of some bipartite graphs. Then we show that the numbers
of perfect matchings of these bipartite graphs are equal to Pell, Mersenne
and Perrin numbers, respectively. Finally, we give some Maple procedures
regarding our calculations.

2 Main Results

Let A= [aij] be an m x n real matrix with row vectors ay, as, ..., a,;,. We say
A is contractible on column (resp. row) k if column (resp. row) k contains
exactly two nonzero entries. Suppose A is contractible on column k with
a;;, # 0 # aji and i # j. Then the (m — 1) x (n — 1) matrix A,;;.; obtained
from A by replacing row ¢ with a;ioy; + a;pa; and deleting row j and column
k is called the contraction of A on column k relative to rows i and j. If
A is contractible on row k with ar; # 0 # ar; and 7 # j, then the matrix

T
Ay = [Aﬁk] is called the contraction of A on row k relative to columns

i and j. We say that A can be contracted to a matrix B if either B = A or
there exist matrices Ag, A1, ..., Ay (t > 1) such that Ag = A, A; = B, and A,
is a contraction of A,_; for r =1,...,¢ [10].

Brualdi and Gibson [10] proved the following result about the permanent
of a matrix.

Lemma 2.1. Let A be a nonnegative integral matrix of order n forn > 1 and
let B be a contraction of A. Then

perA = perB. (3)



BIPARTITE GRAPH ASSOCIATED WITH PELL, MERSENNE AND PERRIN NUMBERS 112

Let H,, be an n X n (0,1)-matrix having form

1 1 0 0o --- 0
1 1 0 1 0
0 1 1 1 .
O 1 1+(71)j
Hn - 1+(2 1)j . (4)
= 0
. 14+(-1)"
2
0 1 1 eu”
0 0 1 1
where
1, ifj—i=—-lorj—i=0,
hij MO ifj—i=1lorj—i=2

0, otherwise.

Theorem 2.2. Let G(H,) be the bipartite graph with bipartite adjacency ma-
triz Hy, given by (4). Then, the number of perfect matchings of G(H,) is
L%J th Pell number P (L”'Q"QJ), where |x| is the largest integer less than or
equal to x.

Proof. Let H,, be the rth contraction of the matrix H,, 1 <r < n —2. By
definition of H,,, the matrix H,, can be contracted on column 1 so that

1 1 1 0 0
0 1 1 0
.. .. 1+(,1)]
1+ 0
14 (=1)"
2
1+(—1)™
0 1 e

0 cov eee e e 0 1 1
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Since the matrix H! can be contracted on column 1 and P (2) =2, P(1) =1

2 3 0 0 - 0
1 1 0 1 0
0o 1 1 1
1+(=1)7
o 0 1 1)
" L (-1 - 0
- :
4+(=D"
2
: 0 1 1 LT
0 o e e e 0 1 1
P(2) P2 +P(1) 0 0 0
1 1 0 1 0
0 1 11
_ 0 ! —— ~
1+(-17 -,
o
: L+(-1)"
2
: 1+71n
: 0 1 ] D
0 0 1 1

Furthermore, the matrix H2 can be contracted on column 1 and taking into
account (1), so that

P(3) 0 P2 0 - 0
1 1 1 0 0 :
0 1 1 0
14+(—1)7
H? = 0 ! 2
1+(2—1)] 0
. 1+ (=1)"
2
14+(—1)"
0 1 1 LR

0 0 1 1
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Continuing this process, we derive the rth contraction of H, as: If r is odd,

P(%Jrl) 0 P(%) 0 0
1 1 1 0 0
0 1 1 0
U e )
H = 0 ! I
14(=1)7 -,
(2) ) 0
: 1+(=D"
2
1+(=1)™
: 0 1 1 %
0 0 1 1

and if r is even,

P(3+1) P(3+1)+P(3) 0 0 - 0
1 1 0 1 0
0 1 11
.. .. 14(—1)7
H, = 0 L T
14+(—1)7 ..
2 ) 0
1+(=1)"
2
1+(—1)"
: 0 1 1 et
0 0 1 1

for 3 <r <n—3. Notice that if n is odd (even) then r = n — 3 is even (odd).
Consequently,

P P35+ P (35 —1) 0
1 1 0 if n is odd,
0 1 1
H':LL_?’ - n n
P(3) 0 P(3-1)
1 1 1 if n is even.
0 1 1

which, by contraction of H” 2 on column 1 and taking into account (1), gives

)

P (Tlli (1) , if n is odd,
H’:Ll_2 = n n n (5)
P(li) P(?)"‘f(?_l) ), if n is even.
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By applying the equation (3) to the expression (5) and taking into account
(1), we obtain

P ("—H) , if n is odd,

P (@) , if n is even,

perH, = perH" % = {
2

which is deduced that perH, = P (L”T”J) So, the proof is completed. O

Let K,, be an n x n (0, 1)-matrix having form

1—(=1)7 1-(=1)"
1 0 1 0 - % =1

K, = N 6
11 =G )
' 0
- 1-(—1)"
: 2
0 0 1 1
where
1,  ifj—i=-lorj—i=0,
kij=4 =G0 ifi=1orj—i=1,
0, otherwise.

