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Study of the behaviour of proliferating cells in
leukemia modelled by a system of delay

differential equations

Anca Veronica Ion

Abstract

For the model of periodic chronic myelogenous leukemia considered
by Pujo-Menjouet, Mackey et al., model consisting of two delay differen-
tial equations, the equation for the density of so-called ”resting cells” was
studied from numerical and qualitative point of view in several works.
In this paper we focus on the equation for the density of proliferating
cells and study it from a qualitative point of view.

1 Introduction

We consider the model of periodic chronic myelogenous leukemia consisting
in the system of two delay differential equations [7], [8]:

dP (t)

dt
= −γP (t) + β(N(t))N(t)− k

2
β(N(t− r))N(t− r),

dN(t)

dt
= − [β(N(t)) + δ]N(t) + kβ(N(t− r))N(t− r).

Here P (t) represents the density of proliferating cells while N(t) is the density
of so-called “resting” cells.

Key Words: leukemia model, delay differential equations, qualitative analysis, stability,
Hopf bifurcation, Bautin bifurcation.
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The function β is given by β(N) = β0θ
n/(θn +Nn), n > 0, and represents

the rate at which the resting cells re-enter the proliferating phase.

For the detailed description of the model see [7]. We just remind that
γ > 0 is the rate of death of proliferating cell by apoptosis, k = 2e−γr, δ > 0
is the rate by which the resting cells transform into normal cells, β0 > 0 is
the maximal rate of cell movement from the resting phase into proliferation;
θ is the density of resting cell population such that β(θ) = β0/2. The delay
r refers to a processus of division of the proliferation cells that takes place at
time r after they entered into the proliferating phase [7].

With x(t) = P (t)/θ, y(t) = N(t)/θ the system becomes:

ẋ(t) = −γx(t) +
β0y(t)

1 + y(t)n
− k

2

β0y(t− r)
1 + y(t− r)n

, (1)

ẏ(t) = −
[

β0
1 + y(t)n

+ δ

]
y(t) + k

β0y(t− r)
1 + y(t− r)n

. (2)

We see that the equation for y does not depend on x. It was studied, from
a numerical point of view in [7], [8], and from a qualitative point of view in
[3], [4], [5] (in all these works, the density of resting cells,denoted here by y,
was denoted by x). More precisely, in [3], the authors studied in depth the
stability of the two equilibria of equation (2), in [4] the stability of periodic
solution emerged by Hopf bifurcation was considered, while in [5] the existence
of Bautin type bifurcation points was established.

Here we consider the first equation, that for the proliferating cells. Since
their increase is the cause of the illness, the physician should be interested in
the behaviour of x(t) more than in that of y(t). The equation for x is very
simple, it is a linear forced equation, with the forcing term depending on y.
Hence the behaviour of x is determined by that of y (in the absence of the
terms containing y, x(t) would tend to zero when t→∞).

In the study of eq. (2), ([3], [4], [5]) in the zone of parameters that we
considered (see Section 4) we encountered the following typical behaviours of
y:

• y(·) is an equilibrium solution of (2), i.e. y(t) = ct;

• y(t) tends to an equilibrium solution of (2), when t tends to ∞;

• y(·) is a periodic solution of (2);

• y(t) tends to a periodic solution of (2), when t tends to ∞.
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In the present paper, by using the results obtained on y(·), we study the
behavior of x(·).

In the Appendix we prove some propositions that show how the behaviour
of y influences that of x. These are used in all the main sections of the paper.

In Section 2 we discuss the stability of the equilibria of eq. (1), indicating
the zone of the parameters space where these are stable. Section 3 refers to
the occurrence of Hopf bifurcation for y, that induces a similar behaviour for
x. Section 4 refers to the Bautin bifurcation of y, that was studied in [5] and
to its influence on x.

A section of Conclusions summarizes all the results in the paper.

2 Equilibria of the system, their stability

The system (1) - (2) has the equilibria: x1 = 0, y1 = 0, and

x2 =
2− k

2γ

β0y2
1 + yn2

, y2 =

(
β0
δ

(k − 1)− 1

)1/n

.

