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On a conjecture related to the ruin probability
for nonhomogeneous insurance claims

Raluca VERNIC

Abstract

Recently, nonhomogeneous claim sizes have been considered in the
actuarial literature starting from the fact that the claims are seasonally
influenced by the economic environment. In this context, Raducan et
al. [8] obtained recursive formulas for the ruin probability at or before
claim instants, and stated a conjecture that relates the order of the
claims arrival to the magnitude of the corresponding ruin probability,
conjecture supported by numerical examples. In this paper, we prove
this conjecture in a particular case.

1 Introduction

One of the main tasks of actuaries consists of evaluating the ruin probabil-
ity of insurance companies in order to establish their future financial politics
(e.g., premiums calculations, reserves evaluation, reinsurance covers, surplus
investments etc.). This implies studying the surplus (or risk) process of a
company or of each of its business lines, which, at a certain time moment, is
defined as the sum between the initial capital and the total premiums income,
minus the sum of all the claims occurred by that time. The first time when
this surplus becomes negative is the ruin moment. The ruin probability can
be evaluated in finite time, over an infinite horizon (also called ultimate ruin
probability ; for a review of ruin probabilities, see, e.g., the book [1]), or at or
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before a certain claim instant. In this paper, we restrict to the last type of
ruin probability, which is important because it shows where the risk process
is relatively vulnerable to ruin (cf. [10], [11]). Therefore, we write the surplus
process at the nth claim as

U (Tn) = x−
n∑

i=1

ξi,

where x = U (0) is the initial capital, Tn is the moment when the nth claim

occurs (T0 = 0), while ξn = Xn−Yn represents the loss between the (n− 1)
th

and the nth claim (included); here Yn is the firm’s income between these claims
and Xn is the size of the nth claim. Then the ruin probability at or before the
nth claim instant is

ψn (x) = P

(
min

1≤k≤n
U (Tk) < 0

)
= P

(
max

1≤k≤n

k∑
i=1

ξi > x

)
.

The classical assumptions related to this risk process are: the claims occur
according to a Poisson process, and their sizes are independent, identically
distributed (i.i.d.) non-negative random variables (r.v.s). However, the ho-
mogeneity assumption related to the claims has been questioned after a ten-
dency of increase of their sizes has been noticed due to several factors, like
the economic environment, which cannot be neglected when studying the ruin
over long time periods; for details on this phenomenon see [5] and the survey
[6]. In this sense, several papers approached the finite time ruin probability
for discrete-time risk processes with nonhomogeneous claim sizes, from which
we mention [2], [3] and [4]. Recently, Raducan et al. [7] obtained recursive
formulas for the ruin probability at or before claim instants, by considering
two extensions of the Poisson claim number process and by taking the claim
sizes to be independent, Erlang distributed, but non-i.d.. Further on, keep-
ing the independent, non-i.d. Erlang claim sizes assumption, Raducan et al.
[8] considered a claim number process even more general, assuming that the
inter-claim incomes form a sequence of i.i.d. positive r.v.s following an ar-
bitrary distribution. Moreover, related to the ruin probability evaluated for
this last model at or before a certain claim instant, they stated a conjecture
that relates the order of the claims arrival to the magnitude of the corre-
sponding ruin probability, conjecture supported by numerical examples. Such
a result provides upper and lower bounds for the estimated ruin probability
for non-homogeneous claims. In this paper, we prove a particular case of this
conjecture, which should be a starting point in proving the conjecture.

Therefore, in Section 2.1 we recall the formula of the ruin probability and
the conjecture presented by [8], while in Section 2.2 we establish and prove a
particular case. In the end, we present a few conclusions.
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2 Main result

In the following, we denote by f (n) the nth order derivative of a function f .
By convention, f (0) = f . We also denote by LY (a) the Laplace transform of
the r.v. Y, i.e., LY (a) = E

[
e−aY

]
.

Remark 2.1. An easy calculation shows that the Laplace transform L : R+ →
R of a positive r.v. has the property that L(n) (y) < 0 if n is odd, while
L(n) (y) > 0 if n is even, for any n ∈ N and y > 0.

We also recall the definition of the stochastic dominance of two r.v.s, i.e.,

X1 ≺st X2
def⇔ FX1 ≥ FX2 , where FX is the cumulative distribution function

of the r.v. X (see, e.g., [9]). By convention, an empty product equals 1 and
0! = 1.

2.1 The conjecture

Let us we denote by ψXn,Xn−1,...,X2,X1;Y the ruin probability at or before the
nth claim when the claims arrive in the order (Xn, Xn−1, ..., X2, X1) and the
i.i.d. inter-claim incomes (Yi)

n
i=1 are distributed as the generic r.v. Y . Related

to this ruin probability, the following proposition has been proved in [8].

