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Abstract
In this paper, we consider a class £ (X, u; ¢) of analytic functions f
defined in the open unit disk U satisfying the subordination condition

that
DM f(2)

D f(2)
-2
where ¢q(z) = (ﬁ(z))M , D* is the Siligean operator and ¢(z) is a

q(2) < ¢(2) (A € No,pup > 0;2 € U),

convex function with positive real part in U. We obtain some characteris-
tic properties giving the coefficient inequality, radius and subordination
results, and an inclusion result for the above class when the function
¢(z) is a bilinear mapping in the open unit disk. For these functions
f (%), sharp bounds for the initial coefficient and for the Fekete-Szegd
functional are determined, and also some integral representations are
given.

1 Introduction
Let A denote a class of functions f analytic in the open unit disk

U ={z:|z| < 1} with the normalization that f(0) =0 = f’(0) — 1, that is the
function f has the series expansion

f2) =24 arp1 2, 2 €U (1.1)
k=1
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For f € A of the form (1.1), we define the operator denoted D*, \ € Z =
NU{OJU-N={---,-2,-1,0,1,2,---} by

DAf(2) =z + Z(k + 1) agpyr 2" 2 € U
k=1

The operator D* was considered in [16] and for A € Ny = NU {0} it is known
as Salagean operator of order A. In this case, it can be defined equivalently by

DUf(2) = f(2), D' f(2) = Df(2) = 2f'(2), D f(2) =D (D' f(2)), AeN.

We note that DXD~Af(z) = f(z), for all A € Z.

zf/(2) 2 41
Classes of analytic functions f € A involving the quotient @ = Zf{i(g)

have been studied in [2, 10, 11, 17, 19]. Also, the classes involving the quotient

1+p
(f{j)) = f'(2) (ﬁ) have been studied for g > —1in [13] (for —1 < p <

0 in [9] and for 0 < p < 1 in [22]). Moreover, for u # 0, a class involving a
certain linear operator under a subordination condition is investigated in [4].

1+p M
Interestingly, a combination of both f/(z) (ﬁ) and (ﬁ) forO0<p<1

was studied in [23] (see also [18, Definition 1.1, p. 5]).

It may be observed that the operator D* preserves the class A and hence
DAf(z) =0at z=0. Let A\ € Ny and let f € A be such that D*f(z) # 0 for
z €U\ {0}. We define a function ¢(z) by

pn—2

z

)= (o) W20 nAz 2eUN ) and g0)=1, (12
pn—2

where we assume that only principal values of (ﬁ(z)) are taken into

consideration. Clearly, the function ¢(z) is analytic in the open unit disk U.
A+1
Recently, by considering the expression q(z)%’ 1 > 0, Prajapat and

Raina [14] investigated a class B (A, pu; ) of functions f € A satisfying the
condition that

A+1 P
q(z)® f(z)

DM f(2)

It may be noted that for A = 0, = 0,4 = 3, the class B (0,3;0) = U was
earlier studied by Ozaki and Nunukawa in [11] (see also Obradovic et al. [10]
and Singh [19]), where it is proved that the functions f € U are univalent.
For two analytic functions p, ¢ such that p(0) = 1 = ¢(0), we say that p is
subordinate to ¢ in U and write p(z) < ¢(2), z € U, if there exists a Schwarz

—1l|<l—a, p>20,0<a<1,2ze€U.
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function w, analytic in U with w(0) = 0, and |w(z)| < 1,z € U such that
p(z) = q(w(z)), z € U. Furthermore, if the function ¢ is univalent in U, then
we have the following equivalence:

p(2) < q(2) & p(0) = ¢q(0) and p(U) C ¢(U).

Janowski [5] defined a class P(A, B) of analytic functions p(z), z € U, with
p(0) =1, if p(z) < }igz,—l <B<A<1lzeUIfpe PA,B), then it
follows that

(5 1-4B
P =T

and for B = —1,

< A—-B
1-B?

for —1<B<A<L1,2z€U (1.3)

R(p(z)) > #,—1 <A<1,2zel. (1.4)

The class P(1,—1) = P is a Carathéodory class of functions which are analytic
with positive real part in U.

In this paper, we consider a new class £ (A, u;¢) of analytic functions
(which evidently generalizes the class B (A, u; «)) comprising of functions f €
A if and only if (for #(2) #0in U) :

D>‘+1f(z)
DX f(2)

where g(z) is given by (1.2), D* is the Siligean operator and ¢ € P is a convex
function in U; see also the works in [20] and [21].

