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Weighted differentiation composition operators
from the logarithmic Bloch space to the

weighted-type space

Songxiao Li and Stevo Stević

Abstract

The boundedness of the weighted differentiation composition opera-
tor from the logarithmic Bloch space to the weighted-type space is char-
acterized in terms of the sequence (zn)n∈N0 . An asymptotic estimate of
the essential norm of the operator is also given in terms of the sequence,
which gives a characterization for the compactness of the operator.

1 Introduction

Let X and Y be two Banach spaces. A linear operator T : X → Y is said
to be compact if it takes bounded sets in X to sets in Y which have compact
closure. The essential norm of an operator T : X → Y is its distance to the
space of compact operators, that is,

‖T‖e,X→Y = inf{‖T −K‖X→Y : K :X → Y is compact},

where ‖ · ‖X→Y is the operator norm. It is easy to see that ‖T‖e,X→Y = 0 if
and only if T is compact.

Let H(D) be the class of all holomorphic functions on the unit disk D =
{z : |z| < 1} in the complex plane. Recently, there has been a great interest in
studying product-type operators between spaces of holomorphic functions on
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the unit disk or the open unit ball in the n-dimensional complex vector space
Cn (see, e.g., [6], [8]-[22], [25], [27], [29]-[50], [53], [55]-[57] and the related
references therein).

The differentiation operator D on H(D) is defined by Df = f ′, f ∈ H(D).
For a nonnegative integer n, we define

(D0f)(z) = f(z), (Dnf)(z) = f (n)(z),

where z ∈ D and f ∈ H(D).
Let u ∈ H(D). The multiplication operator on H(D), denoted by Mu, is

defined by
(Muf)(z) = u(z)f(z),

where z ∈ D and f ∈ H(D).
Let ϕ be an analytic self-map of D. The composition operator on H(D),

denoted by Cϕ, is defined by

(Cϕf)(z) = f(ϕ(z)),

where z ∈ D and f ∈ H(D).
These three operators are some of the basic ones and are involved in the

definition of the operator studied in this paper.
Let ϕ be an analytic self-map of D, u ∈ H(D) and let n be a nonnega-

tive integer. The weighted differentiation composition operator or generalized
weighted composition operator, which was probably introduced for the first
time in [55] and is usually denoted by Dn

ϕ,u, is the product-type operator
defined as follows

Dn
ϕ,u(f)(z) = u(z) · (Dnf)(ϕ(z)),

where z ∈ D and f ∈ H(D). Note that the operator can be written in the
following product-type form Dn

ϕ,u = Mu ◦ Cϕ ◦Dn.
When n = 0 and u(z) = 1, Dn

ϕ,u is the composition operator Cϕ. When
n = 0, Dn

ϕ,u is the weighted composition operator uCϕ, which is the following
product of the composition operator and the multiplication operator Mu ◦Cϕ.
Both operators are studied a lot (see, e.g., [4, 5, 6, 23, 24, 51, 52] and the
references therein). For n = 1 and u ≡ 1 or u = ϕ′ are obtained products of
composition and differentiation operators which are studied, for example, in
[13, 14, 17, 18, 25, 33, 35, 38, 43]. Operator Dn

ϕ,u and some of its special cases,
were studied, for example, in [11, 19, 20, 37, 41, 42, 46, 53, 55, 56, 57]. For some
other related product-type operators including, among others, composition
and differentiation operators, see, e.g., [8, 9, 21, 22, 45, 47, 48].

Let us say, that beside this class of product-type operators, the classes
including integral-type operators (see, e.g., [3, 28]) also attracted some atten-
tion (see, e.g., [10, 15, 16, 27, 29, 30, 31, 32, 34, 36, 39, 40, 44, 49, 50] and the
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related references therein). These integral-type operators include indirectly
multiplication and differentiation operators too. For example, the operators
introduced in [15] and [16] acting on the spaces of holomorphic functions on
the unit disc are of this sort. For the case of the open unit ball see the op-
erator in [32] (it includes the radial differentiation operator, which is more
suitable for dealing with holomorphic functions of several variables). Some of
the integral-type operators does not contain the differentiation, but only the
multiplication one (see, e.g., [10, 27, 30, 34, 36, 40]).