In this section we study the stability of these equilibria, by using the sta-
bility results contained in [3]. Let us remind that y(·), the solution of (2), is
a bounded function, defined on [−r, ∞), as shown in [3].

2.1 Stability of (x1, y1)

We intend to establish the stability of (x1, y1) = (0, 0) depending on the
parameters of the problem. For this we shall use the results on the stability
of y in [3] and the results in the Appendix.

Proposition 2.1. If
β0
δ

(k − 1) < 1, (3)

then the equilibrium solution (x1, y1) of system (1), (2) is asymptotically sta-
ble.

Proof. By determining the set of parameters for which all eigenvalues of
the linear equation attached to the delay differential equation (2) have negative
real parts, in [3] it is shown that the solution y1 = 0 of eq. (2) is asymptotically
stable when β0

δ (k − 1) < 1.
Hence, in the same set of parameters, if the initial function φ ∈ C([−r, 0], R)

for equation (2) is close enough to the function y1(s) = 0, s ∈ [−r, 0] such that
the corresponding solution, y(t, φ) tends to 0 when t → ∞, Proposition A.1
of the Appendix implies that lim

t→∞
x(t) = 0.
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It follows that the equilibrium solution (x1, y1) of system (1), (2) is asymp-
totically stable.2

If we regard eq. (1) as a nonautonomous equation (and not as a part of
an autonomous system), in the conditions of the above Proposition, and if
φ ∈ C([−r, 0], R) is such that limt→∞ y(t, φ) = 0, then the solution x1 = 0 of
(1) is globally asymptotically stable.

Proposition 2.2. For β0

δ (k − 1) = 1, the solution (x1, y1) of system (1),
(2) is stable.

Proof. When β0

δ (k − 1) = 1, there is an eigenvalue, λ, of the linearized
form of eq. (2) (around y1=0) that has Reλ = 0 [3]. In this situation, also in
[3], we proved that there is a Lyapunov function for eq. (2), hence the solution
y1 = 0 is stable.

Now we prove that the solution (x1, y1) of the system is stable. In eq. (1),

we denote the terms containing y by F (y(t), y(t− r)) := F̃ (y)(t).
For this we consider an ε > 0 and chose a δε > 0 with the property that

|φ|0 < δε implies |y(t, φ)| < min
(
εγ
2β0

, ε
)

, for any t ≥ 0. This is possible due

to the results in [3].
Then we have:

−εγ
2
<

β0y(t)

1 + y(t)n
− k

2

β0y(t− r)
1 + y(t− r)n

<
εγ

2
, for t ≥ Tε.

Since the solution of equation (1) is

x(t, x0) = x0e
−γt + e−γt

∫ t

0

eγsF̃ (y)(s)ds,

relation (8) implies, for t ≥ Tε,

|x(t, x0)| ≤ |x0|e−γt + e−γt
∫ t

0

eγs
εγ

2
ds =

= |x0|e−γt + (1− e−γt)ε
2
< |x0|+

ε

2
.

Now, for |x0| ≤ ε
2 , and t ≥ 0, we have

|x(t, x0)| ≤ ε,

and since |y(t, φ)| < ε the solution (0, 0) of system (1), (2) is stable.2
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Again, if we think at eq. (1) as a nonautonomous equation, in the condi-
tions of Proposition 2.2, and if the initial condition of (2), φ ∈ C([−r, 0], R),
is close enough to y1 = 0, then the solution x1 = 0 of (1) is stable.

Proposition 2.3. When β0

δ (k − 1) > 1, the solution (x1, y1) is unstable.

Proof. The condition β0

δ (k−1) > 1 is the condition of existence of the equi-
librium y2 of (2). In [3] we proved that, in this situation, the solution y1 loses
stability (becomes unstable), hence the solution (x1, y1) is also unstable.2

2.2 Stability of (x2, y2)

In the study of stability of y2, [3], an important role is played by the

constant B1 = d
dy

(
β0y
1+yn

)
|y=y2 that occurs in the linearized form of eq. (2).

