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A simplified mathematical theory of MHD
power generators

Abstract

We present a simplified version of the Faraday magnetohydrodynam-
ics (MHD) generators theory. The effect of the Loretz force against the
fluid flow is neglected, whence it follows the uniform flow of the plasma.
We use Lazăr Dragoş’s analytic solution for the electric potential and
perform some numerical calculations in order to obtain the useful output
power of a generator connected to an external resistive circuit.

Adrian Carabineanu

1 Introduction

In the last years, new applications of MHD generators to hypersonic aircrafts
have been considered (see for example the papers of Petit and Geffray [2] and
Sheikin and Kuranov [3]). The generated electricity can be used to power
electromagnetic devices on board or to the so-called MHD bypass (i.e. MHD
acceleration of the engine exhaust flow). The basic elements of a simple MHD
generator (the so-called continuous electrode Faraday generator) are shown in
figure 1.

In the domain bounded by the electrodes, a magnetic field of induction
B0 is transversely applied to the motion of an electrically conducting fluid
flowing with velocity V0 inside an insulated duct. Many papers are dedicated
to studying the flow of electrically conducting fluids in a duct ( Carabineanu
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Figure 1: Faraday MHD generator

et al. [4], [5], Tezer-Sezgin [6], Bozkaya and Tezer-Sezgin, [7], Çelik [8], Tezer-
Sezgin and Han Aydin [9], etc.). References concerning the mathematical
theory of the MHD power generators may be found in L. Dragoş’s book [1],
Chapter 4.

Electrically charged particles (ions and electrons) flowing with the fluid de-
termine an induced electric field V0 ×B0 which drives an electric current on
a direction orthogonal to V0 and B0. The electric current is collected by the
electrodes and flows in an external load circuit. Let 2L0 be the distance be-
tween the electrodes. The electric current flowing across the electroconductive
plasma between the electrodes is the Faraday current. It provides the main
electrical output of the MHD power generator. The Faraday current reacts
with the applied magnetic field creating a Hall effect current perpendicular to
the Faraday current.

In this paper we present a simplified version of the MHD generator theory.
Besides the simple geometry of the generator, we neglect the Hall effect and the
effect of the Loretz force against the fluid flow, whence it follows the uniform
flow of the plasma. Thermal effects, compressibility and viscosity are also
neglected and the electromagnetic field is stationary. In order to calculate
the MHD generator characteristics we use Lazăr Dragoş’s analytic solution
for the electric potential and perform some numerical calculations. A part of
the article (Sections 1-5) was already presented in [12], where the values of
the electric potential were imposed on the electrodes. Herein we consider a
resistive external electric circuit and calculate the electric potential and the
useful output power as functions of the resistence of the circuit. This is the
original contribution of the present work.
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2 Mathematical formulation of the problem

We use dimensionless variables, by referring the electromagnetic field variables
to V0, B0 and L0. Denoting by a the dimensionless length of the electrodes
and by i, j,k the unit vectors of the Cartesian axes, in [1] one deduces that
the dimensionless velocity and magnetic induction are:

V = i, B =

{
k, |x| ≤ a,
0, |x| > a.

(1)

Denoting by J the dimensionless current density and by E the dimension-
less intensity of the electric field, we use Ohm’s law

J = Rm (E + V ×B) , (2)

where
Rm = σµL0V0 (3)

is the magnetic Reynolds number, σ is the electrical conductivity and µ is the
magnetic permeability.

From Faraday’s law

∇×E = 0, (4)

we deduce that there exists a function ϕ (the electric potential) such that

E = −∇ϕ. (5)

From the jump condition
[B] · n = 0

and from the boundary conditions imposed on the insulating parts of the walls
of the duct

, J · n = 0, V · n = 0, (6)

we deduce that the flow is plane-parallel and the functions we are dealing with
do not depend on the variable z.

In the sequel we shall calculate the potential of the electric field. From the
continuity equation

∇ · J = 0, (7)

from Ohm’s law and from (5) it follows that

∆ϕ = 0, −∞ < x <∞, −1 < y < 1. (8)
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Since the conductivity of electrodes is infinite, from Ohm’s law we have
∂ϕ(x,±1)

∂x
= 0 and we may impose the following coditions

ϕ (x, 1) = −ϕw, ϕ (x,−1) = ϕw, x ∈ (−a, a) . (9)

From Ohm’s law, from (5) and from the boundary conditions (6), the
following relationships

∂ϕ

∂y
(x, 1) = 0,

∂ϕ

∂y
(x,−1) = 0, x ∈ (−∞,−a) ∪ (a,∞) . (10)

are deduced on the insulating parts of the walls of the duct.
At infinity one imposes the condition

lim
|x|→∞

E = − lim
|x|→∞

∇ϕ = 0. (11)

