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A local minimum theorem and critical
nonlinearities

G. Bonanno, G. D’Agùı and D. O’Regan

Abstract

In this paper the existence of two positive solutions for a Dirichlet
problem having a critical growth, and depending on a real parameter, is
established. The approach is based on methods which are totally varia-
tional, unlike the fundamental result of Ambrosetti, Brezis and Cerami
where a clever combination of topological and variational methods is
used in order to obtain the same conclusion. In addition, a numerical
estimate of real parameters, for which the two solutions are obtained, is
provided. Our main tool is a local minimum theorem.

1 Introduction

In the classical and seminal paper of Brezis and Nirenberg (see [9]), Dirichlet
problems with a critical growth are investigated. This study presents several
difficulties since the critical growth of the nonlinearity leads to the fact that
the associated functional is not sufficiently regular. Indeed, the Palais-Smale
condition, as well as the weak lower semi-continuity of the associated functional

may fail because of the fact that the embedding H1
0 (Ω) in L

2N
N−2 (Ω) is not

compact. To be precise, consider the problem −∆u = u
N+2
N−2 + g(u) in Ω,

u > 0 in Ω,
u|∂Ω = 0,

(D)
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where Ω is a non-empty bounded open subset of the Euclidean space (RN , | · |),
N ≥ 3, with boundary of class C1, and g : R → R is a non-zero continuous

lower-order perturbation of u
N+2
N−2 in the sense that 0 ≤ g(u) ≤ µus for all

u ∈ R, for some µ > 0 and 0 < s < N+2
N−2 , for which a typical example is

g(u) = µ|u|s. Brezis and Nirenberg in [9] (note the embedding H1
0 (Ω) ↪→

L
2N

N−2 (Ω) is not compact) starting from the well-known nonexistence result of
Pohozaev [11] for which (D) has no solutions when g ≡ 0 proved that (D)
admits at least one solution provided that g is linear or superlinear at zero.
In particular, they established that, when g(u) = µ|u|s, problem (D) admits
a solution for suitable values of µ, provided that 1 ≤ s < N+2

N−2 . Hence, a
lower-order perturbation, which is linear or super-linear at zero, can reverse
the situation highlighted by Pohozaev.
Subsequently, Ambrosetti, Brezis and Cerami in the seminal paper [1] proved
that even if the lower-order perturbation is sublinear at zero, that is, 0 < s < 1,
the problem admits again solutions for suitable value of µ that, indeed in this
case, are at least two. In particular, they proved the following result.

Theorem 1.1. (See [1, Theorem 2.3]). Fix 0 < s < 1. Then, there is Λ > 0
such that for each µ ∈]0,Λ[ problem −∆u = u

N+2
N−2 + µus in Ω,

u > 0 in Ω,
u|∂Ω = 0,

admits at least two weak solutions.

Moreover, they also proved that if µ > Λ, the previous problem admits no
solution (see [1, Theorem 2.1]). Their proof is a clever combination of topo-
logical and variational methods. Precisely, they determine the existence of
a first solution by using the method of sub- and super-solutions and then,
through a deep reasoning, prove that this solution is the minimum of a suit-
able functional and apply the mountain pass theorem so ensuring the existence
of a second solution. However, in their proof, no numerical estimate of Λ is
provided.

The purpose of this paper is to give an alternative proof of Theorem 1.1
which is exclusively variational. Moreover, thanks to this novel variational
proof, a precise numerical estimate of Λ is provided and we can solve specific
problems in which the result of Ambrosetti, Brezis and Cerami cannot be ap-
plied (see Example 4.1 and Remark 4.4). Our main tool is a local minimum
theorem established in [3] (see Theorem 3.1). Here, we apply one of its conse-
quence given in [4] (see Theorem 3.3). For completeness and clarity we recall
their proofs in Section 3. From Theorem 3.3 we establish an existence result
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for one positive weak solution for the problem which is a local minimum of the
associated energy functional and where a numerical estimate of Λ is provided
(see Theorem 4.1). It is worth noticing again that the solution ensured by
Theorem 4.1 is directly obtained as a local minimum, contrary to [1, Theorem
2.1], where the solution is ensured by the method of sub- and super-solutions.
Finally, Theorem 4.2 ensures the existence of a second solution, by starting
from the fact that the first solution is a local minimum also for a modified
suitable functional and then applying the mountain pass theorem exactly as
in [1].

The paper is arranged as follows. Section 2 presents basic definitions and
preliminaries. In particular, a consequence of the Ekeland variational principle
built in a non-smooth framework (see Lemma 2.1) is recalled. In Section 3,
the local minimum theorem is reported (Theorem 3.1) and special cases are
pointed out (Theorems 3.2 and 3.3), while in Section 4 a Dirichlet problem
with critical nonlinearities is investigated. To be precise, a type of Palais-
Smale condition for the energy functional associated to an elliptic Dirichlet
problem is proved (Lemma 4.1), existence results of one and two solutions are
established (see Theorems 4.1 and 4.2) and an example for which ([1, Theorem
2.1]) cannot be applied, is pointed out (see Example 4.1).

2 Preliminaries

Let (X, ‖·‖) be a real Banach space. We denote the dual space of X by X∗,
while < ·, · > stands for the duality pairing between X∗ and X. A function
I : X → R is called locally Lipschitz when, to every u ∈ X, there corresponds
a neighbourhood U of u and a constant L ≥ 0 such that

|I (v)− I (w)| ≤ L ‖v − w‖ for all v, w ∈ U.

