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Weak and Strong Superiorization: Between
Feasibility-Seeking and Minimization

Yair Censor

Abstract

We review the superiorization methodology, which can be thought
of, in some cases, as lying between feasibility-seeking and constrained
minimization. It is not quite trying to solve the full fledged constrained
minimization problem; rather, the task is to find a feasible point which
is superior (with respect to an objective function value) to one returned
by a feasibility-seeking only algorithm. We distinguish between two re-
search directions in the superiorization methodology that nourish from
the same general principle: Weak superiorization and strong superior-
ization and clarify their nature.

1 Introduction

What is superiorization. The superiorization methodology works by tak-
ing an iterative algorithm, investigating its perturbation resilience, and then,
using proactively such permitted perturbations, forcing the perturbed algo-
rithm to do something useful in addition to what it is originally designed
to do. The original unperturbed algorithm is called the “Basic Algorithm”
and the perturbed algorithm is called the “Superiorized Version of the Basic
Algorithm”.

Key Words: perturbation resilience, constrained minimization, convex feasibility prob-
lem, dynamic string-averaging, superiorization methodology, superiorized version of an al-
gorithm, strict Fejér monotonicity.
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If the original algorithm∗ is computationally efficient and useful in terms of
the application at hand, and if the perturbations are simple and not expensive
to calculate, then the advantage of this methodology is that, for essentially
the computational cost of the original Basic Algorithm, we are able to get
something more by steering its iterates according to the perturbations.

This is a very general principle, which has been successfully used in some
important practical applications and awaits to be implemented and tested
in additional fields; see, e.g., the recent papers [22, 35], for applications in
intensity-modulated radiation therapy and in nondestructive testing. Although
not limited to this case, an important special case of the superiorization
methodology is when the original algorithm is a feasibility-seeking algorithm,
or one that strives to find constraint-compatible points for a family of con-
straints, and the perturbations that are interlaced into the original algorithm
aim at reducing (not necessarily minimizing) a given merit (objective) func-
tion. We distinguish between two research directions in the superiorization
methodology that nourish from the same general principle.

One is the direction when the constraints are assumed to be consistent
(nonempty intersection) and the notion of “bounded perturbation resilience”
is used. In this case one treats the “Superiorized Version of the Basic Algo-
rithm” as a recursion formula without a stopping rule that produces an infinite
sequence of iterates and asymptotic convergence questions are in the focus of
study.

The second direction does not assume consistency of the constraints but
uses instead a proximity function that measures the violation of the con-
straints. Instead of seeking asymptotic feasibility, it looks at ε-compatibility
and uses the notion of “strong perturbation resilience”. The same core “Supe-
riorized Version of the Basic Algorithm” might be investigated in each of these
directions, but the second is apparently more practical since it relates better
to problems formulated and treated in practice. We use the terms “weak su-
periorization” and “strong superiorization” as a nomenclature for the first and
second directions, respectively†.

The purpose of this paper. Since its inception in 2007, the superior-
ization method has evolved and gained ground. Quoting and distilling from
earlier publications, we review here the two directions of the superiorization
methodology. A recent review paper on the subject which should be read to-
gether with this paper is Herman’s [26]. Unless otherwise stated, we restrict

∗We use the term “algorithm” for the iterative processes discussed here, even for those
that do not include any termination criterion. This does not create any ambiguity because
whether we consider an infinite iterative process or an algorithm with a termination rule is
always clear from the context.
†These terms were proposed in [17], following a private discussion with our colleague and

coworker in this field Gabor Herman.
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ourselves, for simplicity, to the J-dimensional Euclidean space RJ although
some materials below remain valid in Hilbert space.