A basic problem concerning all these operators on various spaces of holo-
morphic functions is to relate their operator theoretic properties to the func-
tion theoretic properties of the involving symbols. For some applications of
methods of functional analysis on various spaces of functions and related top-
ics, see, e.g., [5, 26].

Now we present the spaces on which will be considered the operator studied
in the paper.

The logarithmic-Bloch space, denoted by LB, is the space consisting of all
f ∈ H(D) such that

‖f‖log = sup
z∈D

(1− |z|)
(

ln
e

1− |z|

)
|f ′(z)| <∞.

LB is a Banach space with the norm ‖f‖LB = |f(0)| + ‖f‖log. From [1] we
see that LB

⋂
H∞ is the space of multipliers of the Bloch space B. Here the

Bloch space is defined as follows

B =
{
f ∈ H(D) : sup

z∈D
(1− |z|2)|f ′(z)| <∞

}
.

As usual, a positive continuous function on D is called weight. Each weight
µ = µ(z) on D defines the weighted-type space, as follows (see, e.g., [2, 6])

H∞µ = H∞µ (D) = {f ∈ H(D) : ‖f‖H∞µ <∞},

where
‖f‖H∞µ = sup

z∈D
µ(z)|f(z)|

is a norm on the space.
Studying the boundedness, compactness and essential norm of the compo-

sition operator on the Bloch space attracted considerable attention in the last
few decades see, e.g., [23, 24, 51, 52]. For example, in [51] it was proved that
the composition operator acting on the Bloch space is compact if and only if

lim
j→∞

‖Cϕ(zj)‖B = 0.
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Motivated by [51], Colonna and Li characterized the boundedness and
compactness of the operator uCϕ : H∞ → LB in [4]. Among other results,
they proved that uCϕ : H∞ → LB is bounded if and only if

sup
j∈N0

‖uCϕ(zj)‖LB <∞.

In [19] the authors of this paper characterized the boundedness and compact-
ness of the operator Dn

ϕ,u from α-Bloch spaces (for the definition of the space
see, e.g., [33, 54]) into weighted-type spaces in a similar way. For some other
results on essential norm of concrete operators, see, e.g., [5, 6, 19, 33, 48, 53].

Here, we investigate the boundendness, compactness and give an estimate
for the essential norm of the operator Dn

ϕ,n : LB → H∞µ in terms of the

sequence (‖Dn
ϕ,u(zj)‖H∞µ )∞j=n. This paper is a continuation of the above men-

tioned line of investigations. We would also like to mention that there has
been some interest in studying logarithimic-type spaces and operators from or
to them (see, e.g., [4, 7, 10, 21, 29, 31, 34, 39, 40, 53]).

Recall that, two real sequences (an)n∈N and (bn)n∈N are asymptotically
equivalent if limn→∞

an
bn

= 1, and we write an ∼ bn. We say that P � Q if
there exists a constant C such that P ≤ CQ. The symbol P ≈ Q means that
P � Q � P .

2 The boundedness of Dn
ϕ,u : LB→ H∞

µ

In this section, we state and prove a boundedness criterion for the operator
Dn
ϕ,u : LB → H∞µ . For this purpose, we first quote some auxiliary results

which will be used in the proofs of the main results in this paper. The following
technical lemma was proved in [53].

Lemma 1. For n, j ∈ N, define the function Gn,j : [0, 1)→ [0,∞) by

Gn,j(x) =
j!

(j − n)!
xj−n(1− x)n ln

e

1− x
.

Then the following statements hold.

(i) For j ≥ n, there is a unique xn,j ∈ [0, 1) such that Gn,j(xn,j) is the
absolute maximum of Gn,j.