If u, v ∈ X, the symbol I◦ (u; v) indicates the generalized directional derivative
of I at point u along direction v, namely

I◦ (u; v) := lim sup
w→u,t→0+

I (w + tv)− I (w)

t
.

The generalized gradient of the function I at u, denoted by ∂I (u), is the set

∂I (u) :=
{
u∗ ∈ X∗ :< u∗, v >≤ I

◦
(u; v) for all v ∈ X

}
.

A function I : X → R is called Gâteaux differentiable at u ∈ X if there is
ϕ ∈ X∗ (denoted by I ′(u)) such that

lim
t→0+

I (u+ tv)− I (u)

t
= I ′(u)(v) ∀v ∈ X.
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It is called continuously Gâteaux differentiable if it is Gâteaux differentiable
for any u ∈ X and the function u→ I ′(u) is a continuous map from X to its
dual X∗. We recall that if I is continuously Gâteaux differentiable then it is
locally Lipschitz and one has I◦ (u; v) = I ′(u)(v) for all u, v ∈ X.

Now, let Φ,Ψ : X → R be two continuously Gâteaux differentiable func-
tionals and put

I = Φ−Ψ.

Fix r1, r2 ∈ [−∞,+∞], with r1 < r2, and we say that the functional I veri-
fies the Palais-Smale condition cut off lower at r1 and upper at r2 (in short
[r1](PS)[r2]-condition) if any sequence {un} such that

(α) {I(un)} is bounded,

(β) lim
n→+∞

‖I ′(un)‖X∗ = 0,

(γ) r1 < Φ(un) < r2 ∀n ∈ N,

has a convergent subsequence.
When we fix r2 = −∞, that is, Φ(un) < r2 ∀n ∈ N, we denote this type of
Palais Smale condition with (PS)[r2]. When, in addition, r2 = +∞, it is the
classical Palais Smale condition.

Now, we recall the following consequence of the Ekeland variational prin-
ciple built within a non-smooth framework (see, for example [3, Lemma 3.1]).

Lemma 2.1. Let X be a real Banach space and let I : X → R be a locally
Lipschitz function bounded from below. Then, for all minimizing sequence of
I, {un}n∈N ⊆ X, there exists a minimizing sequence of I, {vn}n∈N ⊆ X, such
that

I(vn) ≤ I(un) ∀n ∈ N,

I◦(vn;h) ≥ −εn‖h‖ ∀h ∈ X, ∀n ∈ N, where εn → 0+.

3 A local minimum theorem and some consequences

The main result of this section is the following local minimum theorem.

Theorem 3.1. Let X be a real Banach space and let Φ,Ψ : X → R be two
continuously Gâteaux differentiable functions. Put

I = Φ−Ψ
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and assume that there are x0 ∈ X and r1, r2 ∈ R, with r1 < Φ(x0) < r2, such
that

sup
u∈Φ−1(]r1,r2[)

Ψ(u) ≤ r2 − Φ(x0) + Ψ(x0), (3.1)

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤ r1 − Φ(x0) + Ψ(x0). (3.2)

Moreover, assume that I satisfies [r1](PS)[r2]-condition.
Then, there is u0 ∈ Φ−1(]r1, r2[) such that I(u0) ≤ I(u) for all u ∈ Φ−1(]r1, r2[)
and I ′(u0) = 0.

Proof. Put
M = r2 − Φ(x0) + Ψ(x0), (3.1*)

ΨM (u) =

{
Ψ(u) if Ψ(u) < M
M if Ψ(u) ≥M,

Φr1(u) =

{
Φ(u) if Φ(u) > r1

r1 if Φ(u) ≤ r1,

J = Φr1 −ΨM .

Clearly, J is locally Lipschitz and bounded from below. Now, given a sequence
{un}n∈N ⊆ X such that limn→∞ J(un) = infX J , owing to Lemma 2.1 there is
a sequence {vn}n∈N ⊆ X such that limn→∞ J(vn) = infX J and J◦(vn;h) ≥
−εn‖h‖ for all h ∈ X, for all n ∈ N, where εn → 0+. If J(x0) = infX J
then x0 satisfies the conclusion. In fact, if u ∈ Φ−1(]r1, r2[) from (3.1) one
has Ψ(u) ≤ M and J(u) = I(u) for all u ∈ Φ−1(]r1, r2[); hence I(x0) =
J(x0) ≤ J(u) = I(u) for all u ∈ Φ−1(]r1, r2[). So, we assume infX J <
J(x0). Therefore, there is a ν ∈ N such that J(vn) < J(x0) for all n > ν.
Now, we claim that r1 < Φ(vn) < r2 for all n > ν. On the one hand,
one has Φ(vn) − ΨM (vn) ≤ Φr1(vn) − ΨM (vn) < Φ(x0) − Ψ(x0); Φ(vn) <
ΨM (vn) + Φ(x0) − Ψ(x0) ≤ M + Φ(x0) − Ψ(x0) = r2, Φ(vn) < r2. On the
other hand, arguing by contradiction, we assume Φ(vn) ≤ r1. Therefore, one
has r1−Ψ(vn) = Φr1(vn)−Ψ(vn) < Φ(x0)−Ψ(x0); Ψ(vn) > r1−Φ(x0)+Ψ(x0)
and, from (3.2), one has Φ(vn) > r1, that is a contradiction. Hence, our claim
is proved.