In fact, the linearized around x2 of equation (2) is

ż(t) = −[B1 + δ]z(t) + kB1z(t− r), (4)

and the value of B1, in terms of the parameters of the problem is

B1 =
δ

k − 1

[
nδ

β0(k − 1)
− n+ 1

]
. (5)

Proposition 2.4. If the following conditions are fulfilled:

• B1 < 0, (⇔ β0
δ

(k − 1) >
n

n− 1
);

• δ +B1 < 0, (⇔ n > k and
β0
δ

(k − 1) >
n

n− k
);

• |δ +B1| < |kB1| and
arccos ((δ +B1)/kB1)

ω0
< r <

1

|δ +B1|
, where ω0

is the solution in (0, π/r) of the equation ω cot(ωr) = −(δ +B1);

then, the solution (x2, y2) of system (1), (2) is asymptotically stable.

Proof. As shown in [3], the conditions in the enounce are sufficient in
order that all the eigenvalues of (4) have negative real part. That is, in these
conditions, the solution y2 is asymptotically stable.

For the initial condition φ ∈ C([−r, 0],R) in a small neighborhood of y2,
such that limt→∞ y(t, φ) = y2, Proposition A.1 implies that limt→∞ x(t, x0) =
x2, for any initial value x0. It follows that (x2, y2) is asymptotically stable.2

Proposition 2.5. If the following conditions are fulfilled:
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• B1 < 0 and δ +B1 > 0, (⇔ n

n− 1
<
β0
δ

(k − 1) <
n

n− k );

• δ + B1 > |kB1| or

{
δ +B1 ≤ |kB1| and r <

arccos ((δ +B1)/kB1)

ω0

}
with ω0

defined as above;

then the solution (x2, y2) of system (1), (2) is asymptotically stable.

Proof. Again, the results in [3] show that y2 is asymptotically stable in the
conditions of the enounce. This and Proposition A.1 imply that, for the initial
function φ of eq. (2) in a convenient neighborhood of y2, we have x(t) → x2
when t→∞, hence the equilibrium x2 of equation (1) is (globally) asymptot-
ically stable, and the equilibrium (x2, y2) of system (1), (2) is asymptotically
stable.2

If we consider eq. (1) as a non-autonomous differential equation, if either
the conditions of Proposition 2.4 or those of Proposition 2.5 are satisfied and if
φ is such that limt→∞ y(t, φ) = y2, then x2 is a globally asymptotically stable
equilibrium of (1).

Proposition 2.6. If B1 > 0, then the solution (x2, y2) of system (1),
(2) is asymptotically stable.

Proof. As proved in [3], for B1 > 0, y2 is asymptotically stable. This
implies (via Proposition A.1) the asymptotic stability of (x2, y2) as solution
of eq. (1), (1).2

As above, we remark, that, if φ is such that limt→∞ y(t, φ) = y2, then x2
is a globally asymptotically stable equilibrium of (1).

3 Points of Hopf bifurcation for y.
Influence on x

The analysis in [7], [8], [4] shows that the equilibrium y2 loses stability by
a Hopf bifurcation, at points where B1 < 0 and

r =
arccos ((δ +B1)/kB1)√

(kB1)2 − (δ +B1)2
. (6)

Propositions A.1, A.2 and A.3 (from Appendix) show that, when the de-
layed differential equation (2) presents a Hopf bifurcation, the solutions of
equation in x behave like having a Hopf bifurcation (because of the term in
y).

Indeed, for the zone of stability of y2, we already saw that x(t, x0) → x2,
when t→∞, for any x0 ≥ 0.
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Figure 1: Left- Surface of Hopf bifurcation points in the (δ, k, r) space (n = 2,β0 =
2.5). Right- Projection of the surface on the plane (k, δ). Here δ is denoted by d.