(ii) limj→∞ xn,j = 1, limj→∞[j(1− xn,j)] = n and

lim
j→∞

max0<t<1Gn,j(t)

ln(j + 1)
=
(n
e

)n
.
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(iii) For j − n > 0, let rn,j = (j − n)/j. Then Gn,j is increasing on
[rn,j−n, rn,j ] and

min
rn,j−n≤x≤rn,j

Gn,j(x) = Gn,j(rn,j−n) ∼
(n
e

)n
ln(j + 1), as j →∞.

Moreover,

min
rn,j−n≤x≤rn,j

Gn,j(x)

‖zj‖LB

=
Gn,j(rn,j−n)

‖zj‖LB

∼ nn

en−1
, as j →∞.

Remark 1. Note that in the last asymptotic relation was used the fact that

‖zj‖LB ∼
ln(j + 1)

e
,

which follows from Lemma 1 (ii) with n = 1.

The following folklore lemma, can be found, for example, in [7].

Lemma 2. Let m ∈ N. Then f ∈ LB if and only if

sup
z∈D

(1− |z|)m
(

ln
e

1− |z|

)
|f (m)(z)| <∞.

Moreover,

‖f‖LB ≈
m−1∑
j=0

|f (j)(0)|+ sup
z∈D

(1− |z|)m
(

ln
e

1− |z|

)
|f (m)(z)|. (1)

The main result in this section is the following.

Theorem 1. Let n ∈ N, µ be a weight, u ∈ H(D) and ϕ be an analytic
self-map of D. Then Dn

ϕ,u : LB→ H∞µ is bounded if and only if

M := sup
j∈N0

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

<∞. (2)
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Proof. First, we assume that (2) holds. Then for j = n, we get u ∈ H∞µ .
Assume ‖ϕ‖∞ := supz∈D |ϕ(z)| < 1. By (1) it follows that there is a positive
constant Cn such that

sup
z∈D

(1− |z|)n
(

ln
e

1− |z|

)
|f (n)(z)| ≤ Cn‖f‖LB, (3)

for every f ∈ H(D).
From (3) and the monotonicity of the function gn(x) = xn ln(e/x) on the

interval (0, 1] (for a closely related statement see, e.g., [10, Lemma 1]), we have

‖Dn
ϕ,u(f)‖H∞µ = sup

z∈D
µ(z)|u(z)f (n)(ϕ(z))|

= sup
z∈D

µ(z)|u(z)||f (n)(ϕ(z))|(1− |ϕ(z)|)n ln e
1−|ϕ(z)|

(1− |ϕ(z)|)n ln e
1−|ϕ(z)|

≤
Cn‖u‖H∞µ ‖f‖LB

(1− ‖ϕ‖∞)n ln e
1−‖ϕ‖∞

<∞, (4)

for any f ∈ LB.
On the other hand, we have

n!‖u‖H∞µ = ‖Dn
ϕ,u(zn)‖H∞µ = ‖zn‖LB

‖Dn
ϕ,u(zn)‖H∞µ
‖zn‖LB

≤ ‖zn‖LBM. (5)

Hence, from (4) and (5) it follows that the operator Dn
ϕ,u : LB → H∞µ is

bounded in this case, and moreover

‖Dn
ϕ,u‖LB→H∞µ ≤

ĈnM

(1− ‖ϕ‖∞)n ln e
1−‖ϕ‖∞

, (6)

where constant Ĉn = Cn‖zn‖LB/n! depends on n only.
Now assume that ‖ϕ‖∞ = 1. LetN ≥ 2n+1 be the smallest positive integer

such that DN is not empty, where Dj = {z ∈ D : rn,j−n ≤ |ϕ(z)| ≤ rn,j} and
rn,j is given in Lemma 1. Note that Gn,j(|ϕ(z)|) > 0, when z ∈ Dj , j ≥ N , so
by Lemma 1 we obtain

δϕ := inf
j≥N

inf
z∈Dj

Gn,j(|ϕ(z)|)
‖zj‖LB

> 0.

