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Frames of subspaces in Hilbert spaces with
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Abstract

In this paper we start considering a sesquilinear form 〈W ·, ·〉 defined
over a Hilbert space (H, 〈·, ·〉) where W is bounded (W ∗ = W ∈ B(H))
and ker W = {0}. We study the dynamic of frame of subspaces over
the completion of (H, 〈W ·, ·〉) which is denoted by HW and is called
Hilbert space with W -metric or simply W -space. The sense of dynamics
studied here refers to the behavior of frame of subspaces comparing
HW with H as well H with HW . Furthermore, we show that for any
Hilbert space with W -metric HW , being 0 an element of the spectrum
of W (0 ∈ σ(W )), has a decomposition HW =

⊕
n∈N∪{∞} H

W
ψn , where

HWψn ' L2(σ(W ), x dµn(x)) for all n ∈ N ∪ {∞}, L2 denotes a Hilbert
space square integrable and µ a Lebesgue measure. Finally, the case
when W is unbounded also considered.

Introduction

The theory of frames in Hilbert spaces provides a flexible alternative due to
allows to avoid linear independence and ortogonality bettween its elements.
This theory was introduced by Duffin and Schaeffer in 1952, see [14], leading to
new developments and applications in functional analysis and related areas,
see for example [8, 9, 10, 11, 13, 15, 16, 17]. Moreover, in the papers of
Cazzasa, Kutniok and Găvruţa have been studied the frame of subspaces or

Key Words: frame of subspaces; Dual frame, Fusion frames; frames in Krein spaces;
Krein spaces; frames in W -spaces.

2010 Mathematics Subject Classification: Primary 42C15, 46C20, 47B50, 47B15.
Received: January, 2014.
Revised: March, 2014.
Accepted: March, 2014.

5



FRAMES OF SUBSPACES IN HILBERT SPACES WITH W -METRICS 6

Dual frames, see [9, 17], while Hilbert spaces with W -metric were studied by
Azizov and Iokhvidov, see [5]. Recently in [15, 16], works involving second
and third author, have been proven that the properties 0 ∈ ρ(W ) (i.e., 0 is in
the resolvent of W ), 0 ∈ σ(W ) (i.e., 0 is in the spectrum of W ) have influence
over the behavior of the frames of subspaces.

Inspired by the theory of C∗-algebra, where the theorem of spectral repre-
sentation (see [20]) is proved for Hilbert spaces, in this paper we define frame
of subspaces on Hilbert spaces with W -metric, analyzing the influence of the
properties of W , concerning to its spectrum and its resolvent, over such frame
of subspaces. Furthermore, as aim of this paper, we rewrite this important
theorem in the sense of frame of subspaces as well in the context of Hilbert
spaces with a W -metric.

The starting point of this paper is the theoretical background related to
Krein spaces and Hilbert spaces with W -metric. Afterwards, we present our
approach to the study of frame of subspaces. In particular, we introduce
the concepts of frame of subspaces in Hilbert spaces and frame of subspaces
in Krein spaces. The last one coming from the definition of frame in Krein
spaces given in [15], being some results derived from such definition. Next,
is considered thereof way the frames of subspaces in Hilbert spaces with W -
metrics when the Gram operator W is bounded, although 0 ∈ σ(W ) as well
for 0 /∈ σ(W ). Later, are analyzed the frames of subspaces over regular and
singular Krein space (respectively). The main result of this paper is such as
follows: any singular Krein space has a decomposition in direct sum of singular
Krein subspaces HWψn , which are isomorphic to L2(σ(W ), x dµn(x)) for every
n ∈ N ∪ {∞}. Finally we study the behavior of the frame of subspaces when
the Gram operator is unbounded. The interested reader on these subjects
can found some open questions and remarks as well complementary references
ending the paper.

1 Preliminaries

Definition 1.1 (Krein Spaces). Let < and [·, ·] : < × < −→ C be a C-vector
space and a sesquilinear form respectively. The vector space (<, [·, ·]) is a
Krein space whether < = <+ ⊕ <− and (<+, [·, ·]), (<−, −[·, ·]) are Hilbert
spaces, being <+ and <− orthogonals with respect to [·, ·].

We define the following scalar product over <:

(x1, x2) = [x+1 , x
+
2 ]− [x−1 , x

−
2 ], x±i ∈ <

±, xi = x+i + x−i .