Superiorization related work. Recent publications on the superioriza-
tion methodology (SM) are devoted to either weak or strong superiorization,
without yet using these terms. They are [2, 3, 8, 11, 15, 21, 22, 23, 27, 28,
29, 31, 33], culminating in [35] and [10]. The latter contains a detailed de-
scription of the SM, its motivation, and an up-to-date review of SM-related
previous works scattered in earlier publications, including a reference to [3]
in which it all started, although without using yet the terms superioriza-
tion and perturbation resilience. [3] was the first to propose this approach
and implement it in practice, but its roots go back to [4, 5] where it was
shown that if iterates of a nonexpansive operator converge for any initial
point, then its inexact iterates with summable errors also converge, see also
[20]. Bounded perturbation resilience of a parallel projection method (PPM)
was observed as early as 2001 in [18, Theorem 2] (without using this term).
More details on related work appear in [10, Section 3], [16, Section 1] and on
http://math.haifa.ac.il/yair/bib-superiorization-censor.html

2 The framework

Let T be a mathematically-formulated problem, of any kind or sort, with
solution set ΨT . The following cases immediately come to mind although any
T and its ΨT can potentially be used.

Case 1. T is a convex feasibility problem (CFP) of the form: find a vector
x∗ ∈ ∩Ii=1Ci, where Ci ⊆ RJ are closed convex subsets of the Euclidean space
RJ . In this case ΨT = ∩Ii=1Ci.

Case 2. T is a constrained minimization problem: minimize {f(x) | x ∈ Φ}
of an objective function f over a feasible region Φ. In this case ΨT = {x∗ ∈
Φ | f(x∗) ≤ f(x) for all x ∈ Φ}.

The superiorization methodology is intended for function reduction prob-
lems of the following form.

Problem 3. The Function Reduction Problem. Let ΨT ⊆ RJ be the
solution set of some given mathematically-formulated problem T and let φ :
RJ → R be an objective function. Let A : RJ → RJ be an algorithmic operator
that defines an iterative Basic Algorithm for the solution of T . Find a vector
x∗ ∈ ΨT whose function φ value is lesser than that of a point in ΨT that would
have been reached by applying the Basic Algorithm for the solution of problem
T.
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As explained below, the superiorization methodology approaches this prob-
lem by automatically generating from the Basic Algorithm its Superiorized
Version. The so obtained vector x∗ need not be a minimizer of φ over ΨT .
Another point to observe is that the very problem formulation itself depends
not only on the data T, ΨT and φ but also on the pair of algorithms – the
original unperturbed Basic Algorithm, represented by A, for the solution of
problem T, and its superiorized version.

A fundamental difference between weak and strong superiorization lies in
the meaning attached to the term “solution of problem T” in Problem 3. In
weak superiorization solving the problem T is understood as generating an
infinite sequence {xk}∞k=0 that converges to a point x∗ ∈ ΨT , thus ΨT must
be nonempty. In strong superiorization solving the problem T is understood
as finding a point x∗ that is ε-compatible with ΨT , for some positive ε, thus
nonemptiness of ΨT need not be assumed.

We concentrate in the next sections mainly on Case 1. Superiorization
work on Case 2, where T is a maximum likelihood optimization problem and
ΨT – its solution set, appears in [23, 29, 30]. To present the principles of weak
superiorization (in Section 3 below) we use the Dynamic String-Averaging
Projection (DSAP) method of [15] while the strong superiorization is demon-
strated on a general Basic Algorithm in Section 4.

3 Weak superiorization

In weak superiorization the set ΨT is assumed to be nonempty and one treats
the “Superiorized Version of the Basic Algorithm” as a recursion formula that
produces an infinite sequence of iterates. Convergence questions are studied
asymptotically. The SM strives to asymptotically find a point in ΨT which is
superior, i.e., has a lower, but not necessarily minimal, value of the φ function,
to one returned by the Basic Algorithm that solves the original problem T only.

This is done by first investigating the bounded perturbation resilience of
an available Basic Algorithm designed to solve efficiently the original problem
T and then proactively using such permitted perturbations to steer its iterates
toward lower values of the φ objective function while not loosing the overall
convergence to a point in ΨT .

