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Some classes of statistical distributions.
Properties and Applications

Irina Băncescu

Abstract

We propose a new method of constructing statistical models which
can be interpreted as the lifetime distributions of series-parallel/parallel-
series systems used in characterizing coherent systems. An open problem
regarding coherent systems is comparing the expected system lifetimes.
Using these models, we discuss and establish conditions for ordering of
expected system lifetimes of complex series-parallel/parallel-series sys-
tems. Also, we consider parameter estimation and the analysis of two
real data sets. We give formulae for the reliability, hazard rate and mean
hazard rate functions.

1 Introduction

Recently, several methods for deriving new parametric families of probability
distributions attracted a special interest, due to their use for the development
of wider statistical applications. Transmutation maps [18] represent techniques
for introducing skewness or kurtosis into a symmetric or other distribution.
They are based on the functional composition of the cumulative distribution
function of one distribution with the inverse cumulative distribution func-
tion of another. This method can be used in Monte Carlo simulations and
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copula applications. Parametric distributions which can be obtained by trans-
mutation include the skew-uniform [15], skew-exponential, skew-normal and
skew-kurtosis-normal [18]. Many statisticians have used transmutation maps,
but especially the quadratic rank transmutation map, applied to generalize
well-known distributions. We can mention here the transmuted exponentiated
exponential distribution introduced in 2013 by Merovci [11], the transmuted
Pareto distribution, proposed in 2014 by Merovci and Puka [12] and many oth-
ers. The rank transmutation map is used as a tool for generating new families
of non-Gaussian distributions, by modulating a given base distribution with
the aim of modifying its moments, in particular skewness and kurtosis.

Coherent systems have been so far characterized using signatures [14]. In
this paper, by using the quadratic rank transmutation map, we construct a new
class of skewed distributions, obtained by multiple application of the transmu-
tation method. These new statistical models represent the lifetime distribu-
tions of complex series-parallel/parallel-series systems. An example of a series-
parallel system is the E-17-AH bridge from Colorado, USA [16, 9]. Multi-girder
bridges are characterized by these types of systems [16, 2, 9]. Other distribu-
tions that represent the lifetime distributions of series-parallel/parallel-series
systems can be found in [13] and [7]. These few statistical models represent
only a particular and small class of series-parallel/parallel-series systems. Us-
ing the method presented in this paper, we can represent a larger class of
these type of systems. We cannot represent all the series-parallel/parallel-
series systems using the method introduced in this paper, only a particular
class of systems. These particular series-parallel/parallel-series systems have
independent and identically distributed components.

Choosing the optimal structure design system can be difficult. One tool
that helps us in this matter is the expected system lifetime, the simpler and
most commonly used metric for system performance [14]. The problem of
comparing system performance using the expected system lifetime is still an
open problem. Boland and Samaniego (2004) [8] discussed this problem pro-
viding conditions for ordering the expected system lifetimes for a particular
group of small systems. ”Eventhough this comparison ignores the variability
in system lifetime it is possible that a system whose expected lifetime exceeds
that of a second system will be less reliable than the second system at the sys-
tems planned mission time” [14]. This paper discusses the stochastic ordering,
namely the likelihood ratio ordering, of some particular series-parallel/parallel-
series systems and provides an example.

The paper is organized as follows. In Section 2, the multiple transmuted
models of order n are introduced. Section 3 is dedicated to characteristics of
these new models. We give formulae for the reliability, hazard rate and mean
residual life functions. We discuss the order statistics and their asymptotic
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behaviour. Stochastic ordering is discussed in Section 4, while in Section 5
we discuss the maximum likelihood estimators of the parameters of the new
classes of statistical models introduced. We perform data analysis using two
real data sets in Section 6.

2 Method of construction

Using the transmutation map developed by Shaw and Buckley (2007) [18],
we define the class of transmutated distributions of order n. The rank trans-
mutation map for a baseline continuous distribution function G is defined as

FT (x) = (1 + λ)G(x)− λG(x)2 (1)

where |λ| ≤ 1 is the transmutation parameter.
The corresponding density function of FT is

fT (x) = g(x)[1 + λ− 2λG(x)] (2)

where g is the density function corresponding to G.
The class of transmutated distributions of order n, denoted by Tn, is

defined as follows. Let F be an arbitrary continuous cumulative distribution
function and

T1 = T1(F, λ0) : F1(x) = (1 + λ0)F (x)− λ0F (x)2

T2 = T2(F, λ0, λ1) : F2(x) = (1 + λ1)F1(x)− λ1F1(x)2

T3 = T3(F, λ0, λ1, λ2) : F3(x) = (1 + λ2)F2(x)− λ2F2(x)2

· · ·
Tn = Tn(F, λ0, λ1, . . . , λn−1) : Fn(x) = (1 + λn−1)Fn−1(x)− λn−1Fn−1(x)2

(3)

where |λi| ≤ 1, ∀i ∈ 0, n− 1 are the transmutation parameters.
We denote by T1(F, λ0) the random variable with F1 as its cumulative

distribution function (cdf) and parameter λ0, by T2(F, λ0, λ1) the random
variable with F2 as its cdf and parameters λ0, λ1, and so on, denoting by
Tn(F, λ0, λ1, . . . , λn−1) the random variable with Fn as its cdf and parameters
λ0, λ1, · · · , λn−1. Fn is obtained by applying the transmutation map (1) to
the previous cdf obtained at step n− 1, Fn−1. Therefore, the construction of
the Tn models is recursive.
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Figure 1: T2(F, 1, 1), T3(F, 1, 1,−1), T4(F, 1, 1,−1,−1) and T4(F,−1, 1, 1,−1)

2.1 Motivation and interpretation

The Tn models can be interpreted as the lifetime distributions of some par-
ticular series-parallel/parallel-series system with independent and identically
distributed components. A parallel system with m components is a system
that fails if all the components fail, while a series system with m components
is a system that fails if one of the components fails.