We can see that (<, (·, ·)) is a Hilbert space, the so-called Hilbert space asso-
ciated to <. Henceforth, the orthogonal projections over <+ and <− will be
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denoted by P+ and P− respectively. Likewise, the linear bounded operator
J = P+ − P−, the so-called Fundamental Symmetry, satisfies the property:
[x, y] = (Jx, y), ∀x, y ∈ <. We can see that this property can be written as

[x, y]J = [Jx, y] = (x, y), ‖x‖J :=
√

[x, x]J ∀x, y ∈ <. (1.1)

Definition 1.2. Let (<, [·, ·]) be a Krein space and consider x, y ∈ <. We say
that x is orthogonal to y, denoted by x ⊥ y, whether [x, y]J = 0. Similarly, we
say that x is J-orthogonal to y, denoted by x[⊥]y, whether [x, y] = 0.

Definition 1.3. Consider a Krein space < and a closed subspace V of <. The
subspace

V [⊥] = {x ∈ < : [x, y] = 0, for all y ∈ V } (1.2)

is the so-called J-orthogonal complement of V with respect [·, ·] (or simply
J-orthogonal complement of V ).

Definition 1.4. A closed subspace V of < satisfying V ∩ V [⊥] = {0} and
V + V [⊥] = <, being V [⊥] as in (1.2), is called closed subspace projectively
complete.

Remark 1.5. From now on, any closed subspace V considered in this paper
will be projectively complete. We denote by PV and QV the orthogonal and

J-orthogonal projections on V respectively. i.e., P ∗JV = PV = P 2
V and Q

[∗]
V =

QV = Q2
V . On the other hand, in [6] was proven that if V is a closed subspace,

then their J-orthogonal complement V [⊥] and orthogonal complement V ⊥ are
closed subspaces. Therefore, such subspaces are linked by the formulas

V [⊥] = JV ⊥, V ⊥ = JV [⊥], (JV )[⊥] = JV [⊥]. (1.3)

By (1.3) we note that JV is projectively complete if and only if V is projectively
complete. Moreover, condition V ∩ V [⊥] = {0} set that for any k ∈ <, k has
an unique J-orthogonal projection over V , see [6] for complete statements and
proofs.

Remark 1.6. Let (<, [·, ·]) and V be a Krein space and a projectively complete

closed subspace of < respectively. In consequence, V = V =
(
V [⊥])[⊥] which

implies that (V, [·, ·]) is a Krein space. Hence V = V +u V −, where V + ⊂ <+,
and V − ⊂ <− and we conclude that JV ⊂ V .

Definition 1.7 ([6]). Let < and {ei}i∈I ⊂ < be a Krein space and a system
of vectors respectively, where I is an arbitrary set of indices. If [ei, ej ] = ±δi,j
for all i, j ∈ I, where δi,j is the Kronecker’s delta, then such system of vectors
is named J-orthonormalized system.
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Example 1.8. Assume that E+ = {e+i }i∈I and E− = {e−k }k∈K are J-
orthonormalized system of <+ and <− respectively. The system of vectors
E = E+ ∪ E− is a J-orthonormalized system of <.

Definition 1.9 ([6]). A J-orthonormalized system is called maximal whether
if it is not contained in any wider J-orthonormalized system, and to be J-
complete whether there is no non-zero vector J-orthonormalized to this system.

Definition 1.10 ([6]). Let (<, [·, ·]) be a Krein space. A J-orthonormalized
basis in < is a J-orthonormalized system, J-complete and maximal in <.

Remark 1.11. Since (<, [·, ·]J) is a Hilbert space, we can study linear op-
erators acting on Krein spaces. Some topological concepts such as continuity
and closure over operators and spectral theory, are concerning to the topology
induced by the J-norm given in (1.1). Therefore, some definitions related with
operator theory in Hilbert spaces are satisfied in a more general way. For
example, we can consider the space of all bounded operators on <

B(<) =

{
T : < → < : lineal y ‖T‖ = sup

x∈<\{0}

‖Tx‖J
‖x‖J

<∞

}
.

The adjoint of an operator T in Krein spaces, denoted by T [∗], satisfies
[T (x), y] = [x, T [∗](y)]. However, such T have an adjoint operator in the
Hilbert space (<, [·, ·]J), denoted by T ∗J , where J is the fundamental sym-
metry in <. Furthermore, there is a relation between T ∗J and T [∗], which
is T [∗] = JT ∗JJ . Moreover, let < and <′ be Krein spaces with fundamental
symmetries J< and J<′ respectively, if T ∈ B(<,<′), then T [∗]< = J<T

∗J<J<′ .