After the Hopf bifurcation, an attractive periodic orbit occurs for the equa-
tion in y. This implies, as Propositions 2.2 and 2.3 show, that there is a certain
initial value x̃0 = ũ0 + x2 such that x(t, x̃0) is a periodic orbit in the phase
portrait of eq. (1), orbit that is asymptotically stable.

Hence, in the points from the parameters space where y(·) presents Hopf
bifurcation, the function describing the density of proliferating cells, x(·), be-
haves like having a Hopf bifurcation also. Of course it is not a genuine Hopf
bifurcation, since the eigenvalue of the linearized equation in x at x2 is −γ, it
is only a behaviour induced by the “forcing term” F̃ (y).

In order to have an image of the points in the parameters space where this
happens, we fix two parameters, n and β0 and in the three dimensional space
of the other parameters, (k, δ, r), we represent r as function of (k, δ), by using
(6). In Fig. 1 such a plot, for n = 2, β0 = 2.5, can be seen, together with
the projection of this surface on the (k, δ) plane (representing the domain of
definition of the function in (6)).

As a matter of fact, condition (6) is only a necessary condition for Hopf
bifurcation and it must be completed with the condition that the first Lya-
punov coefficient, l1, is different from zero (for the definition of l1 see [4], where
the restriction of the problem to a center manifold is used). If l1 = 0, then
depending on the number of varying parameters, either a Hopf degenerate
bifurcation (a single varying parameter) or a Bautin bifurcation (two varying
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Figure 2: Left- x(t) versus t before the Hopf bifurcation point, at r = 0.3558.
Right- ẋ(t) versus x(t) at r = 0.3558.

Figure 3: Left- y(t) versus t before the Hopf bifurcation point, at r = 0.3558.
Right- ẏ(t) versus y(t) at r = 0.3558.
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Figure 4: Left- x(t) versus t after the Hopf bifurcation point, at r = 0.36. Right-
ẋ(t) versus x(t) at r = 0.36.

Figure 5: Left- y(t) versus t after the Hopf bifurcation point, at r = 0.36. Right-
ẏ(t) versus y(t) at r = 0.36.
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parameters) takes place.

In Figures 2, 3, 4, 5, we present the solutions x(t) and y(t) at a typical Hopf
bifurcation point, (n = 12, β0 = 1.77, δ = 0.05, k = 1.18074, r = 0.3559114).
Here r was taken the bifurcation parameter. Figures 2 and 3 present the
solutions, for the parameter r at the left of the bifurcation value (at r = 0.3558)
while Figures 4 and 5 present the solutions, for r at the right of the bifurcation
value (r = 0.36). It is clear that the behaviour of y determines that of x.
We remark that the first Lyapunov coefficient for this Bautin bifurcation is
l1 = −43.71.

4 Points of Bautin bifurcation for y.
Influence on x

In [5] we studied the Bautin bifurcation for eq. (2). The Bautin bifurcation
occurs when l1 = 0 and the second Lyapunov coefficient, l2, is different of zero.
For the definition of l2 see [5] - where again the problem is restricted to a two-
dimensional center manifold. By this restriction a two dimensional system
of differential equations is obtained. For this kind of problems, the Bautin
bifurcation was studied in [6].

In the Bautin bifurcation two parameters are varied, hence we may speak of
a parameters plane and the normal form of this bifurcation in polar coordinates
is

ρ̇ = ρ(b1 + b2ρ
2 + ζρ4),

θ̇ = 1,

where ζ = sgn(l2).
The Bautin bifurcation is characterized by the fact that, if we vary the

parameters in the parameters plane, around the bifurcation point, we can
meet four possible situations. These are, as can be seen on the bifurcation
diagram, Fig. 6: an equilibrium point (in the domain denoted by 1 of the
parameters plane), an equilibrium surrounded by a limit cycle (in domain
2), an equilibrium surrounded by two cycles one inside the other (zone 3),
and, finally, an equilibrium that is attracting on one side and repelling on its
other side (for points on the curve T). The curve T is the curve on which the
discriminant of equation b1 + b2η + ζη2 = 0 is equal to zero and the solution
η is positive (since η = ρ2).