3 Lazăr Dragoş’s analytical solution [1]

Since ϕ (x, y) is a harmonic function, there exists its harmonic conjugate
χ (x, y), related by ϕ (x, y) through the Cauchy-Riemann equations

∂ϕ

∂x
=
∂χ

∂y
,
∂ϕ

∂y
= −∂χ

∂x
. (12)

We shall also introduce the complex holomorphic function

f (z) = ϕ (x, y) + iχ (x, y) , z = x+ iy. (13)

From the boundary conditions (10), one deduces the boundary conditions

χ (x,±1) = b, x ∈ (−∞,−a) , (14)

χ (x,±1) = b, x ∈ (a,∞) . (15)

χ is determined up to an additive constant and b has to be calculated.
With the conformal mapping

ζ = i exp
π

2
(z + a) , ζ = ξ + iη, (16)

the strip −1 ≤ y ≤ 1 is mapped onto the upper half-plane η ≥ 0 with the
following point-to-point correspondence (figure 2):

A (−∞,±1)→ A′ (0, 0) , B (−a,−1)→ B′ (1, 0) , C (a,−1)→ C ′ (expπa, 0)
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Figure 2: Conformal mapping and boundary correspondence

D (∞,±1)→ D′ (±∞, 0) , E (a, 1)→ E′ (− expπa, 0) , F (−a, 1)→ F ′ (−1, 0) .

The boundary value problem (8) – (11) was reduced to the following
Volterra-Signorini problem: find a holomorphic function f (ζ) = ϕ (ξ, η) +
iχ (ξ, η) in the upper half-plane η > 0, with the following boundary condi-
tions:

χ (ξ, 0) = 0, ξ ∈ (−∞,− expπa) ∪ (expπa,∞) , χ (ξ, 0) = b, ξ ∈ (−1, 1) ,
(17)

ϕ (ξ, 0) = −ϕw, ξ ∈ (− expπa,−1) , ϕ (ξ, 0) = ϕw, ξ ∈ (1, expπa) . (18)

The solution of the Volterra – Signorini problem, is given by a formula
which may be found for example in [10], and it is ([1], Chapter 4):

f (ζ) =

√
(ζ2 − exp 2πa) (ζ2 − 1)

π

∫ expπa

− expπa

ν (ζ)√
|(ξ2 − exp 2πa) (ξ2 − 1)|

dξ

ζ − ξ
,

(19)
where

ν (ξ) =

{
ϕw, ξ ∈ (− expπa,−1) ∪ (1, expπa) ,

b, ξ ∈ (−1, 1) .
(20)

From condition (11) we deduce that lim
ζ→∞

df

dζ
= 0, whence, taking into
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account (19) and (20) it follows that the constant b must satisfy the equation

b

∫ 1

−1

dξ√
(ξ2 − exp 2πa) (ξ2 − 1)

= −2ϕw

∫ expπa

1

dξ√
(exp 2πa− ξ2) (ξ2 − 1)

.

(21)

4 Numerical results

We use a Gaussian quadrature formula for continuous functions ([11], Ap-
pendix F):∫ 1

−1

F (x)√
1− x2

dx ' π

n

n∑
α=1

F (xα) , xα = cos
(2α− 1)π

2n
, α = 1, ..., n. (22)

Hence

b = −ϕwβ (a) , β (a) = 2
I1 (a)

I2 (a)
, (23)

with

I2 (a) =
π

n

n∑
α=1

1√
exp 2πa− x2α

. (24)

We shall also use the Gaussian quadrature formula in order to calculate
the integral from the right hand part of (21). To this aim we consider the
change of variable

ξ =
expπa− 1

2
θ +

expπa+ 1

2
(25)

and obtain ∫ expπa

1

dξ√
(expπa− ξ2) (ξ2 − 1)

=

2

∫ 1

−1

1√
[(expπa− 1) θ + 3 expπa+ 1] [(expπa− 1) θ + 3 expπa+ 3]

dθ√
1− θ2

' π

n

n∑
α=1

1√
[(expπa− 1)xα + 3 expπa+ 1] [(expπa− 1)xα + 3 expπa+ 3]

= I1 (a) . (26)

At the points (xp, ys) of a certain grid we calculate

∂ϕ (xp, ys)

∂x
− i∂ϕ (xp, ys)

∂y
=
πi

2

df (ζps)

dζ
· exp

π

2
(zps + a) , (27)



A SIMPLFIED MATHEMATICAL THEORY OF MHD POWER GENERATORS 35

zps = xp + iys, ζps = ζ (zps) .

We take into account that

df (ζps)

dζ
=

ζps
(
2ζ2ps − 1− exp 2πa

)
π
√(

ζ2ps − exp 2πa
) (
ζ2ps − 1

) ∫ expπa

− expπa

ν (ζ)√
|(ξ2 − exp 2πa) (ξ2 − 1)|

dξ

ζps − ξ
−

−

√(
ζ2ps − exp 2πa

) (
ζ2ps − 1

)
π

∫ expπa

− expπa

ν (ζ)√
|(ξ2 − exp 2πa) (ξ2 − 1)|

dξ

(ζps − ξ)2
.