The following definition is in agreement with the previous remark.

Definition 1.12. An operator T ∈ B(<) is called self-adjoint whether T =
T [∗] and is called Jself-adjoint whether T = T ∗J . Moreover, a linear operator
T is called positive whether [Tk, k] ≥ 0 for all k ∈ <. An operator T is called
uniformly positive whether there exists α > 0 such that [Tk, k] ≥ α‖k‖J for
all k ∈ <.

The next result will be used along this paper and its proof is similar to the
case of Hilbert spaces, see [17].

Proposition 1.13. Let < and <̃ be Krein spaces with fundamentals
symmetries J, J̃ respectively. Consider V ⊂ < a closed subspace with J-
orthogonal projection QV : < → V , and orthogonal projection PV : < → V .

Let U : (<, [·, ·]J)→
(
<̃, [·, ·]J̃

)
and T : < → <̃ be unitary operators. Then

UPV U
−1 = PUV , TQV T

−1 = QTV , (1.4)
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where PUV : <̃ → UV is the orthogonal projection on UV , and QTV : <̃ → TV
is the J-orthogonal projection on TV . In particular, if < = <̃ and J = J̃ , then

PJV = JPV J = P
[∗]
V , QJV = JQV J = Q∗JV . (1.5)

Proposition 1.14. Let V be a closed subspace of <. The following statements
hold.

i). If PV is an orthogonal projection on V , then QV = PJV PV is a J-
orthogonal projection on V .

ii). If QV is an J-orthogonal projection on V , then PV = QJVQV is an
orthogonal projection on V .

Proof. We prove only item i) due to the proof of item ii) can be done in an
analogous way. Let PV be an orthogonal projection on V , consider QV =

PJV PV which is defined by (1.3). Now, by (1.5) we have that Q
[∗]
V = QV and

for instance [QV x, y] = [PJV PV x, y] = [PV x, PV y] = [x, y], for all x, y ∈ V .
Thus, QV x = x, ∀x ∈ V . On the other hand, since JV ⊂ V , we get Q2

V =
PJV PV PJV PV = P 2

JV PV = PJV PV = QV .

1.1 Hilbert spaces with W -metrics

Definition 1.15 (W -metrics).
Let H be a Hilbert space with scalar product 〈·, ·〉, and induced norm ‖ · ‖ =√
〈·, ·〉. Consider the operator W = W ∗ ∈ B(H) with kerW = {0}. The

sesquilinear form
[·, ·] = 〈W (·), ·〉 (1.6)

defined on H is so called W -metric, or, W−inner product, this operator (W )
is called the Gram operator.

Proposition 1.16. A Hilbert space with a W -metric can be densely embedded
in a Krein space HW with fundamental symmetry J .

Proof. See [5].

Remark 1.17 (Consequences given by the Gram operator). Let W be the
Gram operator over H.

i). If 0 ∈ ρ(W ), then

‖W−1‖−1‖x‖2 ≤ ‖x‖2J ≤ ‖W‖ ‖x‖2, ∀x ∈ H. (1.7)

Therefore

HW = (H, [·, ·]J)
‖·‖J

= (H, [·, ·]J) . (1.8)
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ii). If 0 ∈ σ(W ), then

‖x‖J ≤
√
‖W‖ ‖x‖, ∀x ∈ H. (1.9)

Hence
HW := H

‖·‖J
. (1.10)

Definition 1.18. Let (H, 〈·, ·〉) be a Hilbert space. The Krein space HW is
called regular whether the Gram operator W is such that 0 ∈ ρ(W ). Otherwise
is called singular.

More details of the regular and singular Krein spaces can be found in [5].

Remark 1.19. Consider the polar decomposition of W given by the formula

W = J |W |, (1.11)

where the linear operator J : (ker |W |)⊥ = Rang |W | = H → Rang W = H
is a partial isometry. However, ker J = {0}, this imply that J is a unitary
operator.

Proposition 1.20. The operators |W |, W commute with J , where J is such
that (1.11) is true. Also J = J∗.

Proof. By the properties of the spectral measure we have W |W | = |W |W .
Hence, (J |W | − |W |J) |W | = 0. i.e J |W | = |W |J. On the other hand, note
that J |W | = W = W ∗ = |W |J∗. Therefore |W | (J − J∗) = 0. i.e., J = J∗ =
J−1, because ker |W | = {0}. Since J |W | = |W |J , we have JW = J (J |W |) =
J (|W |J) = J |W |J = WJ .

