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Some characteristic properties of analytic
functions

R. K. Raina, Poonam Sharma and G. S. Sălăgean

Abstract

In this paper, we consider a class L (λ, µ;φ) of analytic functions f
defined in the open unit disk U satisfying the subordination condition
that

q(z)
Dλ+1f(z)

Dλf(z)
≺ φ(z) (λ ∈ N0, µ ≥ 0; z ∈ U),

where q(z) =
(

z
Dλf(z)

)µ−2

, Dλ is the Sălăgean operator and φ(z) is a

convex function with positive real part in U. We obtain some characteris-
tic properties giving the coefficient inequality, radius and subordination
results, and an inclusion result for the above class when the function
φ(z) is a bilinear mapping in the open unit disk. For these functions
f (z) , sharp bounds for the initial coefficient and for the Fekete-Szegö
functional are determined, and also some integral representations are
given.

1 Introduction

Let A denote a class of functions f analytic in the open unit disk
U = {z : |z| < 1} with the normalization that f(0) = 0 = f ′(0)−1, that is the
function f has the series expansion

f(z) = z +

∞∑
k=1

ak+1 z
k+1, z ∈ U. (1.1)

Key Words: Analytic functions, subordination, starlike function, Fekete-Szegö func-
tional, Sălăgean operator.
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For f ∈ A of the form (1.1), we define the operator denoted Dλ, λ ∈ Z =
N ∪ {0} ∪ −N = {· · · ,−2,−1, 0, 1, 2, · · · } by

Dλf(z) = z +

∞∑
k=1

(k + 1)λak+1 z
k+1, z ∈ U.

The operator Dλ was considered in [16] and for λ ∈ N0 = N ∪ {0} it is known
as Sălăgean operator of order λ. In this case, it can be defined equivalently by

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z), Dλf(z) = D
(
Dλ−1f(z)

)
, λ ∈ N.

We note that DλD−λf(z) = f(z), for all λ ∈ Z.

Classes of analytic functions f ∈ A involving the quotient
zf′(z)
f(z)
f(z)
z

= z2f ′(z)
f2(z)

have been studied in [2, 10, 11, 17, 19]. Also, the classes involving the quotient
zf′(z)
f(z)

( f(z)z )
µ = f ′(z)

(
z

f(z)

)1+µ
have been studied for µ > −1 in [13] (for −1 < µ <

0 in [9] and for 0 < µ < 1 in [22]). Moreover, for µ 6= 0, a class involving a
certain linear operator under a subordination condition is investigated in [4].

Interestingly, a combination of both f ′(z)
(

z
f(z)

)1+µ
and

(
z

f(z)

)µ
for 0 < µ < 1

was studied in [23] (see also [18, Definition 1.1, p. 5]).
It may be observed that the operator Dλ preserves the class A and hence

Dλf(z) = 0 at z = 0. Let λ ∈ N0 and let f ∈ A be such that Dλf(z) 6= 0 for
z ∈ U \ {0}. We define a function q(z) by

q(z) =

(
z

Dλf(z)

)µ−2
(µ ≥ 0, µ 6= 2, z ∈ U \ {0}) and q(0) = 1, (1.2)

where we assume that only principal values of
(

z
Dλf(z)

)µ−2
are taken into

consideration. Clearly, the function q(z) is analytic in the open unit disk U.

Recently, by considering the expression q(z)Dλ+1f(z)
Dλf(z)

, µ ≥ 0, Prajapat and

Raina [14] investigated a class B (λ, µ;α) of functions f ∈ A satisfying the
condition that∣∣∣∣q(z)Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣ < 1− α, µ ≥ 0, 0 ≤ α < 1, z ∈ U.

It may be noted that for λ = 0, α = 0, µ = 3, the class B (0, 3; 0) = U was
earlier studied by Ozaki and Nunukawa in [11] (see also Obradovic et al. [10]
and Singh [19]), where it is proved that the functions f ∈ U are univalent.

For two analytic functions p, q such that p(0) = 1 = q(0), we say that p is
subordinate to q in U and write p(z) ≺ q(z), z ∈ U, if there exists a Schwarz
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function w, analytic in U with w(0) = 0, and |w(z)| < 1, z ∈ U such that
p(z) = q(w(z)), z ∈ U. Furthermore, if the function q is univalent in U, then
we have the following equivalence:

p(z) ≺ q(z)⇔ p(0) = q(0) and p(U) ⊂ q(U).