Therefore, one has J(vn) = I(vn) and J◦(vn;h) = I ′(vn)(h) for all n > ν.
Hence, lim

n→∞
I(vn) = lim

n→∞
J(vn) = inf

X
J and I ′(vn)(h) ≥ −εn‖h‖, that is

limn→∞ ‖I ′(vn)‖X∗ = 0. Since I satisfies [r1](PS)[r2]-condition, then {vn}
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admits a subsequence strongly converging to v∗ ∈ X. Thus, I(v∗) = infX J ≤
J(u) = I(u) for all u ∈ Φ−1(]r1, r2[), that is

I(v∗) ≤ I(u) (3.3)

for all u ∈ Φ−1(]r1, r2[).
Since r1 < Φ(vn) < r2 for all n > ν, from the continuity of Φ we obtain
v∗ ∈ Φ−1([r1, r2]).
If v∗ ∈ Φ−1(]r1, r2[), (3.3) immediately ensures the conclusion. If Φ(v∗) = r1,
from (3.2) we obtain I(v∗) = r1 − Ψ(v∗) ≥ r1 − supΦ(u)≤r1 Ψ(u) ≥ Φ(x0) −
Ψ(x0) = I(x0) and, hence, from (3.3), I(x0) ≤ I(u) for all u ∈ Φ−1(]r1, r2[)
and the conclusion is achieved. If Φ(v∗) = r2, first we observe that Ψ(v∗) ≤M ;
in fact, taking into account that I(v∗) = J(v∗), one has r2 − Ψ(v∗) = r2 −
ΨM (v∗), Ψ(v∗) = ΨM (v∗) ≤ M . Next, we prove that I(v∗) = I(x0). In fact,
arguing by contradiction and assuming I(v∗) < I(x0), from (3.1*) one has
I(v∗) = r2 −Ψ(v∗) ≥ r2 −M = Φ(x0)−Ψ(x0) = I(x0), that is I(v∗) ≥ I(x0)
and we have a contradiction. Hence, from (3.3) one has I(x0) ≤ I(u) for all
u ∈ Φ−1(]r1, r2[) and also in this case the conclusion is achieved.

Now, we point out the following consequence of Theorem 3.1 when the
function I depends on a real parameter, that is, it is of the type Φ−λΨ, with
λ > 0. To this end, given Φ,Ψ : X → R, put

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

sup
u∈Φ−1(]r1,r2[)

Ψ(u)−Ψ(v)

r2 − Φ(v)
(3.4)

for all r1, r2 ∈ R, with r1 < r2,

ρ2(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v)− r1
(3.5)

for all r1, r2 ∈ R, with r1 < r2.

The next result is a consequence of Theorem 3.1.

Theorem 3.2. Let X be a real Banach space and let Φ,Ψ : X → R be
two continuously Gâteaux differentiable functions. Assume that there are r1,
r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ2(r1, r2), (3.6)
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where β and ρ2 are given by (3.4) and (3.5), and for each

λ ∈
] 1

ρ2(r1, r2)
,

1

β(r1, r2)

[
the function Iλ = Φ − λΨ satisfies [r1](PS)[r2]-

condition.

Then, for each λ ∈
] 1

ρ2(r1, r2)
,

1

β(r1, r2)

[
there is u0,λ ∈ Φ−1(]r1, r2[) such

that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

Proof. Fix λ as in the conclusion. One has β(r1, r2) <
1

λ
< ρ2(r1, r2), that is

there is a v0 ∈ Φ−1(]r1, r2[) such that

sup
u∈Φ−1(]r1,r2[)

Ψ(u)−Ψ(v0)

r2 − Φ(v0)
<

1

λ
and

there is a v0 ∈ Φ−1(]r1, r2[) such that
1

λ
<

Ψ(v0)− sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v0)− r1
.

Therefore, calling x0 the point of Φ−1(]r1, r2[) such that Φ(x0) − λΨ(x0) =
min{Φ(v0)− λΨ(v0),Φ(v0)− λΨ(v0)}, one has

sup
u∈Φ−1(]r1,r2[)

λΨ(u) < r2 − Φ(x0) + λΨ(x0)

and
sup

u∈Φ−1(]−∞,r1])

λΨ(u) ≤ r1−Φ(x0)+λΨ(x0). Hence, applying Theorem 3.1

to the function Φ− λΨ, the conclusion is obtained.

Remark 3.1. We recall that Theorems 3.1 and 3.2 were established in [3]
(see [3, Theorem 3.1] and [3, Theorem 5.1]).

Now, we point out a further consequence of the local minimum theorem.

Theorem 3.3. Let X be a real Banach space and let Φ,Ψ : X → R be two
continuously Gâteaux differentiable functionals such that infX Φ = Φ(0) =
Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such
that

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
(3.7)

and, for each λ ∈
]Φ(ũ)

Ψ(ũ)
,

r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

[
, the functional Iλ = Φ − λΨ

satisfies (PS)[r]-condition.
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Then, for each λ ∈
]Φ(ũ)

Ψ(ũ)
,

r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

[
, there is uλ ∈ Φ−1(]0, r[)

(hence, uλ 6= 0) such that Iλ(uλ) ≤ Iλ(u) for all u ∈ Φ−1(]0, r[) and I ′λ(uλ) =
0.

Proof. Our aim is to apply Theorem 3.2. To this end, by choosing r1 = 0 and
r2 = r, we claim that (3.6) holds true. Indeed, from (3.7) one has

β(0, r) ≤
sup

u∈Φ−1(]−∞,r[)
Ψ(u)−Ψ(ũ)

r − Φ(ũ)
<

r
Ψ(ũ)

Φ(ũ)
−Ψ(ũ)

r − Φ(ũ)
=

Ψ(ũ)

Φ(ũ)
≤ ρ2(0, r).