The cumulative distribution function Fn for λi = −1, ∀ i = 0, n− 1 can
be interpreted as the lifetime distribution function of a series system with 2n

independent identically distributed components which follow a common cdf F .
For λi = 1, ∀ i = 0, n− 1, Fn can be interpreted as the lifetime distribution
function of a parallel system with 2n independent identically distributed com-
ponents which follow a common cdf F . When the transmutation parameters
take different values, either −1 or 1, Fn can be interpreted as a more complex
system.

The series-parallel/parallel-series systems that can be represented by the
Tn class of distributions are quiet complex for large values of n. They build up
starting from either a parallel system with two components (λ0 = 1) or either
a series system with two components (λ0 = −1). At step n, the resulted
system from the step n − 1 is either put into a parallel system with two
components (λn−1 = 1), each component representing the system from the
previous step, or into a series system with also two components (λn−1 = −1),
each component representing the system from the previous step n − 1. At
step n = 1 we can represent two types of systems, the parallel and series
systems with two components, at step n = 2 four series-parallel/parallel-series
systems, while at step n we can represent using the Tn class of distributions,
2n series-parallel/parallel-series systems. As examples, in Figures 1 and 2, we
have displayed some possible types of systems that can be represented by the
transmuted distributions of order n. The empty square represents a system’s
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Figure 2: T5(F, 1, 1,−1,−1, 1) and T5(F, 1,−1, 1,−1, 1)

component that has F as its cumulative distribution function.

2.2 Quantile function

For generating values that follow a transmuted distribution of order n, we use
the quantile function. Because the construction of the Tn models is recursive,
the generating of data algorithm is also recursive, but easy to implementate
in software as R or Matlab. We use this algorithm in section 4 for comparing
expected system lifetimes of two series-parallel/parallel-series systems.

For λi 6= 0, the quantile function of Fn, denoted by QFn
, is defined as

QFn
(u) = QFn−1

(un−1) = QFn−2
(un−2) = · · · = QF (u0), u ∈ (0, 1) (4)

where

un−1 =
1 + λn−1 −

√
(1 + λn−1)2 − 4λn−1u

2λn−1
, (5)

un−2 =
1 + λn−2 −

√
(1 + λn−2)2 − 4λn−2un−1

2λn−2
, (6)
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u0 =
1 + λ0 −

√
(1 + λ0)2 − 4λ0u1

2λ0
(7)

and QF is the quantile function of F .
For generating m values for the Tn class of distributions we have the fol-

lowing simple algorithm.

Generating algorithm
For every j = 1,m we have the following steps

1. Generate u from a Uniform(0,1) distribution

2. Calculate un−1, un−2, ..., u0

3. Set xj = QF (u0).

3 Characteristics of the Tn class of distributions

The aging process of a system is represented by its hazard and mean rezidual
life functions. Using these two notions, we can determine in a unique way
the distribution function of a random variable. In this section, we discuss the
reliability, hazard rate and mean residual life functions of the Tn models. Also,
we discuss the order statistics of the Tn class of distributions, focusing on the
asymptotic behaviour of the extreme order statistics.

3.1 Hazard rate, mean residual life and reliability functions

There are three important functions used in reliability. These are the hazard
rate, denoted by h, mean residual life, denoted by MF , and reliability, denoted
by F , functions. LetX be a random variable having F as its cdf. The functions
h, MF and F corresponding to X are defined as follows

h(x) =
f(x)

1− F (x)
, MF (x) = E(X − x|X ≥ x) =

1

F (x)

∫ ∞
x

F (t)dt and

F (x) = 1− F (x) = P (X < x). (8)

The hazard rate function give us the probability of immediate failure of
X, the mean residual life function, the remaining time of functioning after X
has survived x years, while the reliability function give us the probability of
surviving of X.
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3.1.1 Reliability functions

The reliability functions of the Tn models are

F 1(x) = (1− λ0)F (x) + λ0F (x)2

F 2(x) = (1− λ1)F 1(x) + λ1F 1(x)2

F 3(x) = (1− λ2)F 2(x) + λ2F 2(x)2

· · ·
Fn(x) = (1− λn−1)Fn−1(x) + λn−1Fn−1(x)2 (9)

where F is the corresponding survival function of F .

3.1.2 Hazard rate functions

We denote by h1, h2, ..., hn the corresponding hazard rate functions of the
transmutated distributions of order n, and by h the hazard rate function of
the baseline distribution F . The hazard rate function of the Tn class of dis-
tributions can be represented as

hn(x) = hn−1(x)
1− λn−1 + λn−1Fn−1(x)

1− λn−1 + 2λn−1Fn−1(x)
(10)

For λn−1 = 1 (parallel system), we have that the hazard rate function of
the Tn models is

hn(x) =
1

2
hn−1(x) (11)

while for λn−1 = −1 (series system), we have

hn(x) = hn−1(x)
(

1 +
Fn−1(x)

2Fn−1(x)

)
(12)

3.1.3 Mean residual life function

We denote by MF1
,MF2

, ...,MFn
the corresponding mean residual life func-

tions of F1, F2, ..., Fn. The mean residual life function of Tn class of distribu-
tions is defined as

MFn
(x) =

1

Fn(x)

∫ ∞
x

Fn(t)dt (13)
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Asadi and Bayranmoglu (2006) [5] have discussed the mean residual life
function of a k-out-of-m structure. They gave the formulae for the mean
residual life function of a k-out-of-m system. It is well-known that a parallel
system is a 1-out-of-m system, while a series system is a m-out-of-m system.