Janowski [5] defined a class P(A,B) of analytic functions p(z), z ∈ U, with
p(0) = 1, if p(z) ≺ 1+Az

1+Bz ,−1 ≤ B < A ≤ 1, z ∈ U. If p ∈ P(A,B), then it
follows that∣∣∣∣p(z)− 1−AB

1−B2

∣∣∣∣ < A−B
1−B2

for − 1 < B < A ≤ 1, z ∈ U (1.3)

and for B = −1,

< (p(z)) >
1−A

2
,−1 < A ≤ 1, z ∈ U. (1.4)

The class P(1,−1) = P is a Carathéodory class of functions which are analytic
with positive real part in U.

In this paper, we consider a new class L (λ, µ;φ) of analytic functions
(which evidently generalizes the class B (λ, µ;α)) comprising of functions f ∈
A if and only if (for z

Dλf(z)
6= 0 in U) :

q(z)
Dλ+1f(z)

Dλf(z)
≺ φ(z) (λ ∈ N0, µ ≥ 0; z ∈ U),

where q(z) is given by (1.2), Dλ is the Sălăgean operator and φ ∈ P is a convex
function in U; see also the works in [20] and [21].

We note that L (0, 2;φ) = S∗ [φ] and L (1, 2;φ) = K [φ] are the classes
introduced by Ma and Minda [7] which include several well-known starlike
and convex mappings as special cases.

For the bilinear transformation φ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1, z ∈ U),

we denote L
(
λ, µ; 1+Az

1+Bz

)
by T (λ, µ;A,B) .

We observe that the class T (λ, 2;A,B) = Pλ+1
λ (A,B) was earlier consid-

ered by Kuroki and Owa [6, Remark 2, p. 4] for any integer λ, and for com-
plex parameters A and B, the class T (0, 3;A,B) = T (A,B) was studied by
Shanmugam and Gangadharan [17]. The class T (0, 2;A,B) = S(A,B) is the
class of Janowski starlike functions [5]. Further, the classes T (λ, µ; 1− α, 0) =
B (λ, µ;α) and T (0, 3; 1− α, 0) = B (α) (0 ≤ α < 1) were studied in [2] and
various subordination properties and sufficient conditions were investigated in
these classes of functions.
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For the purpose of this paper, we consider the functions f ∈ A of the form
(1.1) such that the coefficients bk (k ∈ N) defined by

q(z) =

(
z

Dλf(z)

)µ−2
= 1 +

∞∑
k=1

bk z
k, z ∈ U, (1.5)

to be non-negative.

Example 1. Let µ ≥ 0, µ 6= 2 and let λ ∈ N0; if we consider f ∈ A of the
form f(z) = D−λ

(
zez/(2−µ)

)
, then q(z) = ez has the form (1.5).

Example 2. Let 0 < µ < 2, µ = p
r , p, r ∈ N and let λ = 1; if

f(z) =
1

r + 1

[
(1 + z)r+1 − 1

]
, then q(z) = (1 + z)2r−p.

Example 3. Let µ > 2 and let λ ∈ N0; if we consider f ∈ A, f(z) = z−anzn,
where an > 0 and n ≥ 2, then

q(z) =
[
1− nλanzn−1

]2−µ
=

1 +

∞∑
k=1

(−µ+ 2)(−µ+ 1)(−µ) · · · (−µ− (k − 3))

k!

(
−nλanzn−1

)k
=

1 +

∞∑
k=1

(µ− 2)(µ− 1)(µ) · · · (µ+ k − 3)

k!
nkλ (an)

k
zk(n−1).

Example 4. Let µ ≥ 0, µ 6= 2 and let λ ∈ N0; if we consider f ∈ A of the
form f(z) = D−λ

(
z(1 + z)1/(2−µ)

)
, then q(z) = 1 + z.

Example 5. Evidently, for f of the form (1.1) with ak+1 ≥ 0 and for µ = 1

and λ ∈ N0, the coefficients bk are given by bk = (k + 1)
λ
ak+1, k ∈ N.