Hence, one has
β(0, r) < ρ2(0, r)

and our claim is proved. Moreover, let {vn} ⊆ Φ−1(]0, r[) such that lim
n→∞

vn =

0. One has β(0, r) ≤
sup

u∈Φ−1(]0,r[)

Ψ(u)−Ψ(vn)

r − Φ(vn)
for all n ∈ N. Therefore, taking

into account the continuity of Φ and Ψ, one has

β(0, r) ≤
sup

u∈Φ−1(]−∞,r[)
Ψ(u)

r
.

It follows that

Φ(ũ)

Ψ(ũ)
,

r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

 ⊆ ] 1

ρ2(0, r)
,

1

β(0, r)

[
.

Finally, we observe that, since Iλ satisfies (PS)[r]-condition, then it satisfies
[0](PS)[r]-condition.

Hence, all assumptions of Theorem 3.2 hold and the conclusion is achieved.

Remark 3.2. We recall that Theorem 3.3 was established in [4] (see [4, The-
orem 2.3]).

Remark 3.3. Theorem 3.1 has several other consequences, besides Theorems
3.2 and 3.3. In particular, for example, the local minimum theorem established
in [7] can be obtained as a special case. Moreover, again from Theorem 3.1,
multiple critical points results can be obtained and we refer the reader to [3]
for more details.
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Remark 3.4. The proof of Theorem 3.1 is based on a consequence of the
classical Ekeland variational principle built in a non-smooth framework (see
Lemma 2.1). It is worth noticing that in this case the non-smooth setting is
applied in order to obtain novel results in the smooth framework. In particular,
we point out that in Theorem 3.1 the sequential weak lower semi-continuity
of the functional is not requested, contrary to direct method theorems (see,
for example, [13, Theorem 1.2]) and local minimum theorems established in
[5] and [12] where it is a fundamental assumption. Elliptic Dirichlet problems
with critical exponent, investigated in the next section, as well as nonlinear
problems in the whole space (see [2]), are examples for which the sequential
weak lower semi-continuity of the associated functional may fail.

4 Elliptic Dirichlet problems with critical nonlinearities

In this section we investigate elliptic Dirichlet problems with critical exponent.
It is worth noticing that, in this case, the (PS)−condition as well as the weak
lower semi-continuity of the associated functional may fail. For this reason,
classical results, for example direct method theorems (see also Remark 3.4),
cannot be used and the local minimum theorem given in Section 3 may be
used to obtain nontrivial solutions. Our main result is Theorem 4.1, which
ensures the existence of one positive solution by applying Theorem 3.3. Then,
as a consequence, we present Theorem 4.2, where two positive solutions are
obtained. First, we give the framework of the problem and we establish Lemma
4.1 which is fundamental in the proof of Theorem 4.1.
Consider the Dirichlet problem{

−∆u = λ (h(u) + µg(u)) in Ω,
u|∂Ω = 0,

(Dλ)

where Ω is a non-empty bounded open subset of the Euclidean space (RN , | · |),
N ≥ 3, with boundary of class C1, h(t) = t2

∗−1, g(t) = tq−1 if t ≥ 0, h(t) =

g(t) = 0 if t < 0, 2∗ =
2N

N − 2
, 1 < q < 2, λ and µ are positive parameters.

One has f(t) = h(t)+µg(t) ≤ µ|t|q−1 +|t|2∗−1 for all t ∈ R. As usual, put X =

H1
0 (Ω) endowed with the norm ‖u‖ =

(∫
Ω

|∇u(x)|2dx
) 1

2

and Φ(u) =
‖u‖2

2
,

Ψ(u) =

∫
Ω

F (u(x))dx for all u ∈ X, where F (ξ) =

∫ ξ

0

f(t)dt for every ξ ∈ R,

that is, F (ξ) =

∫ ξ

0

h(t)dt + µ

∫ ξ

0

g(t)dt = H(ξ) + µG(ξ) =
1

2∗
|ξ|2

∗
+ µ

1

q
|ξ|q

for all ξ ≥ 0 and F (ξ) = 0 for all ξ < 0. We observe that one has F (ξ) ≥ 0
for all ξ ∈ R.
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We recall that

‖u‖Ls(Ω) ≤ cs‖u‖ , u ∈ H1
0 (Ω) , s ∈ [1, 2∗]

c2∗ =
1√

N(N − 2)π

( N !

2Γ(1 +N/2)

)1/N

, (4.1)

cs ≤
meas(Ω)

2∗−s
2∗s√

N(N − 2)π

( N !

2Γ(N/2 + 1)

)1/N

(4.2)

and that the embedding H1
0 (Ω) ↪→ Ls(Ω) is not compact if s = 2∗.

Now, fix r > 0 and put

λ∗r =
r(µ

q
cqq(2r)q/2 + (2r)2∗/2

2∗ c2
∗

2∗

) , λ̃r =
1

c2
∗

2∗(2rN)
2

N−2

,

λr = min
{
λ∗r , λ̃r

}
,

where cq, c2∗ are given by (4.2) and (4.1).

Now, we establish the following result.

Lemma 4.1. Let Φ and Ψ be the functional defined as above and fix r > 0.
Then, for each λ ∈]0, λr[ the functional Iλ = Φ − λΨ satisfies the
(PS)[r]−condition.