Proposition 2.2. Let (Xi)
n
i=1 be independent, exponentially distributed claims

with different parameters, i.e., Xi ∼ Exp (ai) , where ai 6= aj ,∀i 6= j, and let
(Yi)

n
i=1 be i.i.d. as a generic positive r.v. Y , and independent of the claims.

Assuming that the order in which the claims arrive is Xn, Xn−1, ..., X1, the
ruin probability at or before the nth claim (which is the claim X1) is given by

ψXn,Xn−1,...,X1;Y (x) =

n∑
i=1

gn(ai)e
−aix,∀x > 0, (2.1)

where the coefficients gn are evaluated using the backward recursions

g1 (a1) = LY (a1) , (2.2)

gn+1 (ai) = gn (ai)
an+1

an+1 − ai
LY (ai) , 1 ≤ i ≤ n, (2.3)

gn+1 (an+1) =

(
1 +

n∑
i=1

gn (ai)
an+1

ai − an+1

)
LY (an+1) . (2.4)

All the numerical examples presented in both [7] and [8] support the remark
that the ruin probability corresponding to an arbitrary claims arrival order lies
between the ruin probability corresponding to the decreasing stochastic order
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of the claims (which yields the largest ruin value) and the one corresponding to
the increasing stochastic order of the claims (yielding the smallest ruin value).
Therefore, it seems that the following conjecture holds:

Conjecture. If the claims are independent exponentially distributed, not nec-
essarily i.d., and if X1 ≺st X2 ≺st .... ≺st Xn, then

ψX1,X2,...,Xn;Y (x) ≤ ψXn,Xn−1,...,X1;Y (x),∀x > 0.

This makes sense: according to [8], during the “small claims” period, the
insurer’s capital accumulates and, hence, it can face the “hard claims” period;
however, if the larger claims come first, then the insurer’s capital decreases
and the ruin probability becomes larger. As proved in [8], this assertion is not
true for any distribution of the claims.

2.2 A particular case

In the following, we shall prove a particular case of the above conjecture: more
precisely, we assume that all the claims parameters are different and that a1 >
a2 (which implies that X1 ≺st X2), and show that ψXn,...,X3,X2,X1;Y (x) ≥
ψXn,...,X3,X1,X2;Y (x) ,∀x > 0. To do this, we need several lemmas.

Lemma 2.3. Let f : R+ → R be a function such that f (n) exists for all n and
f (n) (y) < 0 if n is odd, while f (n) (y) > 0 if n is even, for any n and y. We
define

pa (y; f) =

{
f(y)−f(a)

a−y , y 6= a

−f ′ (a) , y = a
.

i) Then pa (y; f) = py (a; f) .
ii) We have

p(n)a (y; f) =

 n!
[∑n

k=0
f(k)(y)

k!(a−y)n+1−k − f(a)

(a−y)n+1

]
, y 6= a

− f(n+1)(a)
n+1 , y = a

, n ≥ 0. (2.5)

iii) Moreover, p
(n)
a (y; f) has the same sign as f (n) (y) . In particular, pa (y; f) >

0.

Proof. The equality in (i) is obvious. We shall prove (ii) by induction. If
n = 0, (2.5) becomes

p(0)a (y; f) =

{
f(0)(y)
a−y −

f(a)
a−y , y 6= a

−f ′ (a) , y = a
= pa (y; f) .
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We assume that (2.5) holds for n and prove it for n+ 1. When y 6= a, we have

p(n+1)
a (y; f) =

(
p(n)a (y; f)

)′
= n!

[
n∑

k=0

1

k!

(
f (k+1) (y)

(a− y)
n+1−k +

(n+ 1− k) f (k) (y)

(a− y)
n+2−k

)
− (n+ 1) f (a)

(a− y)
n+2

]
. (2.6)

Changing index j = k + 1, the above sum becomes

n∑
k=0

1

k!