Theorem 2.3. Let G(K,,) be the bipartite graph with bipartite adjacency ma-
triz K, given by (6). Then, the number of perfect matchings of G(K,) is
L%HJ th Mersenne number M (V%HJ), where x| is the largest integer less
than or equal to x.

Proof. Let K] be the rth contraction of B,, for 1 < r < n — 3. By applying
successive contractions to the matrices K for 1 < r < n—3 according to their
first columns, we get

n—1 n—1
M(lT) M(21)+1), if n is odd,
n—2 __
K= M(%) 0 o )
1 L if n is even.

By applying the equation (3) to the expression (7) and taking into account
(2), we obtain

perK, = perK" 2 = { M Enl) , if nis odd,

2
n e
5) , if n is even,
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which is deduced that perK, = M (VLT—HJ ) So, it is desired. O

In [23, Theorem 2], we can reach the following result regarding the relation-
ship between Perrin numbers and the permanent of a certain upper Hessenberg
matrix.

Theorem 2.4. Let B, = (b;;) be the n x n matriz such that b;; = 2 if and
onlyifi=1andj=1,b;=3ifand onlyifi=1and j =2, bj; =1 if and
onlyifj—i=—1lort>1landj—it=1, ori>1 and j—i =2 and otherwise
0. Clearly,

2 3 0 0 -+ - 0

1 0 1 1 0

1 1
: | 0 1

Then the permanent of By, is the (n + 1)st Perrin number R (n+ 1).

Let S,, = (s45) be the n x n (0,1) -matrix defined by s;; = 1 if and only if
|i—il=1orj—i=2. Let T, = (t;;) be the n x n tridiagonal (0, 1)-matrix
with t17 = tee = 1. Let U,, = (u;;) be the n x n (0, 1)-matrix with ugs = 1.
Then we can give the following theorem.

Theorem 2.5. Let G(L,) be the bipartite graph with bipartite adjacency ma-
trix L, = Sy, + T, + U, for n > 3. Then, the number of perfect matchings of
G(Ly) is (n — 1)st Perrin number R (n —1).

Proof. Let L] be the rth contraction of the matrix L,, 1 < r < n — 2. By
definition of L,,, the matrix L,, can be contracted on column 1 so that

2 9 1 0 v v i 0
1 0 1 0 0
0 1 0 1 1 0

Ll =
0
0 1 1
0 1 0 1
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If the matrix L) can be contracted on column 1, then

0

: 0 1
0 v cee eee oo O

1

0
1

1

1
0

which is equal to B,,_2, where B,, is the matrix defined by (8). By applying
the equation (3) to the expression (9) and taking into account Theorem 2.4,

we obtain

perL, = perL? =perB, o= R(n—1),

which is desired.

O

Appendix A. The following Maple procedure calculates the numbers of

perfect matchings of bipartite graph G(H,,) given in Theorem 2.2.

restart:
with(LinearAlgebra):
permanent:=proc(n)
local i,j,r,h,H;

h:=(i,j)->piecewise(j-i=-1,1,j-i=0,1,j-i=1,(1+(-1)9) /2, j — i = 2, (1+

(-1)7)/2,0);

H:=Matrix(n,n,h):

for r from 0 to n-2 do

print(r,H):

for j from 2 to n-r do
HI[L1,j:=H[2,1]*H][1,j]+H[1,1]*H[2,]]:
od:

H:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,H),1),2):

od:

print(r,eval(H)):

end proc:with(LinearAlgebra):
permanent(n);

Appendix B. The following Maple procedure calculates the numbers of

perfect matchings of bipartite graph G(K,,) given in Theorem 2.3.
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restart:

with(LinearAlgebra):

permanent:=proc(n)

local i,j,r,k,K;

ki=(i,j)->piecewise(i=1,(1-(-1)7)/2,j —i = —1,1,j —i =0,1,j —i =

1(1-(-1)7)/2,0);

K:=Matrix(n,n k):

for r from 0 to n-2 do

print(r,K):

for j from 2 to n-r do

K[1,j]:=K[2,1]*K[1,j]+K[1,1]*K[2,j]:

od:

K:=DeleteRow (DeleteColumn(Matrix(n-r,n-r,K),1),2):

od:

print(r,eval(K)):

end proc:with(LinearAlgebra):

permanent(n);

Appendix C. The following Maple procedure calculates the numbers of
perfect matchings of bipartite graph G(L,,) given in Theorem 2.5.

restart:

with(LinearAlgebra):

permanent:=proc(n)

local i,j,r,s,t,u,S, T, U L;

s:=(i,j)->piecewise(abs(j-i)=1,1,j-i=2,1,0);

t:=(1,j)->piecewise(i=1 and j=1,1,i=2 and j=2,1,0);

w:=(1,j)->piecewise(i=3 and j=5,1,0);

S:=Matrix(n,n,s):

T:=Matrix(n,n,t):

U:=Matrix(n,n,u):

L:=S+T-U:

for r from 0 to n-2 do

print(r,L):

for j from 2 to n-r do

L[1,j]:=L[2,1]*L[1,j]+L[1,1]*L[2,j):

od:

L:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,L),1),2):

od:

print(r,eval(L)):

end proc:with(LinearAlgebra):

permanent(n);



BIPARTITE GRAPH ASSOCIATED WITH PELL, MERSENNE AND PERRIN NUMBERS 119

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-
Interscience, New York, 2001.