Definition 4. Bounded perturbation resilience (BPR). Let Γ ⊆ RJ be
a given nonempty set. An algorithmic operator A : RJ → RJ is said to be
bounded perturbations resilient with respect to Γ if the following is
true: If a sequence {xk}∞k=0, generated by the iterative process xk+1 = A(xk),
for all k ≥ 0, converges to a point in Γ for all x0 ∈ RJ , then any sequence
{yk}∞k=0 of points in RJ that is generated by yk+1 = A(yk + βkv

k), for all
k ≥ 0, also converges to a point in Γ for all y0 ∈ RJ provided that, for all
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k ≥ 0, βkv
k are bounded perturbations, meaning that βk ≥ 0 for all k ≥ 0

such that

∞∑
k=0

βk <∞, and that the sequence {vk}∞k=0 is bounded.

Let φ : RJ → R be a real-valued convex continuous function and let ∂φ(z)
be the subgradient set of φ at z and, for simplicity of presentation, assume here
that Γ = RJ . In other specific cases care must be taken regarding how Γ and
ΨT are related. The following Superiorized Version of the Basic Algorithm A

is based on [17, Algorithm 4.1].

Algorithm 5. Superiorized Version of the Basic Algorithm A.
(0) Initialization: Let N be a natural number and let y0 ∈ RJ be an

arbitrary user-chosen vector.
(1) Iterative step: Given a current iteration vector yk pick an Nk ∈

{1, 2, . . . , N} and start an inner loop of calculations as follows:
(1.1) Inner loop initialization: Define yk,0 = yk.
(1.2) Inner loop step: Given yk,n, as long as n < Nk, do as follows:
(1.2.1) Pick a 0 < βk,n ≤ 1 in a way that guarantees that

∞∑
k=0

Nk−1∑
n=0

βk,n <∞. (1)

(1.2.2) Pick an sk,n ∈ ∂φ(yk,n) and define vk,n as follows:

vk,n =

 − sk,n∥∥sk,n∥∥ , if 0 /∈ ∂φ(yk,n),

0, if 0 ∈ ∂φ(yk,n).
(2)

(1.2.3) Calculate the perturbed iterate

yk,n+1 = yk,n + βk,nv
k,n (3)

and if n+ 1 < Nk set n← n+ 1 and go to (1.2), otherwise go to (1.3).
(1.3) Exit the inner loop with the vector yk,Nk

(1.4) Calculate
yk+1 = A(yk,Nk) (4)

set k ← k + 1 and go back to (1).

Let us consider Case 1 in Section 2 wherein T is a convex feasibility prob-
lem. The Dynamic String-Averaging Projection (DSAP) method of [15] con-
stitutes a family of algorithmic operators that can play the role of the above
A in a Basic Algorithm for the solution of the CFP T .
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Let C1, C2, . . . , Cm be nonempty closed convex subsets of a Hilbert space
X where m is a natural number. Set C = ∩mi=1Ci, and assume C 6= ∅. For
i = 1, 2, . . . ,m, denote by Pi := PCi

the orthogonal (least Euclidean distance)
projection onto the set Ci. An index vector is a vector t = (t1, t2, . . . , tq) such
that ti ∈ {1, 2, . . . ,m} for all i = 1, 2, . . . , q, whose length is `(t) = q. The
product of the individual projections onto the sets whose indices appear in
the index vector t is P [t] := Ptq · · ·Pt1 , called a string operator.

A finite set Ω of index vectors is called fit if for each i ∈ {1, 2, . . . ,m},
there exists a vector t = (t1, t2, . . . , tq) ∈ Ω such that ts = i for some s ∈
{1, 2, . . . , q}. Denote by M the collection of all pairs (Ω, w), where Ω is a finite
fit set of index vectors and w : Ω→ (0,∞) is such that

∑
t∈Ω w(t) = 1.