We have

‖Dn
ϕ,u(f)‖H∞µ = sup

z∈D
µ(z)|u(z)f (n)(ϕ(z))|

= max

{
sup
j≥N

sup
z∈Dj

µ(z)|u(z)f (n)(ϕ(z))|, sup
z∈DN−1

µ(z)|u(z)f (n)(ϕ(z))|
}
. (7)
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By Lemma 2 and (3), we have that for any given f ∈ LB

sup
j≥N

sup
z∈Dj

µ(z)|u(z)f (n)(ϕ(z))|

= sup
j≥N

sup
z∈Dj

µ(z)|u(z)f (n)(ϕ(z))| ‖z
j‖LB

Gn,j(|ϕ(z)|)
Gn,j(|ϕ(z)|)
‖zj‖LB

≤ Cn
‖f‖LB

δϕ
sup
j≥N

sup
z∈Dj

j!

(j − n)!
µ(z)|u(z)| |ϕ(z)|j−n

‖zj‖LB

≤ Cn
‖f‖LB

δϕ
sup
j≥N

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

. (8)

On the other hand, if N > 2n+ 1 we have that DN−1 = ∅, so that

sup
z∈DN−1

µ(z)|u(z)f (n)(ϕ(z))| = 0. (9)

From (7), (8) and (9), it follows that, in this case, Dn
ϕ,u : LB → H∞µ is

bounded, and moreover

‖Dn
ϕ,u‖LB→H∞µ ≤

CnM

δϕ
. (10)

If N = 2n + 1, then DN−1 = D2n = {z : |ϕ(z)| < 1/2}, so by (3), the
monotonicity of the function gn(x) = xn ln(e/x) on the interval (0, 1] and (5),
we get

sup
z∈DN−1

µ(z)|u(z)f (n)(ϕ(z))| ≤ ‖u‖H∞µ sup
z∈D2n

|f (n)(ϕ(z))|(1− |ϕ(z)|)n ln e
1−|ϕ(z)|

(1− |ϕ(z)|)n ln e
1−|ϕ(z)|

≤
2nCn‖u‖H∞µ ‖f‖LB

ln(2e)

≤ 2nCn‖zn‖LBM

n! ln(2e)
‖f‖LB, (11)

for any f ∈ LB.
From (7), (8) and (11), it follows that Dn

ϕ,u : LB→ H∞µ is bounded in this
case, and moreover

‖Dn
ϕ,u‖LB→H∞µ ≤ max

{
CnM

δϕ
,

2nCn‖zn‖LBM

n! ln(2e)

}
. (12)

Conversely, assume thatDn
ϕ,u : LB→ H∞µ is bounded, i.e., ‖Dn

ϕ,u‖LB→H∞µ <
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∞. Since the sequence (zj/‖zj‖LB)j∈N0 is bounded in LB, we have

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

≤ ‖Dn
ϕ,u‖LB→H∞µ

∥∥∥∥ zj

‖zj‖LB

∥∥∥∥
LB

≤ ‖Dn
ϕ,u‖LB→H∞µ <∞,

(13)
for any j ∈ N0, from which the implication follows.

Remark 2. Note that M in (2) is, in fact, equal to

sup
j≥n
‖Dn

ϕ,u(zj)‖H∞µ /‖z
j‖LB.

Remark 3. Note that from (6), (10), (12) and (13) we have that the following
inequalities hold

M ≤ ‖Dn
ϕ,u‖LB→H∞µ ≤ Cϕ,nM,

where constant Cϕ,n depends on ϕ and n. Hence, for a fixed ϕ we have that

‖Dn
ϕ,u‖LB→H∞µ ≈M.

Remark 4. Note also that in the case ‖ϕ‖∞ < 1, the boundedness of Dn
ϕ,u :

LB→ H∞µ implies

n!‖u‖H∞µ = ‖Dn
ϕ,u(zn)‖H∞µ ≤ ‖D

n
ϕ,u‖LB→H∞µ ‖z

n‖LB,

from which it follows that u ∈ H∞µ and moreover

n!