Definition 1.21. The space HW is a Krein space with the J-norm generated
by the inner product

[x, y]J = [Jx, y] = 〈WJx, y〉 = 〈|W |x, y〉 ∀x, y ∈ H, (1.12)

where J is the symmetry of Hilbert space H such that W = J |W |.

2 Main results

In this section we present an approach to study the frames of subspaces in the
context of Krein and Hilbert spaces.
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2.1 Frame of subspaces on Hilbert spaces

Next, we consider the frames of subspaces in Hilbert spaces. See details in [9].
From now on we consider I like a set of indices, and define

`∞+ (I) = {(xi)i∈I ∈ `∞(I) : xi ∈ R+, ∀i ∈ I} . (2.1)

Definition 2.1 (Frame of subspaces). Let H be a Hilbert space with norm ‖·‖.
A family {Vi}i∈I of closed subspaces of H is called a frame of subspaces of the
Hilbert space H with respect (xi)i∈I ∈ `∞+ (I) (denoted by {xi, Vi}i∈I) whether
there are constants A,B > 0 such that

A‖y‖2 ≤
∑
i∈I

x2i ‖PViy‖
2 ≤ B‖y‖2, ∀ y ∈ H, (2.2)

being PVi : H → Vi orthogonal projections. The numbers A and B are called
frame bounds.

2.2 Frame of subspaces on Krein spaces

Now, we consider the frame of subspaces in Krein spaces. This work is based
in the properties given in the case Hilbert spaces, which can be found in [9]
and see also [15].

Definition 2.2. Let < be a Krein space with fundamental symmetry J . Con-
sider a family of closed subspaces {Vi}i∈I of < with QVi : < → Vi their respec-
tive J-orthogonal projections. Fix (xi)i∈I ∈ `∞+ (I), we say that {xi, Vi}i∈I is
a frame of subspaces of the Krein space whether there are constants A,B > 0
such that

A‖k‖2J ≤
∑
i∈I

x2i ‖QVik‖
2
J ≤ B‖k‖

2
J , ∀ k ∈ <. (2.3)

Remark 2.3. According to the previous definition and in the same way as the
case of Hilbert spaces, the constants A and B are called frame bounds. When-
ever A = B, the family {xi, Vi}i∈ I is called a B-tight frame of subspaces. In
particular, if A = B = 1, then the family {xi, Vi}i∈ I is called Parseval frame
of subspaces. The family {xi, Vi}i∈ I is called orthonormal basis of subspaces
when

< =
⊕
i∈ I

Vi. (2.4)

Moreover, a frame of subspaces {xi, Vi}i∈ I is called x-uniform, whenever x :=
xi = xj for all i, j ∈ I. In the case that we only have the upper bound, the
family {xi, Vi}i∈ I is called Bessel sequence of subspaces with Bessel bound B.
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Theorem 2.4 (Equivalence of the frames of subspaces). Let < be a Krein space
with fundamental symmetry J . Consider a family of closed subspaces {Vi}i∈I
of < with QVi : < → Vi and PVi : < → Vi their J-orthogonal and orthogonal
projections respectively. Fixed (xi)i∈I ∈ `∞+ (I), the following statements are
equivalent:

i). {xi, Vi}i∈I is a frame of subspaces of < with frame bounds A,B;

ii). {xi, JVi}i∈I is a frame of subspaces of < with frame bounds A,B;

iii). {xi, Vi}i∈I is a frame of subspaces of (<, [·, ·]J) with frame bounds A,B;

iv). {xi, JVi}i∈I is a frame of subspaces of (<, [·, ·]J) with frame bounds A,B.

Proof. The equivalence of i and ii follows from

‖QJVik‖
2
J = ‖JQJVik‖

2
J = ‖QViJk‖

2
J .

The same argument is applied to {xi, JVi}i∈I , together with the proposition
1.13, to prove the equivalence of iii and iv, i.e.,

‖PJVik‖
2
J = ‖JPJVik‖

2
J = ‖PViJk‖

2
J .

The equivalence i and iv is proved with the proposition 1.14 as follows: Given
PJVi and PVi orthogonal projections on JVi and Vi respectively, we define
QVi = PJViPVi , which is a J-orthogonal projection on Vi. Thus, since JVi ⊂ Vi
we get

‖QVik‖2J = ‖JPViJPVik‖2J = ‖PViPJViJk‖2J = ‖PJViJk‖2J .