Proof. Fix λ as in the conclusion and let {un} ⊆ X be a sequence such that

(α) {Iλ(un)} is bounded,

(β) lim
n→+∞

‖I ′λ(un)‖X∗ = 0,

(γ) Φ(un) < r ∀n ∈ N.

In particular, from Φ(un) < r ∀n ∈ N we obtain that {un} is bounded in X.
So, going to a subsequence if necessary, we can assume un ⇀ u0 in X, un → u0

in Lq(Ω), un → u0 a.e. on Ω and, taking (α) into account, limn→∞ Iλ(un) = c.
Moreover, {un} is bounded in L2∗

(Ω).

First step. We prove that u0 is a weak solution of problem (Dλ).

Since {un} is bounded in L2∗
(Ω), it follows that {h(un)} is bounded in L

2∗
2∗−1 (Ω).

Indeed, one has
∫

Ω
|h(un)|

2∗
2∗−1 dx ≤

∫
Ω
|un|2

∗
dx. Therefore, it follows that

h(un) ⇀ h(u0) in L
2∗

2∗−1 (Ω). In fact, since h is continuous and un → u0 a.e.
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x ∈ Ω, we obtain h(un) → h(u0) a.e. x ∈ Ω, and that, together with the

boundedness of {h(un)} in L
2∗

2∗−1 (Ω), ensures the weak convergence of h(un)

to h(u0) in L
2∗

2∗−1 (Ω) (see [8, Remark (iii)]).
Moreover, since un → u0 in Lq(Ω), taking into account [14, Theorem A.2],

one has that g(un) → g(u0) in L
q

q−1 (Ω). So, in particular, g(un) ⇀ g(u0) in

L
q

q−1 (Ω).
Due to what was seen before, that is, un ⇀ u0 in X, h(un) ⇀ h(u0) in

L
2∗

2∗−1 (Ω) and g(un) ⇀ g(u0) in L
q

q−1 (Ω), one has

lim
n→+∞

(∫
Ω

∇un(x)∇v(x)dx− λ
∫

Ω

h(un(x))v(x)dx− λµ
∫

Ω

g(un(x))v(x)dx

)
=∫

Ω

∇u0(x)∇v(x)dx − λ
∫

Ω

h(u0(x))v(x)dx − λµ
∫

Ω

g(u0(x))v(x)dx for all v ∈

H1
0 (Ω). Therefore, owing to (β) we obtain that 0 =

∫
Ω
∇u0(x)∇v(x)dx −

λ
∫

Ω
h(u0(x))v(x)dx− λµ

∫
Ω
g(u0(x))v(x)dx for all v ∈ H1

0 (Ω), that is, u0 is a
weak solution of (Dλ).

Second step. We prove that

Iλ(u0) > −r. (A)

In fact, Ψ(u) =

∫
Ω

F (u(x))dx ≤ µ

q
‖u‖qLq(Ω) +

1

2∗
‖u‖2

∗

L2∗ (Ω) ≤
µ

q
cqq‖u‖q +

1

2∗
c2

∗

2∗‖u‖2
∗
. Hence,

Ψ(u) ≤ µ

q
cqq‖u‖q +

1

2∗
c2

∗

2∗‖u‖2
∗
, ∀u ∈ X.

Therefore, for all u ∈ X such that ‖u‖ ≤ (2r)1/2 one has Iλ(u) = Φ(u) −

λΨ(u) ≥ ‖u‖
2

2
−λ
(µ
q
cqq‖u‖q+ 1

2∗ c
2∗

2∗‖u‖2
∗
)
≥ −λ

(µ
q
cqq(2r)

q/2+ 1
2∗ c

2∗

2∗(2r)2∗/2
)

=

−λ r

λ∗r
> −r. So, taking into account (γ) and that Φ is sequentially weakly

lower semicontinuous, we have ‖u0‖ ≤ lim infn→∞ ‖un‖ ≤
√

2r and, hence,
Iλ(u0) > −r.

Third step. Put vn = un − u0. We prove that one has

c = Φ(u0)− λΨ(u0) + lim
n→∞

(
1

2
‖vn‖2 − λ

∫
Ω

H(vn)dx

)
. (B)

In fact, one has ‖un‖2 = ‖vn + u0‖2 = ‖vn‖2 + ‖u0‖2 + 2 < vn, u0 >, so, it
follows that

‖un‖2 = ‖vn‖2 + ‖u0‖2 + o(1).
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Moreover, the Brezis-Lieb Lemma (see [8, Theorem 1]) leads to∫
Ω

H(un)dx =

∫
Ω

H(vn)dx+

∫
Ω

H(u0)dx+ o(1)

(see also [14, p.33]).
Finally, since u →

∫
Ω
G(u)dx is locally Lipschitz in Lq(Ω) (see, for example,

[10, Theorem 7.2.1]) and un → u0 in Lq(Ω), one has∫
Ω

G(un)dx =

∫
Ω

G(u0)dx+ o(1).

Hence, by starting from c = limn→∞(Φ(un)− λΨ(un)), one has

c = Φ(un)−λΨ(un)+o(1) =
1

2
‖un‖2−λ

∫
Ω
H(un)dx−λµ

∫
Ω
G(un)dx+o(1) =

1

2
‖vn‖2 +

1

2
‖u0‖2 − λ

∫
Ω
H(vn)dx − λ

∫
Ω
H(u0)dx − λµ

∫
Ω
G(u0)dx + o(1) =

Φ(u0)− λΨ(u0) +
1

2
‖vn‖2 − λ

∫
Ω
H(vn)dx+ o(1). Hence, (B) is proved.