For any (Ω, w) ∈M define the convex combination of the end-points of all
strings defined by members of Ω

PΩ,w(x) :=
∑
t∈Ω

w(t)P [t](x), x ∈ X. (5)

Let ∆ ∈ (0, 1/m) and an integer q̄ ≥ m be arbitrary fixed and denote by
M∗ ≡ M∗(∆, q̄) the set of all (Ω, w) ∈ M such that the lengths of the strings
are bounded and the weights are all bounded away from zero, i.e.,

M∗ = {(Ω, w) ∈M | `(t) ≤ q̄ and w(t) ≥ ∆, ∀ t ∈ Ω}. (6)

Algorithm 6. The DSAP method with variable strings and variable
weights

Initialization: select an arbitrary x0 ∈ X,
Iterative step: given a current iteration vector xk pick a pair (Ωk, wk) ∈

M∗ and calculate the next iteration vector xk+1 by

xk+1 = PΩk,wk
(xk). (7)

The first prototypical string-averaging algorithmic scheme appeared in [9]
and subsequent work on its realization with various algorithmic operators in-
cludes [12, 13, 14, 16, 19, 24, 32, 33, 34]. If in the DSAP method one uses
only a single index vector t = (1, 2, . . . ,m) that includes all constraints in-
dices then the fully-sequential Kaczmarz cyclic projection method is obtained.
For linear hyperplanes as constraints sets the latter is equivalent with the,
independently discovered, ART (for Algebraic Reconstruction Technique) in
image reconstruction from projections, see [25]. If, at the other extreme, one
uses exactly m one-dimensional index vectors t = (i), for i = 1, 2, . . . ,m, each
consisting of exactly one constraint index, then the fully-simultaneous projec-
tion method of Cimmino is recovered. In-between these “extremes” the DSAP
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method allows for a large arsenal of specific feasibility-seeking projection al-
gorithms. See [1, 6, 7] for more information on projection methods.

The superiorized version of the DSAP algorithm is obtained by using Al-
gorithm 6 as the algorithmic operator A in Algorithm 5. The following result
about its behavior was proved. Consider the set Cmin := {x ∈ C | φ(x) ≤
φ(y) for all y ∈ C}, and assume that Cmin 6= ∅.

Theorem 7. [17, Theorem 4.1] Let φ : X → R be a convex continuous
function, and let C∗ ⊆ Cmin be a nonempty subset. Let r0 ∈ (0, 1] and L̄ ≥ 1
be such that, for all x ∈ C∗ and all y such that ||x− y|| ≤ r0,

|φ(x)− φ(y)| ≤ L̄||x− y||, (8)

and suppose that {(Ωk, wk)}∞k=0 ⊂M∗. Then any sequence {yk}∞k=0, generated
by the superiorized version of the DSAP algorithm, converges in the norm of
X to a y∗ ∈ C and exactly one of the following two alternatives holds: (a)
y∗ ∈ Cmin; (b) y∗ /∈ Cmin and there exist a natural number k0 and a c0 ∈ (0, 1)
such that for each x ∈ C∗ and each integer k ≥ k0,

‖yk+1 − x‖2 ≤ ‖yk − x‖2 − c0
Nk−1∑
n=1

βk,n. (9)

This shows that {yk}∞k=0 is strictly Fejér-monotone with respect to C∗,

i.e., that ‖yk+1 − x‖2 < ‖yk − x‖2, for all k ≥ k0, because c0
∑Nk−1

n=1 βk,n > 0.
The strict Fejér-monotonicity however does not guarantee convergence to a
constrained minimum point but it says that the so-created feasibility-seeking
sequence {yk}∞k=0 has the additional property of getting strictly closer, without
necessarily converging, to the points of a subset of the solution set of of the
constrained minimization problem.

Published experimental results repeatedly confirm that reduction of the
value of the objective function φ is indeed achieved, without loosing the con-
vergence toward feasibility, see [2, 3, 8, 15, 21, 22, 23, 27, 28, 29, 31, 33]. In
some of these cases the SM returns a lower value of the objective function φ
than an exact minimization method with which it is compared, e.g., [10, Table
1].