Proposition 2.5. Fix {xi}i∈I ∈ `∞+ (I). Consider a partition {Ji}i∈I of I
such that I =

⊔
i∈I Ji and {ki,j}j∈Ji is a sequence of frame for the Krein

space < with frame bounds Ai, Bi > 0. Define Vi = spanj∈Ji{ki,j} for all i ∈ I
and choose an J-orthonormal basis {ei,j}j∈Ji for each subspace Vi. Suppose
that 0 < A = infi∈I Ai ≤ B = supi∈I Bi, then the following statements are
equivalent.

i). {xiki,j}i∈I,j∈Ji is a frame for the Krein space <.

ii). {xiei,j}i∈I,j∈Ji is a frame for the Krein space <.

iii). {xi, Vi}i∈I is a frame of subspaces for the Krein space <.



FRAMES OF SUBSPACES IN HILBERT SPACES WITH W -METRICS 13

Proof. Since {ki,j}j∈Ji is a sequence of frame for the Krein space < with frame
bounds Ai, Bi > 0, then in [15] shown that is equivalent to say that {ki,j}j∈Ji
is a sequence of frame for the Hilbert space (<, ‖ · ‖J) with same frame bounds.
Thus, by the theorem 2.4 the proof is analogous as in the case of Hilbert space,
see [9].

Proposition 2.6. Let < and <̃ be Krein spaces with fundamental symmetries

J and J̃ respectively. Consider U : (<, [·, ·]J) →
(
<̃, [·, ·]J̃

)
an invertible

operator. The family {xi, Vi}i∈I is a frame of subspaces for the Hilbert space
(<, [·, ·]J) if and only if {xi,UVi}i∈I is a frame of subspaces for the Hilbert

space
(
<̃, [·, ·]J̃

)
.

Proof. By the proposition 1.13 we have that

‖PVik‖2J = ‖U−1PUViUk‖2J = ‖PUViUk‖2J̃ .

2.3 Frame of subspaces in Hilbert spaces with W -metric

In [15] is proved that the behavior of the frames in Hilbert spaces with a W -
metric is depending of the properties 0 ∈ ρ(W ) or 0 ∈ σ(W ). Next, we study
the frames of subspaces in this spaces.

2.3.1 Frame of subspaces in regular Krein spaces

Theorem 2.7. Let HW be a regular Krein space, and {Vi}i∈ I a family of
closed subspaces of H. The family {xi, Vi}i∈I is a frame of subspaces for the
Hilbert space (H, 〈·, ·〉) if and only if {xi, Vi}i∈I is a frame of subspaces for the
regular Krein space HW .

Proof. Setting QVi = PJViPVi , by (1.7)

‖W−1‖−1
∑
i∈I

x2i ‖PJViJk‖
2 ≤

∑
i∈I

x2i ‖PViPJViJk‖
2
J =

∑
i∈I

x2i ‖QVik‖
2
J

≤ ‖W‖
∑
i∈I

x2i ‖PJViJk‖
2
. (2.5)

⇒] Suppose that {xi, Vi}i∈I is a frame of subspaces for the Hilbert space
(H, 〈·, ·〉) with frame bounds A,B, then, by inequality (2.5) obtain {xi, JVi}i∈I
is a frame of subspaces for the Krein space HW with frame bounds A′ =
‖W−1‖−1A and B′ = ‖W‖B. By the theorem 2.4 we say that {xi, Vi}i∈I is
a frame of subspaces for the regular Krein space HW .
[⇐ The proof is analogous as in the previous case.
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2.3.2 Frame of subspaces in singular Krein spaces

Theorem 2.8. Let HW be a singular Krein space, and {Vi}i∈ I a family of
closed subspaces of H. If {xi, Vi}i∈I is a frame of subspaces for the Hilbert space
(H, 〈·, ·〉), then {xi, Vi}i∈I is not frame of subspaces for the singular Krein space
HW .

Proof. Since HW is a singular Krein space, then 0 ∈ σc(W ). Thus, given ε > 0,
the spectral measure Eλ, where W =

∫
σ(W )

λ dEλ, satisfies Eλ ((0, ε]) 6= 0.

But (0, ε] =
⋃
n∈N

[
ε
n , ε
]
, hence, there is n0 ∈ N such that Eλ

([
ε
n0
, ε
])
6= 0.