Given a k-out-of-m system with m components independent identically
distributed with common cumulative distribution function F , the mean resid-
ual life function, denoted by Mk

m of this system is defined as

Mk
m(t) =

k−1∑
s=0

(
m

s

)∫ ∞
t

(F (x)

F (t)

)m−s(
1− F (x)

F (t)

)s
dx (14)

The mean residual life function of a parallel system with m components is

M1
m(t) =

∫ ∞
t

(F (x)

F (t)

)n
dx (15)

while the mean residual life function of a series system with m components
is

Mm
m (t) =

m−1∑
s=0

(
m

s

)∫ ∞
t

(F (x)

F (t)

)m−s(
1− F (x)

F (t)

)s
dx (16)

The mean residual life functions of the Tn models can be derived using
equations (15) and (16). We give the formulae for the mean residual life
functions of the T1, T2 models and a more generalized formulae for Tn models
when λn−1 is either 1 or −1.

The mean residual life function of Tn models when λn−1 = 1, using (15),
is defined as

MFn(t) =

∫ ∞
t

(Fn−1(x)

Fn−1(t)

)2
dx (17)

The mean residual life function of Tn models when λn−1 = −1. using
(16), is defined as

MFn(t) = 2

∫ ∞
t

Fn−1(x)

Fn−1(t)
dx−

∫ ∞
t

(Fn−1(x)

Fn−1(t)

)2
dx (18)

For the T1 models, we have two systems with two components, namely
the parallel and series systems. Their mean residual life functions are ob-
tained by taking m equals 2 in equations (15) and (16). Using the T2 mod-
els, we can model four series-parallel/parallel-series systems as follows: (S1)
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T2(F,−1,−1); (S2) T2(F, 1, 1); (S3) T2(F, 1,−1) and (S4) T2(F,−1, 1). We de-
note by MS1 , MS2 , MS3 and MS4 , respectively, the mean residual life functions
of systems S1, S2, S3 and S4.

The mean residual life function of system S1 is

MS1
(t) = 2

∫ ∞
t

F (x)[1 + F (x)][1 + F (x)2]

F (t)[1 + F (t)][1 + F (t)2]
dx

−
∫ ∞
t

(F (x)[1 + F (x)][1 + F (x)2]

F (t)[1 + F (t)][1 + F (t)2]

)2
dx (19)

The mean residual life function of system S2 is

MS2
(t) =

∫ ∞
t

(F (x)4

F (t)4

)2
dx (20)

The mean residual life function of system S3 is

MS3
(t) = 2

∫ ∞
t

F (x)2[2− F (x)2]

F (t)2[2− F (t)2]
dx−

∫ ∞
t

(F (x)2[2− F (x)2]

F (t)2[2− F (t)2]

)2
dx (21)

The mean residual life function of system S4 is

MS4
(t) =

∫ ∞
t

(F (x)2[1 + F (x)]2

F (t)2[1 + F (t)]2

)2
dx (22)

3.2 Characteristics of the limiting distributions

In this subsection, we discuss the order statistics of the Tn models and
their asymptotic behaviour. We show that the asymptotic distributions of
the order statistics do not depend on the transmutation parameters. Because
the transmutation parameters give us the structure of the complex series-
parallel/parallel-series systems modeled by the Tn models, the asymptotic dis-
tributions of order statistics of these systems do not depend on the structure
of them.

3.2.1 Order statistics

Let X1:m ≤ X2:m ≤ · · · ≤ Xm:m be the order statistics of X1, X2, · · · , Xm

random variables independent identically distributed with common cdf Fn of
the form (3). The density function fi:m(x) of the ith order statistics, Xi:m, is
given by
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fi:m(x) =
fn(x)

B(i,m− i+ 1)
Fn(x)i−1Fn(x)m−i (23)

where B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt, a > 0, b > 0, is the beta function.

Because the construction of Fn starts with a baseline continuos distribu-
tion function F , the analytical formula in terms of F , of the density function
fi:m is complicated and intractable for further developments. In this section,
we give some general theorems which can be used to obtain the aymptotic dis-
tributions of the extreme order statistics given by X1:m = min(X1, X2, ..., Xm)
and Xm:m = max(X1, X2, ..., Xm).

Let C be the class of continuous cumulative distribution functions. Let

C1 =

{
F ∈ C| lim

t→0

F (tx)

F (t)
<∞,∀x

}
, (24)

C2 =

{
F ∈ C| lim

t→∞

1− F (t+ x)

1− F (t)
<∞,∀x

}
(25)

and

C3 =

{
F ∈ C| lim

x→∞

d

dx

( 1

h(x)

)
= 0

}
(26)

The following three theorems we use to give the asymptotic distributions
of the extreme order statistics.

Theorem 1. If F ∈ C1, then also Fn ∈ C1.

Proof. For n = 1 we have

lim
t→0

F1(tx)

F1(t)
= lim
t→0

F (tx)[1 + λ0 − λ0F (tx)]

F (t)[1 + λ0 − λ0F (tx)]
= l(x) <∞,

where l(x) = lim
t→0

F (tx)

F (t)
.