In this paper, we concentrate ourselves in investigating some basic charac-
teristic properties such as the coefficient inequality, the radius result, subor-
dination and inclusion properties for the functions f ∈ T (λ, µ;A,B) . Sharp
bounds for the initial coefficient, the Fekete-Szegö functional of functions f (z)
and integral representations belonging to this class are also determined.

2 A Coefficient Inequality

We begin to investigate the coefficient inequality of functions f ∈ T (λ, µ;A,B) ,
which is contained in the following:
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Theorem 1. Let −1 ≤ B < A ≤ 1, µ ∈ [1, 3] \ {2} , let f ∈ A of the form
(1.1) and let bk, k ∈ N defined by (1.5) be non-negative. If

∞∑
k=1

k − µ+ 2

|µ− 2|
bk ≤

A−B
1 + |B|

, (2.1)

then f ∈ T (λ, µ;A,B) . The condition (2.1) is necessary for f ∈ T (λ, µ;A,B)
provided that −1 ≤ B ≤ 0 < A ≤ 1, µ ∈ (2, 3] .

Proof. Let

p(z) = q(z)
Dλ+1f(z)

Dλf(z)
, z ∈ U, (2.2)

where q(z) is given by (1.2) then, we get

p(z) = q(z)− zq′(z)

µ− 2
. (2.3)

Since f ∈ T (λ, µ;A,B) , if and only if∣∣∣∣ p(z)− 1

A−Bp(z)

∣∣∣∣ < 1, z ∈ U, (2.4)

therefore, if we consider

P = |p(z)− 1| − |A−Bp(z)| ,

then in view of (1.5) and (2.3), we get

P =

∣∣∣∣∣−
∞∑
k=1

k − µ+ 2

µ− 2
bk z

k

∣∣∣∣∣−
∣∣∣∣∣A−B +

∞∑
k=1

k − µ+ 2

µ− 2
Bbk z

k

∣∣∣∣∣
<

∞∑
k=1

k − µ+ 2

|µ− 2|
bk −

[
A−B −

∞∑
k=1

k − µ+ 2

|µ− 2|
|B| bk

]

=

∞∑
k=1

k − µ+ 2

|µ− 2|
(1 + |B|) bk − (A−B) ≤ 0,

on using (2.1). For the necessary part, we consider for −1 ≤ B ≤ 0 < A ≤ 1,
µ ∈ (2, 3] that f ∈ T (λ, µ;A,B) , then from (2.4), in view of (1.5) and (2.3),
we have ∣∣∣∣∣∣∣∣

−
∞∑
k=1

k−µ+2
µ−2 bk z

k

A−B −
∞∑
k=1

k−µ+2
µ−2 |B| bk zk

∣∣∣∣∣∣∣∣ < 1, z ∈ U. (2.5)
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Since p(z) in (2.3) is real for real z, letting z → 1− along real axis, we get
from the condition that

< (p(z)) >
1−A
1−B

which ensures that the denominator under the mod sign in the inequality (2.5)
remains positive and then we have

∞∑
k=1

k−µ+2
µ−2 bk

A−B −
∞∑
k=1

k−µ+2
µ−2 |B| bk

≤ 1,

which proves (2.1). This completes the proof of Theorem 1.

From Theorem 1, for the cases when B = 0 and B = −1 (µ ∈ (2, 3]),
respectively, and applying the well-known assertions (1.3) and (1.4), we get
the following results.

Corollary 1. Let 0 < A ≤ 1, µ ∈ (2, 3] and let f ∈ A of the form (1.1) and
let bk, k ∈ N defined by (1.5) be non-negative. Then∣∣∣∣q(z)Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣ < A, z ∈ U,

if and only if
∞∑
k=1

k − µ+ 2

µ− 2
bk ≤ A.

Corollary 2. Let −1 < A ≤ 1, µ ∈ (2, 3] and let f ∈ A of the form (1.1) and
let bk, k ∈ N defined by (1.5) be non-negative. Then

<
(
q(z)

Dλ+1f(z)

Dλf(z)

)
>

1−A
2

, z ∈ U,

if and only if
∞∑
k=1

k − µ+ 2

µ− 2
bk ≤

1 +A

2
.