Fourth step. We prove the following

lim
n→∞

(
‖vn‖2 − λ2∗

∫
Ω

H(vn)dx

)
= 0. (C)

In fact, from (β) we have lim
n→∞

I ′(un)(un) = 0. So,∫
Ω

∇un∇undx− λ
∫

Ω

|un|2
∗−1undx− λµ

∫
Ω

g(un)undx = o(1),

for which, taking into account that h(un)un = 2∗H(un), one has ‖un‖2 −
λ2∗

∫
Ω
H(un)dx− λµ

∫
Ω
g(un)undx = o(1). Therefore, as seen in the proof of

(B) and taking into account that
∫

Ω
g(un)undx =

∫
Ω
g(u0)u0dx + o(1) owing

to the fact that g(un) → g(u0) in L
q

q−1 (Ω) (see the first step) and un →
u0 in Lq(Ω), one has ‖vn‖2 + ‖u0‖2 − λ2∗

∫
Ω
H(vn)dx − λ2∗

∫
Ω
H(u0)dx −

λµ
∫

Ω
g(u0)u0dx = o(1), that is,

‖vn‖2−λ2∗
∫

Ω

H(vn)dx = −‖u0‖2 +λ2∗
∫

Ω

H(u0)dx+λµ

∫
Ω

g(u0)u0dx+o(1).

Since u0 is a weak solution of (Dλ), one has

‖u0‖2 − λ2∗
∫

Ω

H(u0)dx− λµ
∫

Ω

g(u0)u0dx = 0.
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Therefore,

‖vn‖2 − λ2∗
∫

Ω

H(vn)dx = o(1),

that is, (C) is proved.

Conclusion. Finally, we observe that ‖vn‖2 is bounded in R since un is
bounded in X. Thus, there is a subsequence, called again ‖vn‖2, which con-
verges to b ∈ R. Hence,

lim
n→∞

‖vn‖2 = b.

If b = 0 we have proved the lemma. In fact, we have that limn→∞ ‖un−u0‖ =
0, that is, un strongly converges to u0 in X. So, arguing by contradiction,

we assume that b 6= 0. From (C) we obtain lim
n→∞

λ2∗
∫

Ω

H(vn)dx = b. Now,

taking into account that ‖vn‖L2∗ (Ω) ≤ c2∗‖vn‖, for which 2∗
∫

Ω
H(vn)dx ≤∫

Ω
|vn|2

∗
dx ≤ c2

∗

2∗‖vn‖2
∗
, and passing to the limit, one has

b

λ
≤ c2

∗

2∗b2
∗/2 and

then, since b 6= 0, one has

b ≥
(

1

λ

)N−2
2
(

1

c2∗

)N
.

Now, taking (A) into account, from (B) we have c = Φ(u0)− λΨ(u0) +
1

2
b−

1

2∗
b > −r +

(
1

2
− 1

2∗

)
b = −r +

1

N
b, that is

c > −r +
1

N
b.

On the other hand, since F (ξ) ≥ 0 for all ξ ∈ R, one has Φ(un)− λΨ(un) < r
for all n ∈ N. Hence, we have

c ≤ r.

Thus, −r +
1

N
b < c ≤ r. It follows that

1

N
b < 2r, that is,

b < 2rN.

Therefore, one has

(
1

λ

)N−2
2
(

1

c2∗

)N
≤ b < 2rN , so, it follows that

1

λ
<

(2rNcN2∗)
2

N−2 . Hence, one has

λ >
1

(2rN)
2

N−2

1

c2
∗

2∗
= λ̃r,
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and this is a contradiction.

Remark 4.1. We observe that Lemma 4.1 is different from [6, Lemma 3.1]
because of the role played here by the parameter µ.
We also observe that the proof of the previous lemma is inspired by the classical
one (see [14, Lemma 1.44]). The difference between the two proofs is, in
particular, in the point (A) and, hence, in the conclusion.

Now, we can give the main result of this paper.

Theorem 4.1. Fix q ∈]1, 2[. Then, there exists µ∗ > 0, where

µ∗ =

(
q

cqq

1

2
q+2
2

)min


(

2∗

2
2∗+2

2 c2
∗

2∗

) 2
2∗−2

;
1

3N

(
1

c2
∗

2∗

)N−2
2




2−q
2

and cq, c2∗ are given by (4.2) and (4.1), such that for each µ ∈]0, µ∗[ problem{
−∆u = u2∗−1 + µuq−1 in Ω,
u|∂Ω = 0,

(Dµ)

admits at least one positive weak solution uµ such that

‖uµ‖ <
(

2∗

c2
∗

2∗

) 1
2∗−2

.

Moreover, the mapping

µ→ 1

2

∫
Ω

|∇uµ|2dx−
∫

Ω

1

2∗
|uµ|2

∗
dx− µ

∫
Ω

1

q
|uµ|qdx

is negative and strictly decreasing in ]0, µ∗[.

Proof. Our aim is to apply Theorem 3.3 and to this end we use the usual set-
ting. Precisely, put X = H1

0 (Ω) endowed with the norm

‖u‖ =

(∫
Ω

|∇u(x)|2dx
) 1

2

and Φ(u) =
‖u‖2

2
, Ψ(u) =

∫
Ω

F (u(x))dx for all

u ∈ X, where F (ξ) =

∫ ξ

0

f(t)dt for every ξ ∈ R and f(t) = h(t) +µg(t) for all

t ∈ R, f(t) = t2
∗−1, g(t) = tq−1 for all t ≥ 0 and f(t) = g(t) = 0 for all t < 0.