The stability properties of the trajectories described above depend on the
sign of l2, as we can see in the bifurcation diagrams (Fig. 6).

The letter “H” on the bifurcation diagram shows that, while crossing the
vertical axis, in the sense indicated by the small arrows, Hopf bifurcation takes
place.
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Figure 6: Bautin bifurcation diagram. Left- the case l2 < 0; Right- the case
l2 > 0.

The algorithm for finding Bautin bifurcation points for eq. (2) was de-
scribed in detail in [5]. We only shortly remind the results of our search.

We considered the zone of parameters (n, β0, k) given by:

(n, β0, k) ∈ {1, 1.5, 2, 3, ..., 12} × {0.5, 1, 1.5, 2, 2.5} × {1.1, 1.2, ..., 1.9}

(we remind that k > 1 in order that x2 exist, and k < 2). (n, β0, k) were
taken as fixed parameters, and (δ, r) as variable parameters. Hence, for ev-
ery (n∗, β∗0 , k

∗) fixed, we looked for a δ∗ and a r∗ such that Reλ1,2(α∗) = 0 and
l1(α∗) = 0, where we denoted by α the vector of parameters,
α = (n, β0, k, δ, r).

For n = 1 we showed [5] that the condition (6) for Hopf bifurcation is not
satisfied, hence no Bautin bifurcation can occur.

For n = 1.5 and n = 2, and for each β0 ∈ {0.5, 1, 1.5, 2, 2.5}, and each
k ∈ {1.1, 1.2, ..., 1.9} we found Hopf points with l1 = 0. For these points
we computed the second Lyapunov coefficient and found that for each of the
bifurcation points obtained, l2 < 0. Hence they are Bautin bifurcation points
and the bifurcation diagram is that of Fig. 6, left.

For 3 ≤ n ≤ 12 and β0 ∈ {0.5, 1, 1.5, 2, 2.5}, k ∈ {1.1, 1.2, ..., 1.9}, the
first Lyapunov coefficient was find to be always negative, hence, no Bautin
bifurcation is possible for this range of parameters.

We give, below, the points, found by us, in the parameters space where
l1 = 0 for the case n = 2 and β0 ∈ {0.5, 1, 1.5, 2} and k as above. Also we
present the plots of these Bautin bifurcation points on the surfaces of Hopf
points (Figs. 7 - 10). By connecting these points, we obtain approximate
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curves of Bautin bifurcation points on the surfaces of Hopf points.
A table and a figure of the same type, for the case n = 2, β0 = 2.5, were

published in [5].

k δ r l2
1.1 0.0045705962 26.125314 -0.021

1.2 0.0090491351 25.751524 -0.0151

1.3 0.0134437887 25.422162 -0.0124

1.4 0.0177612407 25.130258 -0.0108

1.5 0.0220070315 24.870352 -0.0097

1.6 0.0261858065 24.638093 -0.0088

1.7 0.0303014988 24.429962 -0.0081

1.8 0.0343574676 24.243076 -0.0076

1.9 0.0383566021 24.075039 -0.0071

Figure 7: Hopf codimension two points for n = 2, β0 = 0.5.

k δ r l2
1.1 0.0091411924 13.062657 -0.0205

1.2 0.0180982702 12.875762 -0.0142

1.3 0.0268875774 12.711081 -0.0114

1.4 0.0355224814 12.565129 -0.0097

1.5 0.0440140630 12.435176 -0.0085

1.6 0.0523716129 12.319046 -0.0076

1.7 0.0606029975 12.214981 -0.0069

1.8 0.0687149345 12.121538 -0.0063

1.9 0.0767132043 12.037519 -0.0059

Figure 8: Hopf codimension two points for n = 2, β0 = 1.