Now, we assume f ∈ Eλ

([
ε
n0
, ε
])

H ∩ Vj for some j ∈ I such that ‖f‖ = 1

and ‖f‖J ≤ 1 (since ‖f‖J ≤ ‖
√
|W | ‖ ‖f‖). In this way, if M = supj∈I xj ,

then∑
i∈I

x2i ‖QVif‖
2
J = x2j

∥∥∥√|W |f∥∥∥2 ≤ A−1x2j∑
i∈I

x2i

∥∥∥PVi√|W |f∥∥∥2
≤ A−1BM2

〈(∫
σ(W )

|λ| dEλ

)
Eλ

([
ε

n0
, ε

])
f, f

〉

= A−1BM2

∫
σ(W )

|λ|χ[
ε
n0
,ε
](λ)d (Eλ)f,f

≤ εBA−1M2〈Eλ (σ(W )) f, f〉
= A−1BM2ε‖f‖2 = A−1BM2ε.

Hence, for ε→ 0,

inf
‖f‖J≤1

(∑
i∈I

x2i ‖QVif‖
2
J

)
= 0. (2.6)

Now, if {xi, Vi}i∈I is a frame of subspaces for the singular Krein space HW
with frame bounds C,D > 0, then for f given above, by the theorem 2.4 and
by (2.6) we arrive to C = 0, which contradicts that {xi, Vi}i∈I is a frame of
subspaces for the singular Krein space HW .

Remark 2.9. A Hilbert space H with a W -metric arbitrary can be embedded
densely in a Krein space HW . For instance, we note that if HW is a regu-
lar Krein space, then the frames of subspaces are transferable from H to HW .
This happens because (HW , [·, ·]J) = (H, [·, ·]J) and the norms ‖ · ‖, ‖ · ‖J are
equivalent in H. But, when the Krein space HW is singular, the frames of
subspaces are not transferable, because the property 0 ∈ σ(W ) has strong in-
fluence. Hence, we must find a way to extend the frames of subspaces from
the Hilbert space H to the singular Krein space HW .
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A way to extend the frames of subspaces from a Hilbert space H to a
singular Krein space HW is made as follows.

Theorem 2.10. Let HW be a singular Krein space. There is an invertible
operator U : H→ HW such that:

i). If {xi, Vi}i∈I is frame of subspaces for the Hilbert space (H, 〈·, ·〉), then
{xi,UVi}i∈I is a frame of subspaces for the singular Krein space HW .

ii). If {xi, Vi}i∈I is a frame of subspaces for the singular Krein space HW ,
then {xi,U−1Vi}i∈I is a frame of subspaces for the Hilbert space (H, 〈·, ·〉).

Proof. In [15] was proved that the operator
√
|W | : H ⊂ HW → H, satisfies∥∥∥√|W |k∥∥∥2 = 〈

√
|W |k,

√
|W |k〉 = 〈|W |k, k〉 = ‖k‖2J . i.e.,

√
|W | ∈ B(H,HW )

is an isometry. Therefore, this isometry has an unitary extension on HW ,

denoted
√̂
|W |. Hence, considering U =

√̂
|W |, the implications i) and ii) are

satisfied immediately with help of the theorems 2.4 and 2.6.

The following well known result, see for example [20], is useful for our main
purpose.

Proposition 2.11. (Spectral theorem-multiplication operator form) Let A be
a bounded self-adjoint operator on a separable Hilbert space H. Then,

H =
⊕

n∈N∪{∞}

Hψn , (2.7)

and there are measures {µn}Nn=1(N = 1, 2, ...or ∞) on σ(A) and an unitary
operator

T : Hψn → L2(σ(A), dµn) (2.8)

such that
(
TAT−1ψ

)
n

(λ) = λψn, n ∈ N ∪ {∞} where we write an element

ψ ∈
⊕N

n=1 L2(σ(A), dµn) as an N -tuple (ψ1(λ), ψ2(λ), . . . , ψN (λ)).

In the previous proposition the realization of A is called a spectral repre-
sentation, which lead us to the following result.

Theorem 2.12. Let H be a separable Hilbert space, let W be the Gram op-
erator defined on H such that 0 ∈ σ(W ). Then the Krein space HW has an
orthonormal basis of subspaces.