[2] T. Koshy, Fibonacci, Lucas, and Pell numbers, and Pascal’s triangle,
Math. Spectrum, 43(3) (2011), 125-132.

[3] A.F. Horadam, Jacobstal and Pell Curves, Fibonacci Quart., 26 (1988),
79-83.

[4] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Se-
quences, https://oeis.or, 2013.

[5] P. Catarino, H. Campos, P. Vasco, On the Mersenne sequence, Annales
Mathematicae et Informaticae, 46 (2016), 37-53.

[6] W. Adams, D. Shanks, Strong primality tests that are not sufficient,
Mathematics of Computation, 39(159) (1982), 255-300.

[7] A.S. Asratian, T.M.J. Denley, R. Haggkvist, Bipartite Graphs and their
Applications, Cambridge Tracts in Mathematics, 131, Cambridge Univer-
sity Press, 1998.

[8] H. Minc, Permanents, Encyclopedia of mathematics and its applications,
Addison-Wesley, New York, 1978.

[9] G.W. Wheland, The Theory of Resonant and its Application to Organic
Chemistry, Wiley, New York, 1953.

[10] R.A. Brualdi, P.M. Gibson, Convez polyhedra of doubly stochastic matri-
ces I: applications of the permanent function, J. Combin. Theory A, 22
(1977), 194-230.

[11] R.A. Brualdi, D. Cvetkovic, A Combinatorial Approach to Matriz Theory
and Its Applications, CRC Press, 2009.

[12] F. Harary, Determinants, permanents and bipartite graphs, Math. Mag.,
42 (1969), 146-148.

[13] M. Marcus, H. Minc, Permanents, Amer. Math. Monthly, 72 (1965), 577-
591.

[14] G.Y. Lee, S.G. Lee, H. G. Shin, On the k-generalized Fibonacci matrix

Qk, Lin. Alg. Appl., 251 (1997), 73-88.



BIPARTITE GRAPH ASSOCIATED WITH PELL, MERSENNE AND PERRIN NUMBERS 120

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[25]

[26]

G.Y. Lee, k-Lucas numbers and associated bipartite graphs, Lin. Alg.
Appl., 320 (2000), 51-61.

W.C. Shiu, Peter C.B. Lam, More on the generalized Fibonacci numbers
and associated bipartite graphs, Int. Math. J., 3 (2003), 5-9.

E. Kilig, D. Tasc1, On families of bipartite graphs associated with sums of
Fibonacci and Lucas numbers, Ars Combin., 89 (2008), 31-40.

G.Y. Lee, S.G. Lee, A note on generalized Fibonacci numbers, Fibonacci
Quart., 33 (1995), 273-278.

E. Kilig, D. Tasgi, On the permanents of some tridiagonal matrices with
applications to the Fibonacci and Lucas numbers, Rocky Mt. J. Math.,
37(6) (2007), 1953-1969.

M. Akbulak, A. Oteles, On the number of 1-factors of bipartite graphs,
Math. Sci. Lett., 2(3) (2013), 1-7.

A. Oteles, On the Number of Perfect Matchings for Some Certain Types
of Bipartite Graphs, Filomat, 31(15) (2017), 48094818.

F. Yilmaz and D. Bozkurt, Some properties of Padovan sequence by ma-
triz methods, Ars Combin., 104 (2012), 149-160.

F. Yilmaz and D. Bozkurt, Hessenberg matrices and the Pell and Perrin
numbers, J. Number Theory, 131 (2011), 1390-1396.

C.M. da Fonseca, T. Sogabe and F. Yilmaz, Lower k-Hessenberg Matrices
and k-Fibonacci, Fibonacci-p and Pell (p,i) Number, Gen. Math. Notes,
31(1) (2015), 10-17.

E. Kilig, D. Tasg1, On families of bipartite graphs associated with sums
of generalized order-k Fibonacci and Lucas numbers, Ars Combin., 94
(2008), 13-23.

E. Kilig, A.P. Stakhov, On the Fibonacci and Lucas p-numbers, their
sums, families of bipartite graphs and permanents of certain matrices,

Chaos Solitons Fractals, 40(22) (2009), 10-21.

Ahmet Oteles,

Department of Mathematics,
Faculty of Education,

Dicle University,

21280 Diyarbakir, Turkey.
Email: aoteles85@Qgmail.com