‖zn‖LB

‖u‖H∞µ ≤ ‖D
n
ϕ,u‖LB→H∞µ . (14)

From (4) and (14) we get

n!

‖zn‖LB

‖u‖H∞µ ≤ ‖D
n
ϕ,u‖LB→H∞µ ≤

Cn
(1− ‖ϕ‖∞)n ln e

1−‖ϕ‖∞
‖u‖H∞µ ,

for a constant Cn depending only on n, which means that for a fixed ϕ, Dn
ϕ,u :

LB → H∞µ is bounded if and only if u ∈ H∞µ , and moreover the following
asymptotic relation holds

‖Dn
ϕ,u‖LB→H∞µ ≈ ‖u‖H∞µ .

Using Remark 1 in Theorem 1 the following corollary is obtained.
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Corollary 1. Let n ∈ N, µ be a weight, u ∈ H(D) and ϕ be an analytic
self-map of D. Then Dn

ϕ,u : LB→ H∞µ is bounded if and only if

sup
j∈N

‖Dn
ϕ,u(zj)‖H∞µ
ln(j + 1)

<∞.

3 The essential norm of Dn
ϕ,u : LB→ H∞

µ

Let Krf(z) = f(rz) for f ∈ LB and r ∈ (0, 1). It is easy to see that Kr is
compact on LB and ‖Kr‖LB→LB ≤ 1. Denote by I the identity operator. In
order to give an estimate for the essential norm of Dn

ϕ,u from LB to H∞µ , we
need the following result, which was proved in [53].

Lemma 3. There is a sequence (rk)k∈N, with 0 < rk < 1 tending to 1 as
k →∞, such that the compact operators

Lj =
1

j

j∑
k=1

Krk , j ∈ N,

on LB satisfy the following conditions.

(i) For any t ∈ (0, 1), lim
j→∞

sup
‖f‖LB≤1

sup
|z|≤t
|((I − Lj)f)′(z)| = 0.

(iia) lim
j→∞

sup
‖f‖LB≤1

sup
|z|<1

|(I − Lj)f(z)| ≤ 1,

(iib) lim
j→∞

sup
‖f‖LB≤1

sup
|z|<s

|(I − Lj)f(z)| = 0, for any s ∈ (0, 1).

(iii) lim sup
j→∞

‖I − Lj‖LB→LB ≤ 1.

The next lemma is proved by using standard Schwartz’s arguments (see,
e.g., Proposition 3.11 in [5]).

Lemma 4. Let n ∈ N, µ be a weight, u ∈ H(D) and ϕ be an analytic self-map
of D. Then Dn

ϕ,u : LB → H∞µ is compact if and only if Dn
ϕ,u : LB → H∞µ

is bounded and for any bounded sequence (fj)j∈N in LB converging to zero
uniformly on compact subsets of D, ‖Dn

ϕ,u(fj)‖H∞µ → 0 as j →∞.

The following result gives an asymptotic estimate for the essential norm of
the operator Dn

ϕ,u : LB→ H∞µ .
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Theorem 2. Let n ∈ N, µ be a weight, u ∈ H(D) and ϕ be an analytic
self-map of D. Suppose that Dn

ϕ,u : LB→ H∞µ is bounded. Then

‖Dn
ϕ,u‖e,LB→H∞µ ≈ lim sup

j→∞

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

. (15)

Proof. First note that since Dn
ϕ,u : LB → H∞µ is bounded and pn(z) = zn ∈

LB, we have that u ∈ H∞µ . We first give the upper estimate for the essential
norm. Assume ‖ϕ‖∞ < 1. Let (fj)j∈N be a bounded sequence in LB converg-
ing to zero uniformly on compacts of D. From the Cauchy integral formula

we have that (f
(n)
j )j∈N converges to zero on compact subsets of D as j →∞.

Hence, we have

lim
j→∞

‖Dn
ϕ,u(fj)‖H∞µ = lim

j→∞
sup
z∈D

µ(z)|u(z)f
(n)
j (ϕ(z))|

≤ ‖u‖H∞µ lim
j→∞

sup
z∈D
|f (n)j (ϕ(z))|

= ‖u‖H∞µ lim
j→∞

sup
|w|≤‖ϕ‖∞

|f (n)j (w)| = 0.