4 Strong superiorization

As in the previous section, let us consider again, Case 1 in Section 2 wherein T
is a convex feasibility problem. In this section we present a restricted version
of the SM of [28] as adapted to this situation in [10]. Let C1, C2, . . . , Cm be
nonempty closed convex subsets of RJ where m is a natural number and set
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C = ∩mi=1Ci. We do not assume that C 6= ∅ but only that there is some
nonempty subset Λ ⊂ RJ such that Ci ⊂ Λ for all i = 1, 2, . . . ,m, thus
C = ∩Ii=1Ci ⊂ Λ. Instead of the nonemptiness assumption we associate with
the family of constraints {Ci}mi=1 a proximity function ProxC : Λ → R+

that is an indicator of how incompatible an x ∈ Λ is with the constraints.
For any given ε > 0, a point x ∈ Λ for which ProxC(x) ≤ ε is called an
ε-compatible solution for C. We further assume that we have a feasibility-
seeking algorithmic operator A : RJ → Λ, with which we define the Basic
Algorithm as the iterative process

xk+1 = A(xk), for all k ≥ 0, for an arbitrary x0 ∈ Λ. (10)

The following definition helps to evaluate the output of the Basic Algorithm
upon termination by a stopping rule. This definition as well as most of the
remainder of this section appeared in [28].

Definition 8. The ε-output of a sequence. Given C ⊆ Λ ⊆ RJ , a prox-
imity function ProxC : Λ→ R+, a sequence

{
xk
}∞
k=0
⊂ Λ and an ε > 0, then

an element xK of the sequence which has the properties: (i) ProxC
(
xK
)
≤ ε,

and (ii) ProxC
(
xk
)
> ε for all 0 ≤ k < K, is called an ε-output of the

sequence
{
xk
}∞
k=0

with respect to the pair (C, ProxC).

We denote the ε-output by O
(
C, ε,

{
xk
}∞
k=0

)
= xK . Clearly, an ε-output

O
(
C, ε,

{
xk
}∞
k=0

)
of a sequence

{
xk
}∞
k=0

might or might not exist, but if it

does, then it is unique. If
{
xk
}∞
k=0

is produced by an algorithm intended
for the feasible set C, such as the Basic Algorithm, without a termination
criterion, then O

(
C, ε,

{
xk
}∞
k=0

)
is the output produced by that algorithm

when it includes the termination rule to stop when an ε-compatible solution
for C is reached.

Definition 9. Strong perturbation resilience. Assume that we are given
a C ⊆ Λ, a proximity function ProxC , an algorithmic operator A and an
x0 ∈ Λ. We use

{
xk
}∞
k=0

to denote the sequence generated by the Basic

Algorithm when it is initialized by x0. The Basic Algorithm is said to be
strongly perturbation resilient iff the following hold: (i) there exist an
ε > 0 such that the ε-output O

(
C, ε,

{
xk
}∞
k=0

)
exists for every x0 ∈ Λ; (ii) for

every ε > 0, for which the ε-output O
(
C, ε,

{
xk
}∞
k=0

)
exists for every x0 ∈ Λ,

we have also that the ε′-output O
(
C, ε′,

{
yk
}∞
k=0

)
exists for every ε′ > ε and

for every sequence
{
yk
}∞
k=0

generated by

yk+1 = A
(
yk + βkv

k
)
, for all k ≥ 0, (11)
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where the vector sequence
{
vk
}∞
k=0

is bounded and the scalars {βk}∞k=0 are

such that βk ≥ 0, for all k ≥ 0, and
∑∞

k=0 βk <∞.

A theorem which gives sufficient conditions for strong perturbation re-
silience of the Basic Algorithm has been proved in [28, Theorem 1]. Along
with the C ⊆ RJ , we look at the objective function φ : RJ → R, with the
convention that a point in RJ for which the value of φ is smaller is considered
superior to a point in RJ for which the value of φ is larger. The essential idea
of the SM is to make use of the perturbations of (11) to transform a strongly
perturbation resilient Basic Algorithm that seeks a constraints-compatible so-
lution for C into its Superiorized Version whose outputs are equally good from
the point of view of constraints-compatibility, but are superior (not necessarily
optimal) according to the objective function φ.

Definition 10. Given a function φ : RJ → R and a point y ∈ RJ , we say
that a vector d ∈ RJ is nonascending for φ at y iff ‖d‖ ≤ 1 and there is a
δ > 0 such that for all λ ∈ [0, δ] we have φ (y + λd) ≤ φ (y) .