We note that £(0,2;¢) = S*[¢] and £(1,2;¢) = K [¢] are the classes
introduced by Ma and Minda [7] which include several well-known starlike
and convex mappings as special cases.

For the bilinear transformation ¢(z) = }iéz (-1<B<A<1,z€U),

we denote £ (/\, 14 }igi) by T(\, u; A, B).

We observe that the class T (), 2; A, B) = PYT'(A, B) was earlier consid-
ered by Kuroki and Owa [6, Remark 2, p. 4] for any integer A, and for com-
plex parameters A and B, the class 7(0,3; A, B) = T (A, B) was studied by
Shanmugam and Gangadharan [17]. The class T(0,2; A, B) = 8(A, B) is the
class of Janowski starlike functions [5]. Further, the classes T(\, p;1 — «,0) =
B (A p;a) and T(0,3;1 — a,0) = B(a) (0 < a < 1) were studied in [2] and
various subordination properties and sufficient conditions were investigated in
these classes of functions.

q(2) =< ¢(2) (A € Ny, p > 052 € U),
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For the purpose of this paper, we consider the functions f € A of the form
(1.1) such that the coefficients b, (k € N) defined by

n—2 o]
z
S . - =1 E k 1.
Q(Z) <Dkf(z)) +k:1bl€ < ,ZGU, ( 5)
to be non-negative.

Example 1. Let p > 0, p # 2 and let A € Ny; if we consider f € A of the
form f(z) = D~ (ze*/(=1)), then q(z) = e* has the form (1.5).

Example 2. Let 0 < pu <2, p= 2, preNandlet A\=1; if

1
Tr41

f(z) [(1+2)""" —1], then q(2) = (1+2)*"7.
Example 3. Let > 2 and let A € Ny, if we consider f € A, f(z) = z—an2",
where a, > 0 and n > 2, then

q(z) =[1- n’\anz”_l]Q_” =

T S A G (G R G L NV

k=1

— (=2 (= 1)) (u+k=3) k _k(n—

1+ Z ( )( (k') nk>\ (an) zk( 1).
k=1

Example 4. Let p > 0, p # 2 and let A € Ny; if we consider f € A of the

form f(2) = D7 (2(1 4 2)Y =) | then q(z) =1+ =

Example 5. Evidently, for f of the form (1.1) with axy1 > 0 and for p =1
and X € Ny, the coefficients by, are given by by, = (k + 1)>‘ ap+1,k € N.

In this paper, we concentrate ourselves in investigating some basic charac-
teristic properties such as the coefficient inequality, the radius result, subor-
dination and inclusion properties for the functions f € T (A, u; A, B) . Sharp
bounds for the initial coefficient, the Fekete-Szegd functional of functions f (z)
and integral representations belonging to this class are also determined.

2 A Coefficient Inequality

We begin to investigate the coefficient inequality of functions f € T (\, u; A, B),
which is contained in the following:
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Theorem 1. Let -1 < B < A< 1,u € [1,3]\ {2}, let f € A of the form
(1.1) and let b,k € N defined by (1.5) be non-negative. If

k—p+2 A-B
Z: htzy, < (2.1)
s I TNk

then f € T (A, u; A, B) . The condition (2.1) is necessary for f € T (A, u; A, B)
provided that —1 < B<0< A<1l,u€(23].

Proof. Let
D/\Jrlf(z)
p(z) = Q(Z)W7Z el, (2:2)
where ¢(z) is given by (1.2) then, we get
/
o) = a(2) - 28, (2.3
Since f € T (A, u; A, B), if and only if
‘p(z)_l‘<1,zetu, (2.4)

A — Bp(z)
therefore, if we consider
= |p(z) — 1| — |[A = Bp(2)|,

then in view of (1.5) and (2.3), we get

k—pu+2 % Zk—pu+2 &
k=1 k=1
°°k—/¢+2 k— u+2
_ A—-—B-— B|b
< kz::l |'u_2| Z | |k

k — 2
= Z ’” (1+|B)bx — (A— B) <0,
k=

on using (2.1). For the necessary part, we consider for —1 < B <0< A <1,
p € (2,3] that f € T(A, u; A, B), then from (2.4), in view of (1.5) and (2.3),
we have

— k—p+2
kZ::1 P by 2*
o E—pt2
A—B—kzl%wwk P

<1l,zel. (2.5)
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Since p(z) in (2.3) is real for real z, letting z — 1~ along real axis, we get

from the condition that 1_ A
R(p(2)) > 1-B

which ensures that the denominator under the mod sign in the inequality (2.5)
remains positive and then we have

o0

k—p+2
Z -2 by
k=1

= <1
A—B—kzl%wwk

)

which proves (2.1). This completes the proof of Theorem 1. I

From Theorem 1, for the cases when B = 0 and B = —1 (u € (2,3)),
respectively, and applying the well-known assertions (1.3) and (1.4), we get
the following results.