Remark 1. For λ = 0, µ = 3, A = 1, Corollary 1 corresponds to the known
result of Ponnusamy and Sahoo [13, Theorem 7, p. 400].
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3 Radius Result

Theorem 2. Let −1 ≤ B < A ≤ 1, µ ∈ [1, 3] \ {2} and let f ∈ A of the
form (1.1) and let bk, k ∈ N defined by (1.5) be non-negative and satisfy the
condition that

∞∑
k=1

k − µ+ 2

|µ− 2|
(bk)

2 ≤ 1. (3.1)

Then
1

r
f (rz) ∈ T (λ, µ;A,B)

for 0 < r ≤ r0, where r0 = r0 (µ,A,B) is given by

r0 =
η
√

2 |µ− 2|
[3− µ+ 2η2 |µ− 2|+ E]

1/2
(3.2)

where E =

√
{3− µ+ 2η2 |µ− 2|}2 + 4η2 |µ− 2| (µ− 2− η2 |µ− 2|) and η =

A−B
1 + |B|

.

Proof. Let f ∈ A be of the form (1.1) with µ ∈ [1, 3] \ {2} . Then for
0 < r ≤ 1, we have

q(rz) =

(
z

1
rD

λf (rz)

)µ−2
= 1 +

∞∑
k=1

bk r
kzk, bk ≥ 0, z ∈ U,

where q(z) is given by (1.2). Thus, by Theorem 1, 1
rf (rz) ∈ T (λ, µ;A,B) if

R :=

∞∑
k=1

k − µ+ 2

|µ− 2|
bk r

k ≤ A−B
1 + |B|

.

By Cauchy-Schwarz inequality and the condition (3.1), we obtain that

R ≤

( ∞∑
k=1

k − µ+ 2

|µ− 2|
(bk)

2

)1/2( ∞∑
k=1

k − µ+ 2

|µ− 2|
r2k

)1/2

≤ 1√
|µ− 2|

( ∞∑
k=1

(k − µ+ 2) r2k

)1/2

=
1√
|µ− 2|

(
r4

(1− r2)
2 + (3− µ)

r2

1− r2

)1/2

=
1√
|µ− 2|

r

1− r2
{

3− µ+ (µ− 2) r2
}1/2 ≤ A−B

1 + |B|
,
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provided that the inequality

r

1− r2
{

3− µ+ (µ− 2) r2
}1/2 ≤ η√|µ− 2|

holds, where A−B
1+|B| = η, or equivalently

1

r4
η2 |µ− 2| − 1

r2
{

3− µ+ 2η2 |µ− 2|
}
−
{
µ− 2− η2 |µ− 2|

}
≥ 0

holds, which provides the value of r0 given by (3.2). This proves Theorem 2.

Remark 2. By setting λ = 0, µ = 3 − α (0 ≤ α < 1) and B = 0, A = η,
Theorem 2 coincides with the result of Ponnusamy and Sahoo [13, Theorem
5, p. 398] for univalent functions f(z).

4 Subordination Result

Theorem 3. Let −1 ≤ B < A ≤ 1, µ ∈ [1, 2) and let f ∈ A of the form (1.1)
and let bk, k ∈ N defined by (1.5) be non-negative. If f ∈ T (λ, µ;A,B) , then(

z

Dλf(z)

)µ−2
≺ 1 +Az

1 +Bz
, z ∈ U (4.1)

and hence,
bk ≤ A−B, k ∈ N. (4.2)

Proof. Let q(z) be defined by (1.2), which is analytic in U with q(0) = 1, then
from (2.3), we have

q(z) +
zq′(z)

2− µ
≺ 1 +Az

1 +Bz
, z ∈ U,

which by the result of Hallenbeck and Ruscheweyh [3] proves (4.1). Further,
on using a well-known result of Rogosinski [15] on subordination, and in view
of (1.5), the subordination (4.1) gives the coefficient inequality (4.2).

5 Inclusion Result

Theorem 4. Let λ ∈ N0,−1 ≤ B ≤ 0 < A ≤ 1, µ ∈ (2, 3] and let f ∈ A of
the form (1.1) and let bk, k ∈ N defined by (1.5) be non-negative. If

Dλ+1f(z)

Dλf(z)
≺ 1 +Az

1 +Bz
, z ∈ U, (5.1)
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then
∞∑
k=1

{
k − A−B

1+|B| (µ− 2)

µ− 2

}
bk ≤

A−B
1 + |B|

. (5.2)

Hence, Pλ+1
λ (A,B) ⊂ T (λ, µ;A,B) .