In [5], in order to confirm by numerical integration the behaviour predicted
by the bifurcation diagram, we considered a Bautin bifurcation point P ∗,
identified by the algorithm in [5], at n∗ = 2, β∗0 = 2.5, k∗ = 1.01, and r∗ =
5.301432998, δ∗ = 0.0023073665.
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k δ r l2
1.1 0.0137117887 8.708438 -0.0204

1.2 0.0271474053 8.583841 -0.0140

1.3 0.0403313662 8.474054 -0.0112

1.4 0.0532837222 8.376752 -0.0095

1.5 0.0660210946 8.290117 -0.0083

1.6 0.0785741932 8.212697 -0.0074

1.7 0.0909044966 8.143320 -0.0067

1.8 0.1030724022 8.081025 -0.0061

1.9 0.1150698062 8.025013 -0.0056

Figure 9: Hopf codimension two points for n = 2, β0 = 1.5.

In the present paper, for the same point, P ∗, we show, in parallel, the
behaviour of y and that of x for the parameters chosen in the (most inter-
esting) zone, corresponding to the zone 3 of the bifurcation diagram (Fig. 6,
left). There, for y, two limit cycles exist (one inside the other), the inner cycle
being unstable while the outer one, stable. By numerical investigations, we
found that point P3(7.55, 0.0015) lies in this zone. For this point, the second
equilibrium of system (1), (2) is x2 = 3.24777, y2 = 3.95811.

As initial function y0 = φ, for eq. (2), we considered functions of the
type φ(s) = y2 + ceµs cos(ωs), s ∈ [−r, 0], where λ1,2 = µ ± iω are the two
eigenvalues with greatest real part corresponding to the chosen parameters.
Hence the parameter c determines the distance between the initial function φ
and the equilibrium y2.

Depending on c, the orbit y(t, φ) will either tend towards y2 (being rejected
by the unstable inner limit cycle) or towards the outer limit cycle. First we take
c = 0.2, and c = 0.41 and see that y(t) tend towards y2 and x(t) tends to x2
(Figs 11 and 12). For c = 0.425 the oscillating orbits have increasing amplitude
(Fig. 13). It is clear that between c = 0.41 and c = 0.425 there must be a
value c∗ such that for the initial function φ∗(s) = y2+c∗eµs cos(ωs), s ∈ [−r, 0],
the corresponding solution y(t, φ∗) of eq. (2) is a periodic function. This is
the unstable periodic orbit (inner limit cycle on the center manifold) of the
equation for y.

We notice that for c = 0.425 the amplitude of the orbits increases very
slowly. If we take a greater value of c, e.g. c = 0.55, for a short interval
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k δ r l2
1.1 0.018282385 6.531328 -0.0203

1.2 0.036196540 6.437880 -0.014

1.3 0.053775154 6.355540 -0.0111

1.4 0.071044963 6.282564 -0.0093

1.5 0.088028126 6.217588 -0.0082

1.6 0.104743225 6.159523 -0.0073

1.7 0.121205995 6.107490 -0.0066

1.8 0.137429869 6.060769 -0.0060

1.9 0.153426408 6.018759 -0.0055

Figure 10: Hopf codimension two points for n = 2, β0 = 2.

of time, the amplitude increases slowly, and then there is a sudden increase
of the amplitude, and the solution rapidly tends to a periodic orbit, that is
stable (Fig. 14). This one corresponds to the outer limit cycle from the center
manifold. This behaviour of y is reproduced, qualitatively, by x, as is seen in
Figure 14.

5 Conclusions

In this paper we investigated the behaviour of the solution x of the system
(1), (2), the function x representing the nondimensional density of proliferating
cells in the leukemia disease. It is seen that the behaviour of x is determined
by that of y (density of resting cells).

We studied the stability of the equilibrium solutions, and we presented the
conditions that the parameters should satisfy, in order that the equilibrium
solutions x1, x2 of eq. (1) be stable or even globally asymptotically stable.

Then, we establish the conditions on the parameters such the solution x
mimics a Hopf bifurcation (i.e. the equilibrium loses stability and a stable
periodic orbit occurs).