Corollary 1. Let 0 < A < 1,u € (2,3] and let f € A of the form (1.1) and
let by, k € N defined by (1.5) be non-negative. Then

D M1 f(2)
1< A
q(2) DIC) <A, z€T,
if and only if
ZLH;QW <A
= M

Corollary 2. Let —1 < A<1,u € (2,3] and let f € A of the form (1.1) and
let by, k € N defined by (1.5) be non-negative. Then

DAFLf(2) 1-A
§R<q(z) D) )> 5 , z€ U,
if and only if
Zk—u“rzbk < 1+A.
Pt w—2 2

Remark 1. For A = 0,u = 3, A =1, Corollary 1 corresponds to the known
result of Ponnusamy and Sahoo [13, Theorem 7, p. 400].
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3 Radius Result

Theorem 2. Let —1 < B < A < 1,u € [1,3] \{2} and let f € A of the
form (1.1) and let by, k € N defined by (1.5) be non-negative and satisfy the
condition that

—~k—p+2
E L (bi)? < 1. (3.1)
= |p—2

Then 1
(2 €T\, A, B)
for 0 <r <y, where ro = 1o (u, A, B) is given by

ny2|p =2 (3.2)

CBopt2Rlp-2+ B

wh€T6E=\/{3—u+2n2lu—2l}2+4n2\M—Q\(u—2—n2|u—2l) and 1 =
A-B
1+|B|"

Proof. Let f € A be of the form (1.1) with u € [1,3] \ {2} . Then for
0 <r <1, we have

n—2 00
_ il _ kk
q(TZ)(W) 71‘}”;ka2,ka0,26[[},

where ¢(z) is given by (1.2). Thus, by Theorem 1, L f (rz) € T(\, u; 4, B) if

k—p+2, . A-B
b < .
= E:w—m S T

By Cauchy-Schwarz inequality and the condition (3.1), we obtain that

0o & 9 1/2 0o 3 9 1/2
R < (Z_“Jr(bkf) (Z—WF 7n2k>

= |p—2| = =2

o0

1/2
1
_— k— 9) 2k
m?i(;( he?) )

1/2
1 7"4 7"2
i m(a—m”(g‘“)lr?)

1 /2 _ A-B
S G r2 -
T A A A v T
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provided that the inequality
r 911/2
1_773{3—N+(N—2)T} <yl —2|

holds, where 1’4%‘5' =1, or equivalently

1 1

=2 = 5 {8-p+w’ -2} —{u-2-n’lp-2} >0
holds, which provides the value of rg given by (3.2). This proves Theorem 2. |
Remark 2. By setting A = O,uy =3 —a (0<a<1) and B =0,4 = n,

Theorem 2 coincides with the result of Ponnusamy and Sahoo [13, Theorem
5, p. 398] for univalent functions f(z).

4 Subordination Result

Theorem 3. Let -1 < B< A<1,u€[l,2) and let f € A of the form (1.1)
and let by, k € N defined by (1.5) be non-negative. If f € T (\, u; A, B), then

n—2
z 1+ Az
(wm) <177l (4.1)
and hence,
by <A—B,keN. (4.2)

Proof. Let q(z) be defined by (1.2), which is analytic in U with ¢(0) = 1, then
from (2.3), we have

2¢'(z) 1+ Az

2—u = 1—&—BZ’Z6 ’

q(z) +

which by the result of Hallenbeck and Ruscheweyh [3] proves (4.1). Further,
on using a well-known result of Rogosinski [15] on subordination, and in view
of (1.5), the subordination (4.1) gives the coefficient inequality (4.2). I

5 Inclusion Result

Theorem 4. Let A € Ng, -1 < B<0< A<1,u€(2,3] and let f € A of
the form (1.1) and let by, k € N defined by (1.5) be non-negative. If

DMIF(Z) 14 Az
DA f(2) 1+B2"

e, (5.1)
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then

> (k= {7 (n—2) A-B
3 L+ 5] by < . (5.2)
— w—2 1+ |B|

Hence, Py™ (A, B) € T(\ u; A, B).
Proof. From (5.1), we have

D f(z)
DMIf(z) 1+ Az R -1
A1 f(z)
fePi(AB) & D) =< 1+ Bs = PR LE <1l,z€eU.
DX f(z)
(5.3)