Proof. From (5.1), we have

f ∈ Pλ+1
λ (A,B)⇔ Dλ+1f(z)

Dλf(z)
≺ 1 +Az

1 +Bz
⇔

∣∣∣∣∣∣
Dλ+1f(z)
Dλf(z)

− 1

A−BDλ+1f(z)
Dλf(z)

∣∣∣∣∣∣ < 1, z ∈ U.

(5.3)
Let q(z) be defined by (1.2), then on using (2.2) and (2.3), we get

zq′(z)

q(z)
= (µ− 2)

(
1− Dλ+1f(z)

Dλf(z)

)
.

Hence, by (1.5), the condition (5.3) can equivalently be expressed as∣∣∣∣∣∣∣∣
−
∞∑
k=1

kbk z
k

(A−B) (µ− 2)

(
1 +

∞∑
k=1

bk zk
)

+B
∞∑
k=1

kbk zk

∣∣∣∣∣∣∣∣ < 1, z ∈ U. (5.4)

Since Dλ+1f(z)
Dλf(z)

is real for real z, letting z → 1− along the real axis, we get

from (5.1) that

<
(
Dλ+1f(z)

Dλf(z)

)
>

1−A
1−B

⇔ Dλ+1f(z)

Dλf(z)
>

1−A
1−B

and hence, for being B ≤ 0,

A−BDλ+1f(z)

Dλf(z)
> A+ |B| 1−A

1−B
> 0,

which ensures that the denominator under the mod sign in the inequality (5.4)
is positive. Thus, we have

∞∑
k=1

kbk

(A−B) (µ− 2)−
∞∑
k=1

{|B| k − (A−B) (µ− 2)} bk
≤ 1,
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which yields the desired inequality (5.2). Further, since A−B
1+|B| ≤ 1, if

f ∈ Pλ+1
λ (A,B), we have by (5.2) that

∞∑
k=1

k − µ+ 2

µ− 2
bk ≤

∞∑
k=1

{
k − A−B

1+|B| (µ− 2)

µ− 2

}
bk ≤

A−B
1 + |B|

,

and consequently by Theorem 1, we conclude that f ∈ T (λ, µ;A,B) . This
proves the inclusion result.

6 Fekete-Szegö Problem

Let f(z) of the form (1.1) be in the class T (λ, µ;A,B), then for some Schwarz
function w(z), we get

q(z)
Dλ+1f(z)

Dλf(z)
=

1 +Aw(z)

1 +Bw(z)
, z ∈ U, (6.1)

where q(z) is given by (1.2) and upon using the series:

Dλf(z) = z +

∞∑
k=1

(k + 1)
λ
ak+1 z

k+1, z ∈ U

and performing elementary calculations, we can write the series expansion

q(z)
Dλ+1f(z)

Dλf(z)

=
Dλ+1f(z)

z

(
z

Dλf(z)

)µ−1
= 1 + (3− µ) 2λa2z + (4− µ)

{
3λa3 − (µ− 1) 22λ−1a22

}
z2 + ... (6.2)

For the Schwarz function w(z), let φ ∈ P be defined by

φ(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + .... (6.3)

Then

1 +Aw(z)

1 +Bw(z)
= 1 +

A−B
2

c1z +
A−B

2

{
c2 −

B + 1

2
c21

}
z2 + ..., (6.4)

and from (6.2) and (6.4), we get

(3− µ) 2λa2 =
A−B

2
c1, (6.5)

(4− µ)
{

3λa3 − (µ− 1) 22λ−1a22
}

=
A−B

2

{
c2 −

B + 1

2
c21

}
. (6.6)
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In order to find in this section sharp upper bound for |a2| and for the Fekete-
Szegö functional

∣∣a3 − ρa22∣∣ (ρ ∈ C) , we use the following result from [12, p.
166] (see also [1, p. 41]).

Lemma 1. Let φ ∈ P be of the form φ(z) = 1 + c1z + c2z
2 + ..., then∣∣c2 − c21/2∣∣ ≤ 2− |c1|2 /2

and |ck| ≤ 2 for all k ∈ N.