[
f (k+1) (y)

(a− y)
n+1−k +

(n+ 1− k) f (k) (y)

(a− y)
n+2−k

]

=

n+1∑
j=1

1

(j − 1)!

f (j) (y)

(a− y)
n+2−j +

n∑
k=0

(n+ 1− k) f (k) (y)

k! (a− y)
n+2−k

=
(n+ 1) f (0) (y)

0! (a− y)
n+2−0 +

n∑
k=1

(k + n+ 1− k) f (k) (y)

k! (a− y)
n+2−k

+
n+ 1

(n+ 1)!

f (n+1) (y)

(a− y)
n+2−(n+1)

,

which, inserted into (2.6) immediately yields (2.5) for n + 1. To obtain the

formula of p
(n+1)
a (a; f) , we rewrite this result as

p(n+1)
a (y; f) =

1

a− y

[
n! (n+ 1)

(
n∑

k=0

f (k) (y)

k! (a− y)
n+1−k −

f (a)

(a− y)
n+1

)

+f (n+1) (y)
]

=
1

a− y

(
f (n+1) (y) + (n+ 1) p(n)a (y; f)

)
,

where we take the limit for y → a and, using L’Hôspital’s rule, we obtain

p(n+1)
a (a; f) = lim

y→a

f (n+2) (y) + (n+ 1) p
(n+1)
a (y; f)

−1

= −
[
f (n+2) (a) + (n+ 1) p(n+1)

a (a; f)
]
,

and thus p
(n+1)
a (a; f) = −f (n+2) (a) / (n+ 2) , which completes the proof of

(ii).
To prove (iii), we use Taylor’s expansion with Lagrange’s remainder for

f (a), i.e.

f (a) =

n∑
k=0

(a− y)
k

k!
f (k) (y) +

(a− y)
n+1

(n+ 1)!
f (n+1) (ξ) ,
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where ξ is between a and y. We insert this formula into (2.5) for y 6= a and
obtain

p(n)a (y; f) = n!

[
n∑

k=0

f (k) (y)

k! (a− y)
n+1−k −

1

(a− y)
n+1

×

(
n∑

k=0

(a− y)
k

k!
f (k) (y) +

(a− y)
n+1

(n+ 1)!
f (n+1) (ξ)

)]

= − n!

(n+ 1)!
f (n+1) (ξ) ,

which, together with the formula of p
(n)
a (a; f), immediately yields the sign of

p
(n)
a (y; f) for any y.�

Let L be the Laplace transform of a r.v. and f : R → R. For ai > 0, 1 ≤
i ≤ n with ai 6= aj ,∀i 6= j, we recursively define the following functions

f2 (a1, a2; f (·)) =
L (a2) f (a2)− L (a1) f (a1)

a1 − a2
; (2.7)

fn (a1, ..., an; f (·)) = fn−1 (a1, ..., an−1; f2 (an, ·; f (·))) , n ≥ 3. (2.8)

We also define

h (a1, a2) = a1 (1− L (a2))− a2 (1− L (a1)) . (2.9)

Lemma 2.4. With the above notation, it holds that

fn (a1, ..., an; f (·)) = f2 (a1, a2; fn−1 (a3, ·, a4, ..., an; f (·))) , n ≥ 3. (2.10)

Proof. We shall prove the result by induction. If n = 3, formula (2.10) is
the same as (2.8). We assume that it holds for n ≥ 3 and any f, and prove
it for n+ 1. Successively using the definition (2.8), the induction hypothesis,
the definition of f2, then again the definition (2.8) and, finally, the definition
of f2, we obtain

fn+1 (a1, ..., an+1; f (·)) = fn (a1, ..., an; f2 (an+1, ·; f (·)))

= f2 (a1, a2; fn−1 (a3, ·, a4, ..., an; f2 (an+1, ·; f (·))))

=
1

a1 − a2
[L (a2) fn−1 (a3, a2, a4, ..., an; f2 (an+1, ·; f (·)))

−L (a1) fn−1 (a3, a1, a4, ..., an; f2 (an+1, ·; f (·)))]

=
1

a1 − a2
[L (a2) fn (a3, a2, a4, ..., an, an+1; f (·))

−L (a1) fn (a3, a1, a4, ..., an, an+1; f (·))]
= f2 (a1, a2; fn (a3, ·, a4, ..., an, an+1; f (·))) .
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This completes the proof.�

Lemma 2.5. Let L be the Laplace transform of a positive r.v. and let f :
R+ → R, f (y) = e−xyL (y) for some x > 0.Then f (n) exists for all n ∈ N, and
f (n) (y) < 0 if n is odd, while f (n) (y) > 0 if n is even, for any n and y > 0.

Proof. We first prove by induction that

f (n) (y) = e−xy
n∑

k=0

(
n

k

)
(−x)

n−k
L(k) (y) .