Obviously, the zero vector is always such a vector, but for superioriza-
tion to work we need a sharp inequality to occur in Definition 10 frequently
enough. The Superiorized Version of the Basic Algorithm assumes that we
have available a summable sequence {η`}∞`=0 of positive real numbers (for ex-
ample, η` = a`, where 0 < a < 1) and it generates, simultaneously with
the sequence

{
yk
}∞
k=0

in Λ, sequences
{
vk
}∞
k=0

and {βk}∞k=0. The latter is

generated as a subsequence of {η`}∞`=0, resulting in a nonnegative summable
sequence {βk}∞k=0. The algorithm further depends on a specified initial point
y0 ∈ Λ and on a positive integer N . It makes use of a logical variable called
loop. The Superiorized Version of the Basic Algorithm is presented next by
its pseudo-code.

Algorithm 11. Superiorized Version of the Basic Algorithm

1. set k = 0

2. set yk = y0

3. set ` = −1

4. repeat

5. set n = 0

6. set yk,n = yk

7. while n<N
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8. set vk,n to be a nonascending vector for φ at yk,n

9. set loop=true

10. while loop

11. set ` = `+ 1

12. set βk,n = η`

13. set z = yk,n + βk,nv
k,n

14. if φ (z)≤φ
(
yk
)

then

15. set n=n+ 1

16. set yk,n=z

17. set loop = false

18. set yk+1=A
(
yk,N

)
19. set k = k + 1

Theorem 12. Any sequence
{
yk
}∞
k=0

, generated by (the Superiorized Version
of the Basic Algorithm) Algorithm 11, satisfies (11). Further, if, for a given
ε > 0, the ε-output O

(
C, ε,

{
xk
}∞
k=0

)
of the Basic Algorithm exists for every

x0 ∈ Λ, then every sequence
{
yk
}∞
k=0

, generated by the Algorithm 11, has an

ε′-output O
(
C, ε′,

{
yk
}∞
k=0

)
for every ε′ > ε.

Proof. The proof of this theorem follows from the analysis of the behavior of
the Superiorized Version of the Basic Algorithm in [28, pp. 5537–5538] and
is, therefore, not repeated here.

In other words, the theorem says that Algorithm 11 produces outputs that
are essentially as constraints-compatible as those produced by the original
Basic Algorithm. However, due to the repeated steering of the process by
lines 7 to 17 toward reducing the value of the objective function φ, we can
expect that its output will be superior (from the point of view of φ) to the
output of the (unperturbed) Basic Algorithm.

Algorithms 5 and 11 are not identical. For example, the first employes
negative subgradients while the second allows to use any nonascending di-
rections of φ. Nevertheless, they are based on the same leading principle of
the superiorization methodology. Comments on the differences between them
can be found in [17, Remark 4.1]. While experimental work has repeatedly
demonstrated benefits of the SM, the Theorems 7 and 12 related to these
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superiorized versions of the Basic Algorithm, respectively, leave much to be
desired in terms of rigorously analyzing the behavior of the SM under various
conditions.

5 Concluding comments

In many mathematical formulations of significant real-world technological or
physical problems, the objective function is exogenous to the modeling pro-
cess which defines the constraints. In such cases, the faith of the modeler in
the usefulness of an objective function for the application at hand is limited
and, as a consequence, it is probably not worthwhile to invest too much re-
sources in trying to reach an exact constrained minimum point. This is an
argument in favor of using the superiorization methodology for practical appli-
cations. In doing so the amount of computational efforts invested alternatingly
between performing perturbations and applying the Basic Algorithm’s algo-
rithmic operator can, and needs to, be carefully controlled in order to allow
both activities to properly influence the outcome. Better theoretical insights
into the behavior of weak and of strong superiorization as well as better ways
of implementing the methodology are needed and await to be developed.

Additional questions that come to mind but have not yet been addressed so
far are related to possible extensions of the superiorization methodology such
as: non-convex objective function φ, other control sequences (beyond cyclic
and almost cyclic) and possibly random control sequences; infinitely many sets
Ci; Hilbert space formulations and more.
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