Theorem 5. Let −1 ≤ B < A ≤ 1, µ ∈ (2, 3), and f ∈ A be of the form (1.1)
belong to the class T (λ, µ;A,B) , then

|a2| ≤
A−B

(3− µ) 2λ
,

and for all ρ ∈ C :

∣∣a3 − ρa22∣∣ ≤ A−B
(4− µ) 3λ

max

{
1,

∣∣∣∣∣
(
µ− 1

3λ
22λ−1 − ρ

)
(A−B) (4− µ) 3λ

(3− µ)
2

22λ
−B

∣∣∣∣∣
}
.

The result is sharp if B = −1 or if B = 0.

Proof. Let the function f(z) of the form (1.1) belong to the class T (λ, µ;A,B) ,
then using the Carathéodory condition: |c1| ≤ 2 in (6.5), for the functions
φ ∈ P of the form (6.3), we get

|a2| ≤
A−B

(3− µ) 2λ
,

which by virtue of (6.5) and (6.6) gives

a3 − ρa22 =

(
(µ− 1) 22λ−1

3λ
− ρ
)

(A−B)
2

4 (3− µ)
2

22λ
c21 +

+
A−B

2 (4− µ) 3λ

{
c2 −

B + 1

2
c21

}
=

A−B
2 (4− µ) 3λ

(
c2 −

1

2
c21

)
+

+

((
µ− 1

3λ
22λ−1 − ρ

)
(A−B)

2

(3− µ)
2

22λ+2
− (A−B)B

4 (4− µ) 3λ

)
c21.

By Lemma 1, it follows that

∣∣a3 − ρa22∣∣ ≤ F (|c1|) = C + CD
|c1|2

4
,
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where

C =
(A−B)

(4− µ) 3λ
> 0, D = |E|−1, E =

(
µ− 1

3λ
22λ−1 − ρ

)
(A−B) (4− µ) 3λ

(3− µ)
2

22λ
−B.

As |c1| ≤ 2, we infer that

∣∣a3 − ρa22∣∣ ≤ { F (0) = C, |E| ≤ 1
F (2) = C |E| |E| ≥ 1

.

In the case when B = −1, the sharpness can be verified for the functions given
by

q(z)
Dλ+1f(z)

Dλf(z)
=

1 +Az2

1− z2

(
or

1 +Az

1− z

)
, z ∈ U

and, in case when B = 0, the sharpness can be verified for functions given by

q(z)
Dλ+1f(z)

Dλf(z)
= 1 +Az2 (or 1 +Az) , z ∈ U,

where q(z) is given by (1.2). This completes the proof of Theorem 5.

Remark 3. For λ = 0, µ = 2 + ν (0 < ν < 1) , Theorem 5 corresponds (for
A = 1−2α (0 ≤ α < 1) , B = −1) to Theorem 1, and (for A = k (0 < k ≤ 1) ,
B = 0) to Theorem 2 of Tuneski and Darus [22, pp. 64-65].

7 Integral Representations

Theorem 6. Let −1 ≤ B < A ≤ 1, 2 < µ ≤ 3 and f ∈ A be of the form
(1.1). If f ∈ T (λ, µ;A,B) , then for some Schwarz functions w1(z) and w2(z),
w1(0) = 0 = w′1(0)− 1 (in case 2 < µ < 3):

(
z

Dλf(z)

)µ−2
= 1− (µ− 2) (A−B) zµ−2

z∫
0

w1(t)

tµ−1 (1 +Bw1(t))
dt, z ∈ U,

(7.1)
and w2(0) = 0 = w′2(0) (in case µ = 3):

z

Dλf(z)
= 1− 2λa2z − (A−B) z

z∫
0

w2(t)

t2 (1 +Bw2(t))
dt, z ∈ U. (7.2)
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Proof. Let f ∈ A be of the form (1.1), then from (6.2), we have

q(z)
Dλ+1f(z)

Dλf(z)
= 1 + (3− µ) 2λa2z+ (4− µ)

{
3λa3 − (µ− 1) 22λ−1a22

}
z2 + ...,

where q(z) is given by (1.2). Hence, if f ∈ T (λ, µ;A,B) , the Schwarz function
w(z) in (6.1) is given by

w(z) =

{
w1(z) : w1(0) = 0 = w′1(0)− 1, if 2 < µ < 3,
w2(z) : w2(0) = 0 = w′2(0), if µ = 3.