Now, for (n− 1)→ n, we have

lim
t→0

Fn(tx)

Fn(t)
= lim
t→0

Fn−1(tx)[1 + λn−1 − λn−1Fn−1(tx)]

Fn−1(t)[1 + λn−1 − λn−1Fn−1(t)]
= l(x) <∞.

By mathematical induction, we conclude the proof.

Remark 1. We notice that the limit of Fn from C1 is invariant to the trans-
mutation parameters λi, i = 0, n− 1.
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Theorem 2. If F ∈ C2, then also Fn ∈ C2.

Proof. For proof see Appendix A.

Remark 2. It is very important to remark that the limit lim
t→∞

1− Fn(t+ x)

1− Fn(t)
=

l(x), where l(x) = lim
t→∞

1− F (t+ x)

1− F (t)
, is invariant to the transmutation param-

eters λi.

Theorem 3. If F ∈ C3, then also Fn ∈ C3.

Proof. For proof see Appendix A.

3.2.2 Extreme order statistics

In this section, we give the asymptotic distributions of the order statistics of
the Tn models.

Theorem 4. Let X1:m and Xm:m be the minimum and maximum of a random
sample X1, X2, ..., Xm from Fn defined for x > 0. The following statements
hold

1. If F ∈ C1, QF (0) = 0 and lim
t→0

F (tx)

F (t)
= xθ1 , for each x > 0, θ1 > 0, then

lim
m→∞

P

{
X1:m − am

bm
≤ x

}
= 1− exp(−xθ1), x > 0.

2. If F ∈ C2, xFn
=∞ and lim

t→∞

1− F (t+ x)

1− F (t)
= exp(−θ2x) for each x > 0,

θ2 > 0, then

lim
m→∞

P
{
a∗m(Xm:m − b∗m) ≤ x

}
= exp(− exp(−θ2x)).

3. If F ∈ C3, hF 6= 0, hFn
6= 0 and QF (1) =∞ then

lim
m→∞

P
{Xm:m − cm

dm
≤ x

}
= exp(− exp(−x)), x > 0

where am, bm, a
∗
m, b

∗
m, cm, dm are normalizing constants and

xFn
= sup{x|Fn(x) < 1}[4].
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Proof. For (i), we apply Theorem 1 and Theorem 8.3.3 from [4] and for (ii),
Theorem 2 and Theorem 1.6.2 from [10].

The last part, (iii), follows from Theorem 3 and Theorem 8.3.3 from [4].

The form of the normalizing constants can be determined following the
Corollary 1.6.3 from [10] and the results from [4].

Theorem 5. Let X1:m ≤ X2:m ≤ · · · ≤ Xm:m be the order statistics of
a random sample X1, X2, · · ·Xm from Fn defined for x > 0. The following
statements hold

1. If F ∈ C1, QF (0) = 0 and lim
t→0

F (tx)

F (t)
= xθ1 for each x > 0, θ1 > 0, then

for each i = 1,m

lim
m→∞

P

{
Xi:m − am

bm
≤ x

}
= 1−

i−1∑
k=0

xkθ1

k!
exp{−xθ1}, x > 0

2. If F ∈ C3, hF 6= 0, hFn
6= 0 and QF (1) =∞ then for each i = 1,m

lim
m→∞

P

{
Xm−i+1:m − cm

dm
≤ x

}
=

i−1∑
r=0

exp(−rx)

r!
exp(− exp(−x))

where am, bm, cm and dm are normalizing constants [4].

Proof. The proof follows from Theorem 1, Theorem 3 and Eqs. (8.4.2) and
(8.4.3) of [4].

4 Stochastic ordering

In this section, we discuss stochastic ordering, namely the likelihood ratio
ordering of the transmuted distributions of order n with applications in com-
paring the expected system lifetimes of complex series-parallel/parallel-series
systems.

Definition 1. [17] Let X1 and X2 be two random variables with respective
cumulative distribution functions F1 and F2 and hazard rates h1 and h2, re-
spectively. Also, let f1 and f2 be the probability density functions corresponding
to F1 and F2, respectively.
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1. X1 is said to be smaller than X2 in the likelihood ratio order (denoted
by X1 ≤

LR
X2), if

f2(x)

f1(x)
is non-decreasing over the union of the supports of X1 and X2,

2. X1 is said to be stochastically smaller than X2, denoted by X1 ≤
ST

X2,

if F1(x) ≥ F2(x) for all x.

3. X1 is said to be smaller than X2 in the hazard rate order, denoted by
X1 ≤

HR
X2, if h1(x) ≤ h2(x) for all x.

Remark 3. It is well-known that the likelihood ratio is stronger than the
hazard rate order and the stochastic order, X1 ≤

LR
X2 ⇒ X1 ≤

HR
X2 ⇒

X1 ≤
ST

X2. Also, we have that X1 ≤
ST

X2 implies E(X1) ≤ E(X2) [17].

4.1 Stochastic ordering of the Tn models

Let F and G be two arbitrary continuous cumulative distribution functions
and let

F1(x) = (1 + λ0)F (x)− λ0F (x)2

F2(x) = (1 + λ1)F1(x)− λ1F1(x)2

F3(x) = (1 + λ2)F2(x)− λ2F2(x)2

· · ·
Fn(x) = (1 + λn−1)Fn−1(x)− λn−1Fn−1(x)2

and

G1(x) = (1 + λ′0)G(x)− λ′0G(x)2

G2(x) = (1 + λ′1)G1(x)− λ′1G1(x)2

G3(x) = (1 + λ′2)G2(x)− λ′2G2(x)2

· · ·
Gn(x) = (1 + λ′n−1)Gn−1(x)− λ′n−1Gn−1(x)2.