The third type of interesting behaviour of y previously studied [5] is the
Bautin bifurcation. We showed that, when y presents some Bautin bifurcation,
the solution x also mimics this kind of bifurcation.

The study concerning the Bautin bifurcation is important because, for
parameters in the domains corresponding to the domain 3 of the bifurcation
diagram, the behaviour of x may have two very different aspects. That is x(t)
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Figure 11: Graphs of x(·), respectively y(·), for point P3, c = 0.2 .
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Figure 12: Graphs of x(·), respectively y(·), for point P3, c = 0.41 .
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Figure 13: Graphs of x(·), respectively y(·), for point P3, c = 0.425 .



STUDY OF THE BEHAVIOUR OF THE PROLIFERATING CELLS IN LEUKEMIA
MODELLED BY A SYSTEM OF DELAY DIFFERENTIAL EQUATIONS 82

Figure 14: Graphs of x(·), respectively y(·), for point P3, c = 0.55.
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may tend to x2 or to the periodic orbit that corresponds to the outer limit
cycle of the reduced to the center manifold problem for y. The initial value of
x is irrelevant in deciding what behaviour x has. Only the initial function for
y matters.

We also provide tables and figures with points of Bautin bifurcation space
for n = 2 and β0 ∈ {0.5, 1, 1.5, 2}, k ∈ {1.1, 1.2, ..., 1.9}. The conclusions
presented for the occurrence or non-occurrence of Bautin bifurcation, refer to
an important zone of the parameters space, that is 1 ≤ n ≤ 12 and β0, k as
above.

The investigation may be extended to other parameters zones by using the
method exposed in [5].

More than that, we also performed numerical integrations that confirm
the qualitative behaviours that we theoretically predicted - Figs. 2-5 and
Figs. 11-14.

Remark. We remark once more that, for all considered problems: stabil-
ity, Hopf bifurcation or Bautin bifurcation, the long time behaviour of x does
not depend on the initial condition for this function (x(0) = x0), but depends
on the initial state of the function y.

This is important for the physician or for the biologist, because it shows
that, in order to make a long time prediction on the development of the illness,
the initial value of y, that is of the function that models the ”resting cells”
should be known and not that of x. As an example, in Figures 11-14, for the
same parameters, depending on the initial condition of y, x(t) tends either
to x2 or to a large stable periodic orbit. The initial value of x(·) may only
influence the length of the time interval in which x(t) approaches its asymptotic
behaviour, determined by y.

In the Appendix we prove some results showing how y determines x.

6 Appendix

We assert and prove some results that are necessary in the study of the
main part of the paper.

In order to present the results in an unified form, we make the following
notations. We denote by (x∗, y∗) one of the two equilibria (x1, y1) or (x2, y2).

Remind that we denoted the terms containing y from eq. (1), by F̃ (y)(t), such
that eq. (1) takes the form

dx

dt
(t) = −γx(t) + F̃ (y)(t).
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If y∗ = y2, we rewrite eq. (1) as

d(x− x2)

dt
= −γ(x−x2)+

β0y(t)

1 + y(t)n
− β0y2

1 + yn2
− k

2

(
β0y(t− r)

1 + y(t− r)n
− β0y2

1 + yn2

)
.

We set u = x− x2, and the equation becomes

du

dt
(t) = −γu(t) + F̃ (y)(t)− F̃ (y2).

We denote

H(y)(t) :=

{
F̃ (y)(t), if y∗ = y1,

F̃ (y)(t)− F̃ (y2), if y∗ = y2,

and we see that in both situations above our equation has the form

du

dt
(t) = −γu(t) +H(y)(t), (7)

where H(y)(t)→ 0 when t→∞, since y∗ is an equilibrium of eq. (2).

Proposition A.1. If y(t) → y∗ when t → ∞, then x(t) → x∗ when
t→∞.