Proof. Note that the Gram operator W is self-adjoint, then by the proposition
2.11 we have (2.7) and there are measures {µn}Nn=1(N = 1, 2, ...or∞) on σ(A)
such that Hψn ' L2(σ(W ), dµn). Hence {{1},Hψn}n∈N∪{∞} is a Parseval
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frame of subspaces for the Hilbert space H with frame bounds 1. By the
theorem 2.10 {{1},UHn}n∈N∪{∞} is a Parseval frame of subspaces for the

singular Krein space HW . In fact, {{1},UHn}n∈N∪{∞} is an orthonormal basis
of subspaces of HW . Thus, we conclude that

HW =
⊕

n∈N∪{∞}

UHψn . (2.9)

Remark 2.13. Owing to 0 /∈ σ(W ) and by (1.8) we see that

HW = (H, [·, ·]J) =
⊕

n∈N∪{∞}

(Hψn , [·, ·]J) . (2.10)

Theorem 2.14. Let HW be a singular Krein space with Gram operator W .
Then HW has a decomposition as follows

HW =
⊕

n∈N∪{∞}

HWψn . (2.11)

Furthermore, there are measures {µn}Nn=1(N = 1, 2, ...or ∞) on σ(W ) such
that HWψn ' L2(σ(W ), xdµn(x)) are Krein spaces for every n ∈ N ∪ {∞}.

Proof. (This proof is adapted from [15] ) Since the separable Krein space HW
is singular, the Gram operator W is such that 0 ∈ σ(W ). Hence, by the
theorem 2.12 the family {{1},UHψn}n is an orthonormal basis of subspaces of
HW . Define

HWψn := UHψn , ∀n ∈ N ∪ {∞}. (2.12)

We want to show that HWψn ' L2(σ(W ), x dµn(x)). Now, fixed n ∈ N ∪ {∞},
L2 (σ(W ), dµn) is a Hilbert space, where µn is a Lebesgue measure. Over
such Hilbert space we define the bounded and self-adjoint operator given by
(Wxf) (x) = xf(x). The linear operator is such that kerWx = {0} due to

µn

(
Id−1σ(W ){0}

)
= 0, where Idσ(W )x = x. Likewise, if (Wxf) (x) = 0, for all

x ∈ σ(W ), then given ε ∈ N, we take the measurable’s sets

Mε = {x ∈ σ(W ) : |f(x)| > ε} ,

and we obtain

0 = ‖Wxf‖2 =

∫
σ(W )\Id−1

σ(W )
({0})

|f(x)|2|x|2dµn,

=

∫
Mε

|f(x)|2|x|2dµn(x) ≥ ε2
∫
Mε\Id−1

σ(W )
({0})

|x|2dµn(x).
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i.e µn (Mε) = 0, ∀ε ∈ N. Consequently, if

M+ = {x ∈ σ(W ) : |f(x)| > 0} =
⋃
m∈N

M 1
m
,

then µn (M+) = 0. Thus, we conclude |f | = 0 almost everywhere in σ(W ).
i.e., f = 0 almost everywhere in σ(W ).

Now, if over the Hilbert space L2(σ(W ), dµn(x)) we take the Gram oper-
ator Wx, then

L2(σ(W ), dµn(x))
‖·‖J ' L2(σ(W ), x dµn(x))

is a singular Krein space, where

L2(σ(W ), xdµn(x)) :=

{
f ∈ L2(σ(W ), dµn) :

∫
σ(W )

|f(x)|2|x| dµn(x) <∞

}

and ‖f‖2J = [f, f ]J = 〈|Wx|f, f〉 =
∫
σ(W )

|f(x)|2 |x| dµn(x).

On the other hand, Let F : L2 (σ(W ), dµn) −→ L2 (σ(W ), x dµn(x)) be a

linear operator given by (Fg)(x) =
g(x)

ψ(x)
, where the function ψ(x) is measur-

able and |ψ(x)|2 = |x| almost everywhere in σ(W ). For n ∈ N ∪ {∞} fixed is
satisfies that µn

(
|ψ|−1 {0}

)
= µn

(
|Idσ(W )|−1 {0}

)
= 0, consequently

‖Ff‖2J =

∫
σ(W )

|f(x)|2|ψ−1(x)|2|x| dµn(x) =

∫
σ(W )

|f(x)|2 dµn(x) = ‖f‖2.

In addition, the linear operator F has inverse which is well defined and is given
by
(
F−1f

)
(x) = ψ(x)f(x).

In conclusion, the theorem is proved from the diagram

Hψn

U

��

G // L2(σ(W ), dµn(x))

F

��
HWψn

// L2 (σ(W ), x dµn(x)) ,

(2.13)

where G is an invertible operator defined in Hψn on L2(σ(W ), dµn(x)).