Now, put

r = min


(

2∗

2
2∗+2

2 c2
∗

2∗

) 2
2∗−2

;
1

3N

(
1

c2
∗

2∗

)N−2
2


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and

µ∗ =

(
q

cqq

1

2
q+2
2

)
r

2−q
2 .

Fix 0 < µ < µ∗, and one has λr > 1. Indeed,

λ̃r =
1

c2
∗

2∗(2rN)
2

N−2

≥ 1

c2
∗

2∗(2N)
2

N−2

[
1

3N

(
1

c2
∗

2∗

)N−2
2

] 2
N−2

=
(

3
2

) 2
N−2 > 1 and

λ∗r =
1

µ

q
cqq2q/2r

q−2
2 + 22∗/2

2∗ c2
∗

2∗r
2∗−2

2

≥ 1

µ

q
cqq2q/2r

q−2
2 + 22∗/2

2∗ c2
∗

2∗

( 2∗

2
2∗+2

2 c2
∗

2∗

) 2
2∗−2


2∗−2

2

>
1

µ∗

q
cqq2q/2r

q−2
2 + 1

2

= 1.

Therefore, from Lemma 4.1, the functional Iλ = Φ− λΨ satisfies the (PS)[r]-
condition for all λ ∈]0.λr[.

Now, fix λ < λr. We claim that there is v0 ∈ X, with 0 < Φ(v0) < r, such
that

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
<

Ψ(v0)

Φ(v0)
. (4.3)

To this end, taking into account that ‖u‖Ls(Ω) ≤ cs‖u‖ , u ∈ H1
0 (Ω), one has

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
≤

sup
u∈Φ−1(]−∞,r[)

∫
Ω

F (u(x))dx

r
≤

≤
sup

u∈Φ−1(]−∞,r[)

(
µ

q
‖u‖qLq(Ω) +

1

2∗
‖u‖2

∗

L2∗ (Ω)

)
r

≤

≤
sup

u∈Φ−1(]−∞,r[)

(
µ

q
cqq‖u‖q +

1

2∗
c2

∗

2∗‖u‖2
∗
)

r
≤

(
µ

q
cqq(2r))

q + 1
2∗ c

2∗

2∗(2r)2∗
)

r
.
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Hence, one has
supu∈Φ−1(]−∞,r[) Ψ(u)

r
≤ 1

λ∗r
<

1

λ
.

Next, fix
R = sup

x∈Ω
d(x, ∂Ω),

and let x0 ∈ Ω such that B(x0, R) ⊆ Ω. Moreover, put

vδ(x) :=



0 if x ∈ Ω \B(x0, R)

2δ

R
(R− |x− x0|) if x ∈ B(x0, R) \B(x0, R/2)

δ if x ∈ B(x0, R/2).

Clearly, one has that vδ ∈ X and

Φ(vδ) =
1

2

∫
Ω

|∇vδ(x)|2 dx =

=
1

2

∫
B(x0,R)\B(x0,R/2)

(2δ)2

R2
dx =

1

2

(2δ)2

R2
(meas(B(x0, R))−meas(B(x0, R/2))) =

=
1

2

(2δ)2

R2

πN/2

Γ(1 +N/2)
(RN − (R/2)N ),

where Γ is the Euler function. Moreover, one has Ψ(vδ) =

∫
Ω

F (vδ(x)) dx ≥∫
B(x0,R/2)

F (δ) dx ≥ F (δ)
πN/2

Γ(1 +N/2)

RN

2N
and, hence,

Ψ(vδ)

Φ(vδ)
≥ R2

2(2N − 1)

F (δ)

δ2
.

From lim sup
t→0+

G(t)

t2
= +∞ it follows that lim sup

t→0+

F (t)

t2
= +∞. So, taking into

account that Φ(vδ) =
1

2

(2δ)2

R2

πN/2

Γ(1 +N/2)
(RN −(R/2)N ), there is a δ > 0 such

that
R2

2(2N − 1)

F (δ)

δ
2 >

1

λ

and Φ(vδ) < r.
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Therefore,

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
<

1

λ
<

R2

2(2N − 1)

F (δ)

δ
2 ≤

Ψ(vδ)

Φ(vδ)
with 0 <

Φ(vδ) < r. Hence, our claim is proved.
Finally, from Theorem 3.3 the functional Φ−λΨ admits a critical point uλ,µ

such that
1

2
‖uλ,µ‖2 > 0, which is a positive weak solution for problem (Dλ).

In particular, by choosing λ = 1, a positive weak solution uµ for problem

(Dµ) is obtained. Moreover, one has
1

2
‖uµ‖2 < r, from which

1

2
‖uµ‖2 <(

2∗

2
2∗+2

2 c2
∗

2∗

) 2
2∗−2

, that is, ‖uµ‖ <
(

2∗

c2
∗

2∗

) 1
2∗−2

.