When n = 0, this gives f (0) (y) = e−xyL(0) (y) = e−xyL (y) = f (y). We
assume that the formula holds for n ≥ 0 and prove it for n+ 1. We have

f (n+1) (y)

= e−xy

[
n∑

k=0

(
n

k

)
(−x)

n−k
L(k+1) (y)− x

(
n∑

k=0

(
n

k

)
(−x)

n−k
L(k) (y)

)]

= e−xy

[
L(n+1) (y) +

n∑
k=1

((
n

k

)
+

(
n

k − 1

))
(−x)

n+1−k
L(k) (y)

−xn+1L (y)
]
,

where we changed the index k + 1 in the first sum with k. Using now the

formula

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
, the stated formula of f (n+1) is immediate.

Based on Remark 2.1, we now note that the sign of (−x)
n−k

L(k) (y) is the

same as the sign of (−1)
n

for any k, more precisely, (−x)
n−k

L(k) (y) < 0 if n

is odd and (−x)
n−k

L(k) (y) > 0 if n is even, for any k. Then their sum after
index k (n being fixed) has the same sign as, e.g., (−x)

n
L (y) , and the proof

is complete.�

Lemma 2.6. If L is the Laplace transform of a positive r.v. and if a1 > a2 >
0, then
i) h (a1, a2) > 0, where h is defined in (2.9);
ii) Let fn be defined in (2.7)-(2.8), let k (y) = e−xy for some x > 0, let n ≥ 2
and ai > 0 with ai 6= aj ,∀i 6= j, 1 ≤ i ≤ n. Then,

fn (a1, ..., an; k (·)) > 0.

Proof. To prove (i), we rewrite

h (a1, a2) = a1a2

(
1− L (a2)

a2
− 1− L (a1)

a1

)
= a1a2 (p0 (a2;L)− p0 (a1;L)) ,
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noting that L (0) = 1. Moreover, based on Remark 2.1, we can apply Lemma
2.3 (iii), yielding p′0 (y;L) < 0. It then follows that p0 (y;L) is a function
strictly decreasing in y and, since a1 > a2, p0 (a2;L) > p0 (a1;L) , which
completes the proof of (i).

In order to obtain (ii), we prove by induction after n that

∂m

∂am2
fn (a1, a2, a3, ..., an; k (·)) < 0 if m is odd,

and
∂m

∂am2
fn (a1, a2, a3, ..., an; k (·)) > 0 if m is even;

if this result holds, then we immediately obtain (ii) by taking m = 0, which
is even. We start with n = 2, i.e., with

f2 (a1, a2; k (·)) =
e−a2xL (a2)− e−a1xL (a1)

a1 − a2
= pa1 (a2; f (·)) ,

where f (y) = e−xyL (y). We now apply Lemma 2.3 based on Lemma 2.5, and
obtain the result that pa1

(a2; f (·)) > 0. Assuming that the result holds for n,
then, for n+ 1, we have from Lemma 2.4

fn+1 (a1, ..., an+1; k (·)) = f2 (a1, a2; fn (a3, ·, a4, ..., an, an+1; k (·)))
= pa1

(a2; l (·)) ,

where l (y) = L (y) fn (a3, y, a4, ..., an, an+1; k (·)) . With a proof similar to the
one of Lemma 2.5, we easily obtain that

l(m) (y) =

m∑
j=0

(
m

j

)
L(j) (y)

∂m−j

∂ym−j
fn (a3, y, a4, ..., an+1; k (·)) ,

to which we apply the induction hypothesis and the Remark 2.1, and obtain
that the sign of l(m) is the same as of L (y) ∂m

∂ym fn (a3, y, a4, ..., an+1; k (·)) , i.e.,

the same sign of ∂m

∂ym fn (a3, y, a4, ..., an+1; k (·)) .Applying now Lemma 2.3 (iii)

to pa1
(a2; l (·)) yields the result for n+ 1, which completes the proof.�

Lemma 2.7. Let (Xi)
n
i=1 be independent, exponentially distributed claims,

Xi ∼ Exp (ai) , ai 6= aj ,∀i 6= j. As defined in formula (2.1), we denote by gn
the coefficients of ψXn,...,X3,X2,X1;Y , and, similarly, by g′n the coefficients of
ψXn,...,X3,X1,X2;Y . Then, for a function f and for each n ≥ 2,

Dn (f) :=

n∑
i=1

(gn (ai)− g′n (ai)) f (ai) =

(
n∏

i=3

ai

)
h (a1, a2) fn (a1, ..., an; f (·)) ,

(2.11)
where fn and h are defined in (2.7)-(2.9) for the positive r.v. Y .