It is easy to verify that

d

dz

(
1

(Dλf(z))
µ−2 −

1

zµ−2

)
= −µ− 2

zµ−1

(
q(z)

Dλ+1f(z)

Dλf(z)
− 1

)
,

where q(z) is given by (1.2) and therefore by (6.1), we get

d

dz

(
1

(Dλf(z))
µ−2 −

1

zµ−2

)
= − (µ− 2) (A−B)w(z)

zµ−1 (1 +Bw(z))
, z ∈ U. (7.3)

From (1.5), we also have

1

(Dλf(z))
µ−2 −

1

zµ−2
=

1

zµ−2
[q(z)− 1] =

∞∑
k=1

bk z
k−µ+2,

which yields that(
1

(Dλf(z))
µ−2 −

1

zµ−2

)
z=0

=

{
b1, µ = 3
0, 2 < µ < 3

.

By using (1.5) and (6.2), and equating the coefficient of z on both the sides
of (2.3), we find that b1 = − (µ− 2) 2λa2. Now, upon integrating (7.3), we
obtain the desired representations given by (7.1) and (7.2).

Remark 4. For µ = 3 and λ = 0, the above representation (7.2) corresponds
to the representation due to Shanmugam and Gangadharan in [17, Theorem
2.1, pp. 2-3] and corresponds to Theorem 1 of Obradovic et al. [10] if A = 1
and B = 0.
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Corollary 3. Let −1 ≤ B ≤ 0 < A ≤ 1 and f ∈ A be of the form (1.1). If
f ∈ T (λ, µ;A,B) , then for µ ∈ (2, 3) :∣∣∣∣∣

(
z

Dλf(z)

)µ−2
− 1

∣∣∣∣∣ (7.4)

≤

{
(µ−2)A
3−µ |z| , B = 0, z ∈ U,

(µ− 2) (A−B) |z|3−µ 2F1 (1, 3− µ, 4− µ; |B| |z|) ,−1 ≤ B < 0, z ∈ U,

and for µ = 3 :

∣∣∣∣ z

Dλf(z)
− 1

∣∣∣∣ ≤
 2λa2 |z|+A |z|2 , B = 0, z ∈ U,

2λa2 |z|+ (A−B)|z|
2
√
|B|

log

(
1+|z|
√
|B|

1−|z|
√
|B|

)
,−1 ≤ B < 0, z ∈ U.

(7.5)

Proof. From (7.1) when µ ∈ (2, 3) , and on substituting t = zu and noting
that
|w1(zu)| ≤ |z|u, we get∣∣∣∣∣

(
z

Dλf(z)

)µ−2
− 1

∣∣∣∣∣ ≤ (µ− 2) (A−B)

1∫
0

|z|
uµ−2 (1− |B| |z|u)

du, z ∈ U.

Now if B = 0, the above integral gives simply

1∫
0

|z|
uµ−2 (1− |B| |z|u)

du =
|z|

3− µ
, z ∈ U,

and if −1 ≤ B < 0, making use of the known integral representation of the
Gaussian hypergeometric function mentioned, for instance, see [8, p. 7], we
get

1∫
0

|z|
uµ−2 (1− |B| |z|u)

du =
|z|

3− µ 2F1 (1, 3− µ, 4− µ; |B| |z|)

and hence, we have the inequality (7.4). Also, from (7.2), by substituting

t = zu and noting that |w2(zu)| ≤ |z|2 u2, we get

∣∣∣∣ z

Dλf(z)
− 1

∣∣∣∣ ≤ 2λa2 |z|+ (A−B)

1∫
0

|z|2

1− |B| |z|2 u2
du, z ∈ U.
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Using now the following integral (for −1 ≤ B ≤ 0):

1∫
0

|z|2

1− |B| |z|2 u2
du =

 |z|2 B = 0, z ∈ U,
|z|

2
√
|B|

log

(
1+|z|
√
|B|

1−|z|
√
|B|

)
, −1 ≤ B < 0, z ∈ U,

we are lead to the second inequality (7.5) of Corollary 3.

Acknowledgment. The authors thank the reviewer for his/her valuable sug-
gestions.
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