From this and by Lemma 4 it follows that the operator Dn
ϕ,u : LB → H∞µ is

compact, which implies that

‖Dn
ϕ,u‖e,LB→H∞µ = 0. (16)

On the other hand, we have that

‖zj‖LB ≥ jtj−1(1− t) ln
e

1− t

∣∣∣
t= j−1

j

=

(
1− 1

j

)j−1
ln(ej) ≥ 1

e
ln(ej),

for j ≥ 2, which implies that

lim sup
j→∞

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

≤ e lim sup
j→∞

sup
z∈D

µ(z)
j!

(j − n)!
|u(z)||ϕ(z)|j−n

≤ e‖u‖H∞µ lim
j→∞

jn‖ϕ‖j−n∞ = 0. (17)

From (16) and (17), we see that (15) holds in this case.
Now we assume that ‖ϕ‖∞ = 1. Let (Lj)j∈N be the sequence of operators

given in Lemma 3. Since Lj is compact on LB and Dn
ϕ,u : LB → H∞µ is

bounded, then Dn
ϕ,uLj : LB→ H∞µ is also compact.
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Hence

‖Dn
ϕ,u‖e,LB→H∞µ ≤ lim sup

j→∞
‖Dn

ϕ,u −Dn
ϕ,uLj‖LB→H∞µ

= lim sup
j→∞

‖Dn
ϕ,u(I − Lj)‖LB→H∞µ

= lim sup
j→∞

sup
‖f‖LB≤1

‖Dn
ϕ,u(I − Lj)(f)‖H∞µ

= lim sup
j→∞

sup
‖f‖LB≤1

sup
z∈D

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|.

For each positive integer i ≥ n, let Di be as in the proof of Theorem 1. Let
k ≥ 2n be the smallest positive integer such that Dk 6= ∅. Since ‖ϕ‖∞ = 1, Di
is not empty for every integer i ≥ k and D =

⋃∞
i=k Di.

Since, by Lemma 1, limi→∞
‖zi‖LB

Gn,i(rn,i−n)
= en−1

nn , we have that for any ε > 0,

there exists N ≥ 2n+ 1 such that

‖zi‖LB

Gn,i(rn,i−n)
≤ en−1

nn
+ ε (18)

when i ≥ N .
For an ε > 0 we find N = N(ε) such that (18) holds. We have

sup
‖f‖LB≤1

sup
z∈D

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))| = I1(j) + I2(j),

where

I1(j) = sup
‖f‖LB≤1

sup
k≤i≤N−1

sup
z∈Di

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|

and
I2(j) = sup

‖f‖LB≤1
sup
i≥N

sup
z∈Di

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|.

For such N it follows that

I2(j) = sup
‖f‖LB≤1

sup
i≥N

sup
z∈Di

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|

= sup
‖f‖LB≤1

sup
i≥N

sup
z∈Di

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|Gn,i(|ϕ(z)|)
‖zi‖LB

‖zi‖LB

Gn,i(|ϕ(z)|)

≤Cn
(en−1
nn

+ ε
)

sup
‖f‖LB≤1

‖(I − Lj)f‖LB sup
i≥N

sup
z∈Di

µ(z)|u(z)| i!

(i− n)!

|ϕ(z)|i−n

‖zi‖LB

≤Cn
(en−1
nn

+ ε
)
‖I − Lj‖LB→LB sup

i≥N

‖Dn
ϕ,u(zi)‖H∞µ
‖zi‖LB

.
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By Lemma 3 (iii), we get

lim sup
j→∞

I2(j) ≤ Cn
(en−1
nn

+ ε
)

sup
i≥N

‖Dn
ϕ,u(zi)‖H∞µ
‖zi‖LB

.