We denote the corresponding probability density functions by f1, f2 , ..., fn
and g1, g2, ..., gn, respectively.
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Theorem 6. Let X,X1, X2, ..., Xn be random variables with cumulative distri-
bution functions F, F1, F2, ..., Fn, respectively. Let Y, Y1, Y2, ..., Yn be random
variables with cumulative distribution functions G,G1, G2 , ..., Gn, respectively.
If −1 ≤ λi ≤ 0 ≤ λ′i ≤ 1, for all i = 0, n− 1 and Y ≤

LR
X, then Yi ≤

LR
Xi

for all i = 1, n.

Proof. We have

fi(x)

gi(x)
=
fi−1(x)[1 + λi−1 − 2λi−1Fi−1(x)]

gi−1(x)[1 + λ′i−1 − 2λ′i−1Gi−1(x)]

=
fi−2(x)[1 + λi−2 − 2λi−2Fi−2(x)]

gi−2(x)[1 + λ′i−2 − 2λ′i−2Gi−2(x)]

[1 + λi−1 − 2λi−1Fi−1(x)]

[1 + λ′i−1 − 2λ′i−1Gi−1(x)]
= · · · =

=
f(x)

g(x)

[1 + λ0 − 2λ0F (x)][1 + λ1 − 2λ1F1(x)] · · · [1 + λi−1 − 2λi−1Fi−1(x)]

[1 + λ′0 − 2λ′0G(x)][1 + λ′1 − 2λ′1G1(x)] · · · [1 + λ′i−1 − 2λ′i−1Gi−1(x)]

and

log
fi(x)

gi(x)
= log

f(x)

g(x)
+ log[1 + λ0 − 2λ0F (x)]− log[1 + λ′0 − 2λ′0G(x)]

+ log[1 + λ1 − 2λ1F1(x)]− log[1 + λ′1 − 2λ′1G1(x)]

+ · · ·+ log[1 + λi−1 − 2λi−1Fi−1(x)]− log[1 + λ′i−1 − 2λ′i−1Gi−1(x)]

fi(x)

gi(x)
is non-decreasing if and only if

(
log

fi(x)

gi(x)

)′
≥ 0 for all x, where

(
log

fi(x)

gi(x)

)′
=
(

log
f(x)

g(x)

)′
− 2λ0f(x)

1 + λ0 − 2λ0F (x)
+

2λ′0g(x)

1 + λ′0 − 2λ′0G(x)

− 2λ1f1(x)

1 + λ1 − 2λ1F1(x)
+

2λ′1g1(x)

1 + λ′1 − 2λ′1G1(x)

− · · · − 2λi−1fi−1(x)

1 + λi−1 − 2λi−1Fi−1(x)
+

2λ′i−1gi−1(x)

1 + λ′i−1 − 2λ′i−1Gi−1(x)

It is easy to see that −1 ≤ λi ≤ 0 ≤ λ′i ≤ 1 for all i = 0, n− 1 and

Y ≤
LR

X imply
(

log
fi(x)

gi(x)

)′
≥ 0 for all x, and the result holds.

The theorem above generalizes a proven statament that tells us that a
parallel system is always preferable than a series system [14].
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Figure 3: The serie-parallel/parallel-series systems represented by X and Y .

Remark 4. In Theorem 6 if λn−1 ≤ λ′n−1 and Fn−1 = Gn−1, then Yn ≤
LR

Xn.

4.2 Comparing series-parallel/parallel-series systems

Let F (x) = 1 − exp{−(x/ρ)µ}, x > 0 be a Weibull cumulative distribution
function of parameters µ > 0 and ρ > 0. Let X and Y be random variables
having F4 and G4 as their cumulative distribution functions obtained using
the method described in Section 1 as follows: F4 is the cumulative distribution
function of T4(F,−1, 1,−1, 1), while G4 is the cumulative distribution function
of T4(F,−1, 1, 1, 1). In Figure 3, we have displayed the series-parallel/parallel-
series systems that these random variables X and Y represent.

Using Theorem 6 and Remarks 3 and 4, we have Y ≤
LR

X, and therefore,

the expected system lifetime of Y is smaller than the expected system lifetime
of X. Generating values from X and Y using the algorithm presented in
subsection 2.2, we have calculated the expected system lifetime of them. These
values are displayed in Table 1.

(µ, ρ) E(X) E(Y ) (µ, ρ) E(X) E(Y )
(2, 4) 3.701494 2.358217 (0.7, 0.5) 0.4525109 0.1389469

(0.7, 1) 0.9122977 0.2844805 (1, 0.9) 0.8163832 0.3459043
(3, 0.8) 0.7531299 0.5558009 (7, 1) 0.971466 0.8491724
(4, 7) 6.688466 5.285205 (5, 5) 4.812751 3.988665
(3, 2) 1.886318 1.389314 (10, 20) 19.60123 17.82688

Table 1: The expected system lifetimes of X and Y .
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5 Parameter estimation

Let x1, x2, ..., xm be a random sample of size m from Tn(F, λ0, λ1, · · · , λn−1)
of parameters (θ,Λt), where θ = (θ1, θ2, · · · θk) is the vector parameter of
length k of the underlying distribution F and Λt = (λ0, λ1, ..., λt) are the
transmutation parameters, t = 0, n− 1. The method used to estimate the
parameters is the maximum likelihood estimation.