(28)

For calculating
df (ζps)

dζ
we have to numerically compute the integrals

∫ 1

−1

b√
(1− ξ2) (exp 2πa− ξ2)

dξ

ζps − ξ
, (29)

∫ 1

−1

b√
(1− ξ2) (exp 2πa− ξ2)

dξ

(ζps − ξ)2
, (30)

∫ expπa

1

ϕw√
(ξ2 − 1) (exp 2πa− ξ2)

dξ

ζps − ξ
, (31)

∫ expπa

1

ϕw√
(ξ2 − 1) (exp 2πa− ξ2)

dξ

(ζps − ξ)2
, (32)

∫ expπa

1

ϕw√
(ξ2 − 1) (exp 2πa− ξ2)

dξ

ζps + ξ
, (33)

∫ expπa

1

ϕw√
(ξ2 − 1) (exp 2πa− ξ2)

dξ

(ζps + ξ)2
. (34)

To calculate the integrals from (29) and (30) we use the Gaussian quadra-
ture formula (22), while for (31), (32), (33) and (34) we first perform the
change of variable (25) and then use the Gaussian quadrature formula (22).

We use (2), (5), (27) and (28) to calculate the current density at the grid
points. In figure 3 we present the current density field for a = 1/2 and ϕw = 1.



A SIMPLFIED MATHEMATICAL THEORY OF MHD POWER GENERATORS 36

Figure 3: Current density field

5 The characteristics of the MHD generator

The dimensionless power on the unit of length developed by plasma in the
motion against the electromagnetic field is

A = −
∫ ∫

(−∞,∞)×[−1,1]
V· (J×B) dxdy =

∫ ∫
(−∞,∞)×[−1,1]

J· (V ×B) dxdy,

(35)
and it represents in fact the power dissipated by the Lorentz force with changed
sign.

Taking into account the relations (1), (5), (9), (10) and Ohm’s law (2) we
get

A = Rm

∫ ∫
[−a,a]×[−1,1]

(
∂ϕ

∂y
+ 1

)
dxdy =

Rm

∫ a

−a
[ϕ (x, 1)− ϕ (x,−1)− 2] dx = 4aRm (1− ϕw) ,

and also

A =

∫ ∫
(−∞,∞)×[−1,1]

J·
(

J

Rm
−E

)
dxdy = Q+W, (36)
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where

Q =

∫ ∫
(−∞,∞)×[−1,1]

J2

Rm
dxdy > 0 (37)

stands for the Joule dissipation power and

W = −
∫ ∫

(−∞,∞)×[−1,1]
E · Jdxdy (38)

is the useful output power of the generator.
From (5), from the continuity equation (7) and from the boundary condi-

tions imposed on the insulating walls, one deduces that

W =

∫ ∫
(−∞,∞)×[−1,1]

∇ · (ϕJ) dxdy =

∫
ϕJ · nds =

= −ϕw
∫ a

−a
[J (x,−1) + J (x, 1)] · jdx =

= ϕwRm

∫ a

−a

[
∂ϕ

∂y
(x,−1) +

∂ϕ

∂y
(x, 1) + 2

]
dx =

= −ϕwRm
∫ a

−a

[
∂χ

∂x
(x,−1) +

∂ϕ

∂x
(x, 1)− 2

]
dx =

ϕwRm [χ (−a.− 1)− χ (a,−1) + χ (−a, 1)− χ (a, 1) + 2a] =

= 2ϕwRm (2a+ b) = 2ϕwRm [2a− ϕwβ (a)] . (39)

6 The calculus of the electric potential of the electrodes

The electric current collected by the electrodes is used on the external circuit.
The dimensionless intensity of this electric current is

I = −j·
∫ a

−a
J (x,−1) dx = Rm

∫ a

−a

[
∂ϕ

∂y
(x,−1) + 1

]
dx =

2aRm−Rm
∫ a

−a

∂χ

∂x
(x,−1) dx = 2a− χ (a,−1) + χ (−a,−1) = Rm (2a+ b) .

(40)
We assume that the external electric circuit is a resistive circuit and we

denote by R its dimensionless equivalent resistance. According to Ohm’s law
we have

2ϕw = RI = RRm (2a+ b) = RRm (2a− ϕwβ(a)) , (41)
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Figure 4: Useful output power

whence it follows

ϕw =
2aRRm

2 +RRmβ(a)
. (42)

From (39) and (42) we may calculate the dimensionless useful output power

W =
16a2RRm2

[2 +RRmβ(a)]
2 . (43)

In figure 4 we present the useful output power against the length of the
electrodes and the resistence of the external circuit for various values of the
magnetic Reynolds’ number.
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