Proof. We prove that u(t) → 0 when t → ∞. The solution, denoted
u(·, u0), of the above equation with the initial condition u(0) = u0, is

u(t, u0) = u0e
−γt + e−γt

∫ t

0

eγsH(y)(s)ds. (8)

Let ε > 0. Since H(y)(t)→ 0 there is a T > 0 such that for t > T, we have
|H(y)(t)| < εγ

3 . Then we write, for t ≥ T,

|u(t, u0)| ≤ |u0e−γt|+|e−γt
∫ T

0

eγsH(y)(s)ds|+|e−γt
∫ t

T

eγsH(y)(s)ds| ≤ (9)

≤ |u0|e−γt + e−γt
∫ T

0

eγs|H(y)(s)|ds+ e−γt
∫ t

T

eγs
εγ

3
ds =

= |u0|e−γt + e−γt
∫ T

0

eγs|H(y)(s)|ds+
εγ

3

1

γ

(
1− eγ(T−t)

)
.

We chose a T ′ > T such that |u0|e−γT
′
< ε

3 and e−γT
′ ∫ T

0
eγs|H(y)(s)|ds < ε

3 .
Then, for any t ≥ T ′, we have

|u(t, u0)| < ε,
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and the conclusion follows. 2

Proposition A.2. If y(·) is periodic, there is a initial value x̃0 of eq. (1)
such that the corresponding solution x(·, x̃0) is periodic and it is asymptotically
stable.

Proof. If y(·) is periodic, then the function H(·) of eq. (7) is periodic.
Then, a classical result ([2], pg. 214) shows that there is an ũ0 such that the
corresponding solution u(·, ũ0) of eq. (7) is periodic.

We show that it is asymptotically stable. Let us consider another initial
condition u0. The corresponding solution of (7) is

u(t, u0) = e−γtu0 +

∫ t

0

eγ(s−t)H(y)(s)ds =

= e−γtũ0 +

∫ t

0

eγ(s−t)H(y)(s)ds+ e−γt(u0 − ũ0) =

= u(t, ũ0) + e−γt(u0 − ũ0),

since the sum of the first two terms is the solution of (7) corresponding to ũ0.
It is clear that

lim
t→∞

|u(t, u0)− u(t, ũ0)| = 0,

that implies the asymptotic stability of the periodic solution.
The conclusions upon u transfer to x, q.e.d. 2

Proposition A.3. If y(·) tends to a periodic function when t→∞, then
x(t, y0) tends to a periodic orbit when t→∞.

Proof. Let p : [0,∞) 7→ R be a periodic function such that

lim
t→∞

|y(t)− p(t)| = 0.

With the notation of the preceding Proposition, we see that H(p)(·) is
periodic. We set o(t) = H(y)(t)−H(p)(t).

It is not difficult to show that lim
t→∞

o(t) = 0.

Now we write eq. (7) as

u̇(t) = −γu(t) +H(p)(t) + o(t)

that has solution

u(t, u0) = e−γtu0 +

∫ t

0

eγ(s−t)H(p)(s)ds+

∫ t

0

eγ(s−t)o(s)ds.
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As we pointed out in the proof of Proposition 2.2, in [2] it is shown that
there is an initial value ũ0 such that the function

e−γtũ0 +

∫ t

0

eγ(s−t)H(p)(s)ds

is periodic. On the other hand, by a reasoning similar to that applied to the

last term of (9), we prove that lim
t→∞

∫ t

0

eγ(s−t)o(s)ds = 0.

It follows that for the initial condition ũ0, the solution u(·, ũ0) tends to a
periodic function. Now, for u0 6= ũ0, we have

u(t) = e−γtu0 +

∫ t

0

eγ(s−t)H(p)(s)ds+

∫ t

0

eγ(s−t)o(s)ds =

= e−γtũ0 +

∫ t

0

eγ(s−t)H(p)(s)ds+ e−γt(u0 − ũ0) +

∫ t

0

eγ(s−t)o(s)ds.

Since the last two terms tend to zero when t→∞, it again follows that u(·, u0)
tends to a periodic function. Hence x(·, x0) has the same property.2
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