2.3.3 The case: Gram operator W is unbounded.

Unfortunately, we can not obtain similar results when the Gram operator W
on Hilbert space H is unbounded. Mainly because the tools used are based
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on specific properties given for the C∗-algebra B(H). In the paper [15] was
studied the behavior of the frames in this case. Next, we use such results
to show the behavior of the frames of subspaces in the Hilbert spaces with
W -metric where the Gram operator W is unbounded. For more details see
[15].

The Gram operator W is well defined with dense domain DW ( H. Hence,
the W -metric [·, ·] = 〈W ·, ·〉 only is defined for x, y ∈ DW = DW∗ . The polar
decomposition (W = J |W |) allows us to define

[x, y]J := 〈|W |x, y〉, ∀x, y ∈ DW ,

and by the proposition 1.16 we get

HW := DW
‖·‖J

. (2.14)

Proposition 2.15. Let {xi}i∈I ∈ `∞+ (I). Consider a partition {Ji}i∈I of I
such that I =

⊔
i∈I Ji and {ki,j}j∈Ji a sequence of frame for the Hilbert space

(H.〈·, ·〉) with frame bounds Ai, Bi > 0. We assume Vi = spanj∈Ji{ki,j} and
0 < A = infi∈I Ai ≤ B = supi∈I Bi for all i ∈ I . Hence, if {xi, Vi}i∈I is
a frame of subspaces for the Hilbert space (H.〈·, ·〉), then {xi, Vi}i∈I is not a
frame of subspaces for the Krein space HW .

Proof. We have that {xiki,j}i∈I,j∈Ji is a frame for the Hilbert space H (see
[9]), but in [15] was proved that {xiki,j}j∈Ji is not a frame for the Krein space
HW when the Gram operator W is unbounded. Thus, by the proposition 2.5,
the family {xi, Vi}i∈I is not a frame of subspaces for the Krein space HW .

Theorem 2.16. Let HW be a Krein space where the Gram operator W is
unbounded and 0 /∈ σ(W ). Let G : DG ⊂ HW → H be given by G =

√
|W |,

the following statements hold.

i). If {xi, Vi}i∈I is frame of subspaces for the Hilbert space (H, 〈·, ·〉), then
{xi, G−1Vi}i∈I is a frame of subspaces for the Krein space HW .

ii). If {xi, Vi}i∈I is a frame of subspaces for the Krein space HW , then
{xi, GVi}i∈I is a frame of subspaces for the Hilbert space (H, 〈·, ·〉).

Proof. Since 0 ∈ ρ(W ), the linear operator G is invertible ( see [15]). Thus,
by the proposition 2.6, the proof hold.

When the Gram operator W is unbounded with 0 ∈ σ(W ) we get an
analogous result to Theorem 2.10.

Theorem 2.17. Let HW be a Krein space where the Gram operator W is
unbounded with 0 ∈ σ(W ). There is an invertible operator U : H → HW such
that:
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i). If {xi, Vi}i∈I is a frame of subspaces for the Hilbert space (H, 〈·, ·〉), then
{xi,UVi}i∈I is a frame of subspaces for the Krein space HW .

ii). If {xi, Vi}i∈I is a frame of subspaces for the Krein space HW , then
{xi,U−1Vi}i∈I is a frame of subspaces for the Hilbert space (H, 〈·, ·〉).

Proof. In [15] was proved that for 0 ∈ σ(W ), the linear operator G : DG ⊂
HW → H, which is given by G =

√
|W |, has an unique unitary extension

U := Ĝ : HW → H. Thence by the proposition 2.6 the statement hold.

3 Final remarks

In this paper we study Hilbert spaces with bounded Gram operator. When
the Gram operator W is unbounded, our main result is not satisfied whether
H cannot be decomposed. In such case, we can only state that if H satisfies
(2.7) in some way, then the decomposition (2.11) is obtained to HW .

The following open questions arose during the writing of this paper.

i). Is it possible to solve differential equations with frames on some Hilbert
or Krein spaces?

ii). In [1, 2, 3] were studied relations between differential Galois theory and
the solution of the Schrödinger equation over separable Hilbert space
(L2), is it possible to obtain similar results in the context of the Krein
and Hilbert frames subspaces?.

iii). Is it possible to study partial differential equations with the frames on
some Hilbert or Krein spaces?

iv). How can we write a quantum mechanics formalism in the context on the
frames of subspaces in Hilbert or Krein spaces?

v.) How can we use Banach algebras instead of Hilbert spaces to study the
frames theory?

vi). How can we relate the frame theory with Weyl C∗-algebra?

vii). What happens in the case of tensor product on vector space in the frames
theory?
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