Let ¢(z) be defined by (1.2), then on using (2.2) and (2.3), we get

WG D)
= 2)<1 DAf(z))'

Hence, by (1.5), the condition (5.3) can equivalently be expressed as

— Z kbk Zk
k=1

= = <1l,zeU. (5.4)
(A=B)(p—2) <1+ > b Zk) + B ) kb, 2
k=1 k=1

A
Since % is real for real z, letting z — 1~ along the real axis, we get

from (5.1) that

DMIF)\  1-A  DMfz) 1-4
3?< () >> < g

1-B DX f(z) 1-B
and hence, for being B < 0,

DA+1f(z)
DX f(2)

which ensures that the denominator under the mod sign in the inequality (5.4)
is positive. Thus, we have

A
>A+|Bl——= >0,

1—
A-B
1-B

S kb
k=1

_ <1
(A—B)(u—2)—k;{\B\k—(A—B)(u—%}bk

f— )
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which yields the desired inequality (5.2). Further, since ﬁ_lg\ <1,if
f € PYTH(A, B), we have by (5.2) that

A-B
ik—u+26k<§: k=5 (h—2) k<A—B
= p—2 et w—2 "~ 1+ |B|’

and consequently by Theorem 1, we conclude that f € T (A, u; A, B). This
proves the inclusion result. i

6 Fekete-Szego Problem
Let f(z) of the form (1.1) be in the class T (A, y; A, B), then for some Schwarz
function w(z), we get

DMf(z) 1+ Aw(z)
56y~ T4 Bu()

where ¢(z) is given by (1.2) and upon using the series:

z e, (6.1)

DNf(2) = 2z + Z (k+1) app 2", 2€U
k=1

and performing elementary calculations, we can write the series expansion

DMIf(2
) 7ty

P (i)

= 1+ (B3—p) 2%z + (4—p) {3%as — (u—1)2"""a3} 2* + ... (6.2)
For the Schwarz function w(z), let ¢ € P be defined by

1+w(z
¢(z) = 1—11152’; =14ciz+cz? + ... (6.3)
Then
1+ Aw(z) A-B A-B B+1,] ,
=1 - — 6.4
1+B’ZU(Z) T 2 €1z + {CQ 2 C1r 7 + .. ( )
and from (6.2) and (6.4), we get
A-B
(3—p)2%ay = 5L (6.5)

- (o - -n2ag) = 2o Tk )
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In order to find in this section sharp upper bound for |ag| and for the Fekete-
Szeg6 functional ’ag — pa%’ (p € C), we use the following result from [12, p.
166] (see also [1, p. 41]).

Lemma 1. Let ¢ € P be of the form ¢(z) =1+ c12 + c222 + ..., then
oo —c2/2| <2~ |ar]? /2
and |cx| <2 for all k € N.

Theorem 5. Let -1 < B< A<1,u€(2,3), and f € A be of the form (1.1)
belong to the class T (\, u; A, B), then

and for all p € C:

_’u)3>\

A-B
‘ag—pag} < ——— max< 1,
(4 (3 — p)? 22

(tte ) Uompe )

The result is sharp if B= —1 or if B=0.

Proof. Let the function f(z) of the form (1.1) belong to the class T (A, u; A, B),
then using the Carathéodory condition: |c;| < 2 in (6.5), for the functions
¢ € P of the form (6.3), we get

<« 277
= e
which by virtue of (6.5) and (6.6) gives
_ 2
2 (#*1)2”\1_ (A-B) 2
a3 — pay = < 3 p 4(3—u)22”01+

. A-B B+1,| A-B 12,
24— P 2 Y T2 \? 2™
(

=1 o5 (A— B)? A—B)B
+<<3*22A 1p> (3 — p)? 22242 4(4—M)3,\>C%'

By Lemma 1, it follows that

le1]?
4 b

az — pa3| < F (le1]) = C+ CD
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where

_ (A-B)
ENCEINED

-1 A—-B)(4- A
>0,D=|EI—1,E=(“ 2”—1_)( J4-p3

32 (3— M>2 922X
As |e1] < 2, we infer that

[ FO=C  |E<1
s —pedl < { £ =il ol 51

In the case when B = —1, the sharpness can be verified for the functions given
by

DMIf(z) 14 A2 14 Az
alz DAf(z)  1—22 (r 1—2)’Z€U

and, in case when B = 0, the sharpness can be verified for functions given by

DA+ f(z)
DA f(z)

where ¢(z) is given by (1.2). This completes the proof of Theorem 5. I

q(2) =1+ A2% (or 1+ Az),2€ T,

Remark 3. For A\=0,u=2+v (0<v <1), Theorem 5 corresponds (for
A=1-2a (0<a<1),B=-1)to Theorem 1, and (for A=k (0 <k <1),
B =0) to Theorem 2 of Tuneski and Darus [22, pp. 64-65].