Now, since uµ is a global minimum for I1 in Φ−1(]0, r[) again from Theorem
3.3, and vδ ∈ Φ−1(]0, r[), one has I1(uµ) ≤ I1(vδ). So, taking into account

that
Ψ(vδ)

Φ(vδ)
>

1

λ
= 1 as seen before, one has I1(uµ) ≤ I1(vδ) < 0. Next, fix

0 < µ1 < µ2. One has

I1(uµ1
) = min

u∈Φ−1(]0,r[)

(
1

2

∫
Ω

|∇u|2dx−
∫

Ω

1

2∗
|u|2

∗
dx− µ1

∫
Ω

1

q
|u|qdx

)
>

min
u∈Φ−1(]0,r[)

(
1

2

∫
Ω

|∇u|2dx−
∫

Ω

1

2∗
|u|2

∗
dx− µ2

∫
Ω

1

q
|u|qdx

)
= I1(uµ2) and the

conclusion is achieved.

Remark 4.2. The existence of at least one solution to problem (Dµ) was
previously proved in [1] by using topological methods, that is, the method of
sub- and super-solution. The proof of Theorem 4.1 was obtained by variational
methods, that is, via a local minimum result as established in Theorem 3.3.
We also observe that, [1, Theorem 2.1] establishes, in particular, the existence
of Λ > 0 such that problem (Dµ) admits a solution for each µ ∈]0,Λ] and no
solution for µ > Λ. However, no numerical estimate of Λ was pointed out in
[1]. Here, we point out that from Theorem 4.1 one has

Λ ≥ µ∗.

It follows that, from Theorem 4.1, the existence of solutions for (Dµ) is ob-
tained for suitable numerical values of µ (see Example 4.1).

Remark 4.3. [1, Theorem 2.3] ensures the existence of a second solution for
(Dµ) for all µ ∈]0,Λ[, by applying a version of the mountain pass theorem.
In order to apply the mountain pass theorem, the authors prove, by a careful
examination, that the solution obtained by topological methods is actually a
local minimum of a suitable functional. We observe that the solution obtained
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in Theorem 4.1 is directly a local minimum for such a functional. So, to obtain
the second solution is enough to apply the mountain pass theorem arguing as
in part of the proof of [1, Theorem 2.3]. The details are in the proof of Theorem
4.2.

Finally, as a consequence of Theorem 4.2, we obtain the following existence
result of two solutions, where an estimate of parameters is pointed out.

Theorem 4.2. Fix q ∈]1, 2[. Then, there exists µ∗ > 0, where

µ∗ =

(
q

cqq

1

2
q+2
2

)min


(

2∗

2
2∗+2

2 c2
∗

2∗

) 2
2∗−2

;
1

3N

(
1

c2
∗

2∗

)N−2
2




2−q
2

and cq, c2∗ are given by (4.2) and (4.1), such that for each µ ∈]0, µ∗[ problem
(Dµ) admits at least two positive weak solutions uµ and wµ such that ‖uµ‖ <(

2∗

c2
∗

2∗

) 1
2∗−2

and wµ > uµ.

Proof. Fix µ ∈]0, µ∗[. From Theorem 4.1 there exists a positive weak solution
uµ of (Dµ) such that uµ is a local minimum for the functional I(u) = Φ(u)−

Ψ(u) =
‖u‖2

2
−
∫

Ω

F (u(x))dx, where F is the primitive of f(t) = t2
∗−1 +µtq−1

if t ≥ 0 and f(t) = 0 if t < 0. Now consider the problem{
−∆v = (uµ + v)2∗−1 − u2∗−1

µ + µ(uµ + v)q−1 − µuq−1
µ in Ω,

v|∂Ω = 0.
(Pµ)

Clearly, if vµ is a positive weak solution to (Pµ), then wµ = uµ + vµ is a weak
solution of (Dµ) such that wµ > uµ > 0. So, our aim is to prove that (Pµ)
admits at least one positive weak solution. To this end, consider the functional

J defined as J(v) =
‖v‖2

2
−
∫

Ω

L(x, v(x))dx, where L(x, ξ) =
∫ ξ

0
l(x, t)dt and

l(x, t) = (uµ(x)+ t)2∗−1− [uµ(x)]2
∗−1 +µ(uµ(x)+ t)q−1−µ[uµ(x)]q−1 if t ≥ 0,

l(x, t) = 0 if t < 0. Clearly, non-zero critical points of J are positive weak
solution of (Pµ). Now, we observe that 0 is a local minimum of J . Indeed,
since uµ is a local minimum of I, one has I(uµ + v)− I(uµ) ≥ 0 for all v ∈ X
such that ‖v‖ < δ for some δ > 0. So, taking into account that

J(v) =
1

2
‖v−‖2 + I(uµ + v+)− I(uµ) ≥ 0

for all v ∈ X (see [1, pag.1 line 11]), one has J(v) ≥ 0 for all v ∈ X such that
‖v‖ < δ and our claim is proved.
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At this point arguing exactly as in [1], the functional J admits a positive
critical point vµ for which wµ = uµ + vµ is the second weak solution of (Pµ)
and the proof is complete.

Example 4.1. Fix N = 3 and let Ω =
{
x ∈ R3 : |x| < 1

}
. Then, the problem{

−∆u = u5 + 3
8

√
u in Ω,

u|∂Ω = 0,
(P )

admits at least two positive weak solutions uµ and wµ such that

∫
Ω

|∇uµ(x)|2dx <

9π2

25/2
and wµ > uµ. In fact, it is enough to apply Theorem 4.2 by choosing

q =
3

2
and taking into account that c2

∗

2∗ =
26

33π4
, cqq ≤

25/2

33/2π1/4
for which

µ∗ ≥ 9

256

(
π9

2

)1/4

>
3

8
.

Remark 4.4. We observe that we cannot apply [1, Theorem 2.3] to Problem
(P ) since no estimate of Λ was pointed out there (see also Remark 4.2).
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