ON A CONJECTURE RELATED TO THE RUIN PROBABILITY 217

Proof. We prove the formula by induction. For n = 2, we have from
Proposition 2.2

g1 (a1) = LY (a1) , g′1 (a2) = LY (a2) ,

g2 (a1) =
a2

a2 − a1
g1 (a1)LY (a1) =

a2
a2 − a1

L2
Y (a1) ,

g′2 (a2) =
a1

a1 − a2
L2

Y (a2) ,

g2 (a2) =

(
1 + g1 (a1)

a2
a1 − a2

)
LY (a2) ,

g′2 (a1) =

(
1 + g′1 (a2)

a1
a2 − a1

)
LY (a1) ,

which yields

D2 (f) =

[
a2

a2 − a1
L2

Y (a1)−
(

1 + LY (a2)
a1

a2 − a1

)
LY (a1)

]
f (a1)

+

[(
1 + LY (a1)

a2
a1 − a2

)
LY (a2)− a1

a1 − a2
L2

Y (a2)

]
f (a2)

= LY (a1) f (a1)

[
a2LY (a1)− a1LY (a2)

a2 − a1
− 1

]
+LY (a2) f (a2)

[
1− a2LY (a1)− a1LY (a2)

a2 − a1

]

= [a1 (1− LY (a2))− a2 (1− LY (a1))]
LY (a1) f (a1)− LY (a2) f (a2)

a2 − a1
= h (a1, a2) f2 (a1, a2; f (·)) .

We assume that (2.11) holds for n and any function f , and prove it for n+ 1.
Using (2.3)-(2.4) from Proposition 2.2, we obtain

gn+1 (ai)−g′n+1 (ai) =


(gn (ai)− g′n (ai))

an+1

an+1−ai
LY (ai) , 1 ≤ i ≤ n

n∑
i=1

(g′n (ai)− gn (ai))
an+1

an+1−ai
LY (an+1) , i = n+ 1

and hence, using the definition (2.7),

Dn+1 (f) =

n+1∑
i=1

(
gn+1 (ai)− g′n+1 (ai)

)
f (ai)
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=

n∑
i=1

(gn (ai)− g′n (ai))
an+1

an+1 − ai
[LY (ai) f (ai)− LY (an+1) f (an+1)]

= an+1

n∑
i=1

(gn (ai)− g′n (ai)) f2 (an+1, ai; f (·)) .

We now apply the induction hypothesis in which we replace the function f (·)
with f2 (an+1, ·; f (·)), and obtain

Dn+1 (f) = an+1

(
n∏

i=3

ai

)
h (a1, a2) fn (a1, ..., an; f2 (an+1, ·; f (·))) ,

which, based on the definition (2.8), yields the result. This completes the
proof.�

Theorem 2.8. Under the assumptions of Lemma 2.7, if, moreover, a1 > a2 >
0 (implying that X1 ≺st X2), it holds that for x > 0,

(ψXn,...,X3,X2,X1;Y − ψXn,...,X3,X1,X2;Y ) (x) =

n∑
i=1

(gn (ai)− g′n (ai)) e
−aix > 0.

Proof. Clearly,

(ψXn,...,X3,X2,X1;Y − ψXn,...,X3,X1,X2;Y ) (x) = Dn (k) ,

where k (y) = e−xy. From (2.11), we have that

(ψXn,...,X3,X2,X1;Y − ψXn,...,X3,X1,X2;Y ) (x)

=

(
n∏

i=3

ai

)
h (a1, a2) fn (a1, ..., an; k (·)) .

Since h and fn are defined based on the Laplace transform of the positive r.v.
Y and a1 > a2 > 0, we can apply now both results in Lemma 2.6, and the
proof is complete.�

3 Conclusions

Note that, even if Theorem 2.8 presents a very particular case of the stated
conjecture, its proof involves some mathematical effort. However, this par-
ticular case is a cornerstone for our future work, in which we intend to first
extend the actual proof to the case(

ψXn,Xn−1,...,Xk,Xk−1,...,X2,X1;Y − ψXn,Xn−1,...,Xk−1,Xk,...,X2,X1;Y

)
(x) ,
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with all the exponential parameters of the claims different. Once this last case
proved, we will be able to prove the conjecture under the same assumption
of all parameters different, by noting that any permutation can be built by
successively permuting two of its consecutive elements. Even more, while
proving the conjecture in this way, we shall prove in fact the more general
remark that the ruin probability corresponding to an arbitrary claims arrival
order lies between the two extreme ruin probabilities given in the conjecture.
Next step would be the proof of the general case when not all the exponential
parameters are different, which is more cumbersome due to the complicate
form of the recursions, see [8].

In practice, this result provides a starting point in obtaining upper and
lower bounds for the estimated ruin probability when we note that the claims
are exponentially distributed, but nonhomogeneous. On the same line, we
also aim at obtaining some results for the ultimate ruin probability for non-
i.d. claims.
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