The log-likelihood function is given by

L =

m∑
i=1

{
log[fn−1(xi; θ,Λn−2)] + log[1 + λn−1 − 2λn−1Fn−1(xi; θ,Λn−2)]

}
(27)

In order to maximize the log-likelihood function, we solve the nonlinear
likelihood system obtained by differentiating (27). This can be done using R,
Matlab and Mathcad, among other packages. The elements of the score vector
V (ρt), ρt = (θ,Λt), Λt = (λ0, λ1, ..., λt) and θ = (θ1, θ2, ..., θk) are

Vθs =

m∑
i=1

{
∂
∂θs

fn−1(xi; ρn−2)

fn−1(xi; ρn−2)
−

2λn−1
∂
∂θs

Fn−1(xi; ρn−2)

1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)

}
, s = 1, k

(28)
where

∂

∂θs
fn−1(xi; ρn−2) =

∂

∂θs
fn−2(xi; ρn−3)

[
1 + λn−2 − 2λn−2Fn−2(xi; ρn−3)

− 2λn−2fn−2(xi; ρn−3)
∂

∂θs
Fn−2(xi; ρn−3)

]

∂

∂θs
Fn−2(xi; ρn−3) =

∂

∂θs
Fn−3(xi; ρn−3)

[
1 + λn−3 − 2λn−3Fn−3(xi; ρn−3)

]
and

Vλj
=

m∑
i=1

{
∂
∂λj

fn−1(xi; ρn−2)

fn−1(xi; ρn−2)
−

2λn−1
∂
∂λj

Fn−1(xi; ρn−2)

1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)

}
,

j = 0, n− 2 (29)

and
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Vλn−1
=

m∑
i=1

1− 2Fn−1(xi; ρn−2)

1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)
(30)

where

∂

∂λj
fn(xi; ρn−1) = [1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]

∂

∂λj
fn−1(xi; ρn−2)

− 2λn−1fn−1(xi; ρn−2)
∂

∂λj
Fn−1(xi; ρn−2)

∂

∂λj
Fn(xi; ρn−1) = [1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]

∂

∂λj
Fn−1(xi; ρn−2),

j 6= n− 1

Because we can have a relatively large number of parameters this can cause
problems especially when the sample size is not large. A good set of initial
values is essential. The second partial derivatives of the log-likelihood function
for the construction of the Fisher information matrix are also obtained. These
are presented in the Appendix B.

6 Goodness-of-fit

In this section, using two data sets we compare the fits of the Tn distributions
considering as baseline distribution functions the exponentiated power Lindley
(EPL) [6] and Pareto [12] distributions. In each case the parameters are esti-
mated by maximum likelihood using fitdist() function in R with Nelder-Mead
options used as an iterative process for maximizing the log-likelihood function.
First we give the MLEs of the parameters and the values of the Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) statistics.
The lower the values of these criteria the better the fit. Next we perform
Kolmogorov-Smirnov tests. The Kolmogorov-Smirnov test is performed using
the ks.test() function in R. Finally, we provide the empirical and teoretical
cdf for data set 1 to show a visual comparison of the fitted cdf functions.
Also, we consider the TTT -plot transformation which gives us the shape of
the hazard rate function [1]. If the TTT curve is convex, then the hazard rate
is increasing, if it is concave, then the hazard rate is decreasing, if it is convex
then concave, then it is upside-down shaped, otherwise it is bathtub shaped
[1]. The data sets are as follows.
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Log-lik AIC BIC K-S p-value
T5(PL, λ0) -120.8433 247.6866 254.6788 0.078578 0.7061
T5(EPL, λ0) -120.5105 249.0209 258.3438 0.080024 0.6849
T1(EL, λ0) -121.2876 248.5752 255.5674 0.08935983 0.5485178

PL -122.4001 248.8001 253.4616 0.1123079 0.2721916
EPL -121.8663 249.7326 256.7248 0.09929166 0.4150025

T1(EPL, λ0) -121.2683 250.5366 259.8596 0.09099421 0.5253884
T7(EPL, λ0) -120.3936 248.7873 258.1102 0.07837921 0.7090126

Table 2: The criteria information for data set 1.

Data Set 1

The first data set [3] we consider is the times of fatigue fracture of
Kevlar 373/epoxy that are subject to constant pressure at 90% stress level un-
til all have failed: x1 =(0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763,
0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425,
0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570,
1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083,
1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881,
1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878,
2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846,
3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960). This
data set has an upside-down hazard rate function, see Figures 4 and 5.

Data Set 2

Merovci and Puka (2014) [12] used two data sets for the fitting of the trans-
muted Pareto distribution, X ∼ Pareto(x0, a), a > 0 and x0 the necessarily
positive minimum possible value of X and compared it to Pareto, generalized
Pareto and exponentiated Weibull distributions. They showed that the trans-
muted Pareto distribution is a better fit model in both cases. Using one of the
two data sets from [12], we extend the data analysis study, fitting the trans-
muted Pareto of order 2 (T2(Pareto, λ0, λ1)) and transmuted Pareto of order
3 (T3(Pareto, λ0, λ1, λ2)) distributions to this choosen data set. The data set
corresponds to the Floyd River located in James, Iowa, USA.