7 Integral Representations

Theorem 6. Let -1 < B < A< 1,2<pu <3 and f € A be of the form
(1.1). If f € T(\, ; A, B), then for some Schwarz functions w1 (z) and we(z),
w1(0) =0=w(0) — 1 (in case 2 < u < 3):

<Z>H2 =1-(u—2)(A-B) ZM_Q]'U‘_l (wl(t) dt,z €U,

(7.1)
and wz(0) =0 = w,(0) (in case p = 3):
: T ()

0
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Proof. Let f € A be of the form (1.1), then from (6.2), we have

D’\Hf(z)

1) prfy = 1B w2t (- p) {3laa - (0 - 122 a3} 2 4

where ¢(z) is given by (1.2). Hence, if f € T (A, u; A, B) , the Schwarz function
w(z) in (6.1) is given by

w(z) = { wi(z): wi(0) :2

wa(2) 1 we(0

It is easy to verify that

d 1 L\ _opm2f D)
dz ((QDAf(ZD”_Q Z“‘2> 2t <q<) DA (2) 1)’

where ¢(z) is given by (1.2) and therefore by (6.1), we get

4 L1\ _ _(-29A-Bul)
dz <(D>‘f(z))”_2 Z“2> 21 (14 Bu(z)) e U. (7.3)

From (1.5), we also have

! 1 1 0 .
(D ) [g(z) — 1] = ;bk -y

which yields that

1 _ 1 _ bla M:S
(D) 2 L 2snsd

By using (1.5) and (6.2), and equating the coefficient of z on both the sides
of (2.3), we find that by = — (1 — 2)2*ay. Now, upon integrating (7.3), we
obtain the desired representations given by (7.1) and (7.2). I

Remark 4. For p =3 and X\ = 0, the above representation (7.2) corresponds
to the representation due to Shanmugam and Gangadharan in [17, Theorem
2.1, pp. 2-3] and corresponds to Theorem 1 of Obradovic et al. [10] if A =1
and B = 0.
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Corollary 3. Let -1 < B<0< A <1 and f € A be of the form (1.1). If
fe T\ wA B), then for u € (2,3) :

’ <D§c(@)“2 ~1 (7.4)

- { %V‘,B:QZEU,
T -2 (A-B) L sR (1,3 - p4— | Bl|z)), -1 < B <0,z €T,
and for p=3:
. Pay 2|+ Alz]*,B=0,z €U,
‘D/\f(z) ’ Py |2] 4 A=Blzl oo (HEWVIBLY 4 g 2 e,

2¢/|B| 1-|z1y/|B| )’
(7.5)

Proof. From (7.1) when p € (2,3), and on substituting ¢ = zu and noting
that
|wy (zu)| < |2|u, we get

||

|<W) -1 S(M—2)(A—B)luu_2(l_|3|Zu)du,zeU.

Now if B = 0, the above integral gives simply

1
2| 2]
du = ,z €U,
/u~—2<1—|B|z|u> YT
0

and if —1 < B < 0, making use of the known integral representation of the
Gaussian hypergeometric function mentioned, for instance, see [8, p. 7], we
get

1

2 2
du=—— oF; (1,3 —pu,4— u;|B
oo E e g 2P (L3 B <)
0

and hence, we have the inequality (7.4). Also, from (7.2), by substituting
t = zu and noting that |ws(zu)| < |2|° u2, we get

Ell

1—|B] 2" u?

1
‘Z—l‘<2’\a2|z|+(A—B)/

d .
DY) / u,z €U
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Using now the following integral (for —1 < B < 0):

] Ell ElR B=0,z€U,
————du = 1+|z|4/|B

3 2] +|2]+/1B] B
01—|B||z| u? 5 Bllog<1_|z|\/§| , —1<B<0,z€T,

we are lead to the second inequality (7.5) of Corollary 3. I

Acknowledgment. The authors thank the reviewer for his/her valuable sug-
gestions.
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