By Lemma 3 (ii) and the Cauchy integral formula, we have

lim sup
j→∞

I1(j) = lim sup
j→∞

sup
‖f‖LB≤1

sup
k≤i≤N−1

sup
z∈Di

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|

≤‖u‖H∞µ lim sup
j→∞

sup
‖f‖LB≤1

sup
|ϕ(z)|≤rn,N−1

|((I − Lj)f)(n)(ϕ(z))| = 0.

Hence

lim sup
j→∞

sup
‖f‖LB≤1

sup
z∈D

µ(z)|u(z)((I − Lj)f)(n)(ϕ(z))|

= lim sup
j→∞

I1(j) + lim sup
j→∞

I2(j) ≤ Cn
(en−1
nn

+ ε
)

sup
i≥N

‖Dn
ϕ,u(zi)‖H∞µ
‖zi‖LB

,

which implies that

‖Dn
ϕ,u‖e,LB→H∞µ ≤ Cn

(en−1
nn

+ ε
)

sup
i≥N

‖Dn
ϕ,u(zi)‖H∞µ
‖zi‖LB

. (19)

When ε→ 0+ we have that N →∞. So letting ε→ 0+ in (19), we get

‖Dn
ϕ,u‖e,LB→H∞µ � lim sup

i→∞

‖Dn
ϕ,u(zi)‖H∞µ
‖zi‖LB

.

Now, we give the lower estimate for the essential norm ofDn
ϕ,u : LB→ H∞µ .

Without loss of generality, we assume that j ≥ n. Choose the sequence of
functions fj(z) = zj/‖zj‖LB, j ∈ N. Then ‖fj‖LB = 1 and fj → 0 converges
uniformly on compacts of D, so it converges to zero weakly on LB as j →∞.
Thus we have limj→∞ ‖Kfj‖H∞µ = 0 for any given compact operator K :
LB→ H∞µ . Hence

‖Dn
ϕ,u −K‖LB→H∞µ ≥ ‖(D

n
ϕ,u −K)fj‖H∞µ ≥ ‖D

n
ϕ,u(fj)‖H∞µ − ‖Kfj‖H∞µ ,

and consequently

‖Dn
ϕ,u −K‖LB→H∞µ ≥ lim sup

j→∞
‖Dn

ϕ,u(fj)‖H∞µ .

Therefore, we have

‖Dn
ϕ,u‖e,LB→H∞µ = inf

K
‖Dn

ϕ,u −K‖LB→H∞µ ≥ lim sup
j→∞

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

,

completing the proof.
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From Theorem 2, we obtain the following two results.

Corollary 2. Let n ∈ N, µ be a weight, u ∈ H(D) and ϕ be an analytic
self-map of D. Then the operator Dn

ϕ,u : LB→ H∞µ is compact if and only if
Dn
ϕ,u : LB→ H∞µ is bounded and

lim sup
j→∞

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

= 0.

Corollary 3. Let n ∈ N, µ be a weight, u ∈ H(D) and ϕ be an analytic
self-map of D. Suppose that Dn

ϕ,u : LB→ H∞µ is bounded. Then

‖Dn
ϕ,u‖e,LB→H∞µ ≈ lim sup

j→∞

‖Dn
ϕ,u(zj)‖H∞µ
ln(j + 1)

.

Remark 5. From the proof of Theorem 2 we see that the following inequalities
holds

lim sup
j→∞

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

≤ ‖Dn
ϕ,u‖e,LB→H∞µ ≤ Cn

en−1

nn
lim sup
j→∞

‖Dn
ϕ,u(zj)‖H∞µ
‖zj‖LB

,

where Cn is defined in (3).
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[42] S. Stević, Weighted differentiation composition operators from mixed-
norm spaces to the nth weighted-type space on the unit disk, Abstr. Appl.
Anal. Vol. 2010, Article ID 246287, (2010), 15 pages.



WEIGHTED DIFFERENTIATION COMPOSITION OPERATORS FROM THE
LOGARITHMIC BLOCH SPACE TO THE WEIGHTED-TYPE SPACE 239
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