For data set 1 we consider the fittings of the transmutated power Lindley of
order 5 distribution (T5(PL, λ0)) with λ0=λ1=λ2=λ3=λ4, transmuted expo-
nentiated power Lindley of order 5 distribution (T5(EPL, λ0)) with λ0=λ1
=λ2=λ3=λ4, transmuted exponentiated Lindley distribution (T1(EP, λ0)),
power Lindley distribution (PL), exponentiated power Lindley distribution
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Figure 4: Hazard rate function for example 1.

β̂ α̂ θ̂ λ̂0
T5(PL, λ0) 1.3342506 - 0.2709258 0.6203250
T5(EPL, λ0) 1.4128086 0.9035090 0.1880978 0.4456854
T1(EL, λ0) - 1.4145876 0.7177399 0.7058371

PL 1.1422729 - 0.7047831 -
EPL 0.9499608 1.5355626 1.0205424 -

T1(EPL, λ0) 1.0493532 1.3046813 0.6640713 0.6889066
T7(EPL, λ0) 1.5596811 0.8153664 0.1200829 0.3746730

Table 3: The MLE’s for data set 1.

(EPL), transmuted exponentiated power Lindley distribution (T1(EPL, λ0))
and transmuted exponentiated power Lindley of order 7 distribution (T7(EPL,
λ0)) with λ0=λ1=λ2=λ3=λ4=λ5=λ6. In Table 2, the values coorresponding
to the information criteria considered, AIC and BIC, along with the p-values
of the Kolmogorov-Smirnov tests are displayed. The values of MLE estimators
are presented in Table 3. As it can be noticed, the T5(PL, λ0) distribution
has the lowest AIC and BIC. In Figure 5, we have plotted the TTT plot
transformation.

For data set 2, the transmuted Pareto of order 3 distribution has the lowest
AIC and BIC. The results are displayed in Table 4. Also, for this data set,
we consider hypothesis tests. We compare the T3(Pareto, λ0, λ1, λ2) model
with T2(Pareto, λ0, λ1) and T1(Pareto, λ0) models. The results are displayed
in Table 5.
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Figure 5: The TTT-transform plot for example 1.

â λ̂0 λ̂1 λ̂2
T3(Pareto, λ0, λ1, λ2) 0.9456290 -0.7394268 -0.7784058 -0.8363968
T2(Pareto, λ0, λ1) 0.7755660 -0.8469511 -0.8843003 -
T1(Pareto, λ0) 0.5857841 -0.9103600 - -

Table 4: The MLE’s for data set 2.

Appendix A

Proof of Theorem 2

Proof. For n = 1, we have

lim
t→∞

F 1(t+ x)

F 1(t)
= lim
t→∞

F (t+ x)[1− λ0 + λ0F (t+ x)]

F (t)[1− λ0 + λ0F (t)]
= l(x) <∞,∀x,

where l(x) = lim
t→∞

F (t+ x)

F (t)
.

AIC BIC K-S p-value
T3(Pareto, λ0, λ1, λ2) 764.6231 771.2773 0.10025 0.7914
T2(Pareto, λ0, λ1) 767.3783 772.369 0.15253 0.2936
T1(Pareto, λ0) 774.6983 778.0254 0.235 0.02232

Table 5: The criteria comparison for data set 2.
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Figure 6: The empirical cdf for example 1.

w p-value
T3(Pareto, λ0, λ1, λ2) vs T2(Pareto, λ0, λ1) 7.658383 0.005650913
T3(Pareto, λ0, λ1, λ2) vs T1(Pareto, λ0) 12.56532 0.001868428

Table 6: Comparison of submodels for data set 2

Now, for (n− 1)→ n, we have

lim
t→∞

Fn(t+ x)

Fn(t)
= lim
t→∞

Fn−1(t+ x)[1− λn−1 + λn−1Fn−1(t+ x)]

Fn−1(t)[1− λn−1 + λn−1Fn−1(t)]
= l(x).

By mathematical induction, we conclude the proof.

Proof of Theorem 3

Proof. Rewriting the corresponding density functions of F1, F2, · · · , Fn in
terms of survival functions, we get

f1(x) = f(x)[1− λ0 + 2λ0F (x)]

f2(x) = f1(x)[1− λ1 + 2λ1F 1(x)]

f3(x) = f2(x)[1− λ2 + 2λ2F 2(x)]

· · ·
fn(x) = fn−1(x)[1− λn−1 + 2λn−1Fn−1(x)]
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For n = 1, we have

d

dx

1

h1(x)
=

d

dx

F 1

f1(x)
=

d

dx

F (x)[1− λ0 + λ0F (x)]

f(x)[1− λ0 + 2λ0F (x)]

= −
( d
dx

F (x)

f(x)

) 1− λ0 + λ0F (x)

1− λ0 + 2λ0F (x)
+

λ0F (x)[λ0 − 1]

[1− λ0 + 2λ0F (x)]2

Because F ∈ C3, we have

lim
x→∞

1− λ0 + λ0F (x)

1− λ0 + 2λ0F (x)
= 1 and lim

x→∞

λ0F (x)[λ0 − 1]

[1− λ0 + 2λ0F (x)]2
= 0

Therefore lim
x→∞

d

dx

1

h1(x)
= 0.

Now, for (n− 1)→ n, we have

d

dx

1

hn(x)
=

d

dx

Fn(x)

fn(x)
=

d

dx

Fn−1(x)[1− λn−1 + λn−1Fn−1(x)]

fn−1(x)[1− λn−1 + 2λn−1Fn−1(x)]

=
( d
dx

Fn−1(x)

fn−1(x)

) 1− λn−1 + λn−1Fn−1(x)

1− λn−1 + 2λn−1Fn−1(x)

+
λn−1Fn−1(x)[λn−1 − 1]

[1− λn−1 + 2λn−1Fn−1(x)]2

Because Fn−1 ∈ C3, we have

lim
x→∞

1− λn−1 + λn−1Fn−1(x)

1− λn−1 + 2λn−1Fn−1(x)
= 1 and

lim
x→∞

λn−1Fn−1(x)[λn−1 − 1]

[1− λn−1 + 2λn−1Fn−1(x)]2
= 0

Therefore, we get that lim
x→∞

d

dx

1

hn(x)
= 0.

By mathematical induction, we conclude the proof.



SOME CLASSES OF DISTRIBUTIONS. PROPERTIES AND APPLICATIONS 65

Appendix B

The second partial derivatives of the log-likelihood function are

∂2L

∂θs∂θj
=

n∑
i=1

1

[fn−1(xi; ρn−2)]2

{
fn−1(xi; ρn−2)

∂2

∂θs∂θj
fn−1(xi; ρn−2)

− [
∂

∂θs
fn−1(xi; ρn−2)][

∂

∂θj
fn−1(xi; ρn−2)]

}
− 1

[1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]2

×
{

2λn−1
∂2

∂θs∂θj
Fn−1(xi; ρn−2)

+ 4λ2n−1[
∂

∂θs
Fn−1(xi; ρn−2)][

∂

∂θj
Fn−1(xi; ρn−2)])

}
, j, s = 1, k

∂2L

∂θs∂λj
=

n∑
i=1

1

[fn−1(xi; ρn−2)]2

{
fn−1(xi; ρn−2)

∂2

∂θs∂λj
fn−1(xi; ρn−2)

− [
∂

∂θs
fn−1(xi; ρn−2)][

∂

∂λj
fn−1(xi; ρn−2)]

}
− 1

[1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]2

{
2λn−1

∂2

∂θs∂λj
Fn−1(xi; ρn−2)

+ 4λ2n−1[
∂

∂θs
Fn−1(xi; ρn−2)][

∂

∂λj
Fn−1(xi; ρn−2)])

}
,

j = 0, n− 2, s = 1, k

where

∂2

∂θs∂λj
fn(xi; ρn−1) = −2λn−1

∂

∂θs
Fn−1(xi; ρn−2)

∂

∂λj
fn−1(xi; ρn−2)

+ [1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]
∂2

∂λj∂θs
fn−1(xi; ρn−2)

− 2λn−1[
∂

∂θs
fn−1(xi; ρn−2)

∂

∂λj
Fn−1(xi; ρn−2)

+ fn−1(xi; ρn−2)
∂2

∂θs∂λj
Fn−1(xi; ρn−2)]
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and

∂2

∂θs∂λj
Fn(xi; ρn−1) = −2λn−1

∂

∂θs
Fn−1(xi; ρn−2)

∂

∂λj
Fn−1(xi; ρn−2)

+ [1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]
∂2

∂θs∂λj
Fn−1(xi; ρn−2), j 6= n− 1

∂2L

∂θs∂λn−1
=

n∑
i=1

∂
∂θs

Fn−1(xi; ρn−2)

[1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]2

×
{

1− λn−1 + 2λn−1Fn−1(xi; ρn−2)
}
, s = 1, k

∂2L

∂λr∂λj
=

n∑
i=1

1

[fn−1(xi; ρn−2)]2

{
fn−1(xi; ρn−2)

∂2

∂λr∂λj
fn−1(xi; ρn−2)

− [
∂

∂λr
fn−1(xi; ρn−2)][

∂

∂λj
fn−1(xi; ρn−2)]

}
− 1

[1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]2

{
2λn−1

∂2

∂λr∂λj
Fn−1(xi; ρn−2)

+ 4λ2n−1[
∂

∂λr
Fn−1(xi; ρn−2)][

∂

∂λj
Fn−1(xi; ρn−2)])

}
, j, r = 0, n− 2

where

∂2

∂λr∂λj
fn(xi; ρn−1) = −2λn−1

∂

∂λr
Fn−1(xi; ρn−2)

∂

∂λj
fn−1(xi; ρn−2)

+ [1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]
∂2

∂λj∂λr
fn−1(xi; ρn−2)

− 2λn−1[
∂

∂λr
fn−1(xi; ρn−2)

∂

∂λj
Fn−1(xi; ρn−2) + fn−1(xi; ρn−2)

× ∂2

∂λr∂λj
Fn−1(xi; ρn−2)], r = 0, n− 2

and
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∂2

∂λr∂λj
Fn(xi; ρn−1) = −2λn−1

∂

∂λr
Fn−1(xi; ρn−2)

∂

∂λj
Fn−1(xi; ρn−2)

+ [1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]
∂2

∂λr∂λj
Fn−1(xi; ρn−2), k 6= n− 1

∂L

∂λj∂λn−1
=

m∑
i=1

−2 ∂
∂λj

Fn−1(xi; ρn−2)

[1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]2

×
{

1 + 2λn−1 − 4λn−1Fn−1(xi; ρn−2)
}
, j 6= n− 1

∂2L

∂2λn−1
=

m∑
i=1

−[1− 2Fn−1(xi; ρn−2)]2

[1 + λn−1 − 2λn−1Fn−1(xi; ρn−2)]2
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