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Abstract

The theory of maximal set-valued monotone operators provides a
powerful general framework for the study of convex programming and
variational inequalities. A fundamental algorithm for finding a root of
a monotone operator is the proximal point algorithm.

A lot of papers have been dedicated to this subject. Two princi-
pal classes of splitting methods are Peaceman-Rachford, and Douglas-
Rachford algorithms. Eckstein has presented a generalized form of the
proximal point algorithm — created by synthesizing the work of Rockafel-
lar with that of Golshtein and Tretyakov — and has shown how it gives
rise to a new method, generalized Douglas-Rachford splitting. Some re-
sults, about a connection between the proximal algorithm and Douglas-
Rachford splitting will be given.

We give a proof that Douglas-Rachford splitting is an application of
the proximal point algorithm. Using this fact we prove that Peaceman-
Rachford splitting is equivalent to applying the generalized proximal
point algorithm.
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Introduction.
For many maximal monotone operators T', the evaluation of inverses for

operators of the form I + AT, where A > 0, may be difficult. Now suppose
that we can choose two maximal monotone operators W and V such that
W+ V =T, but J&V and J‘A/ are easier to evaluate than J3. A splitting
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algorithm is a method that employs the resolvents JQV, Jf) of W and V, but
does not use the resolvent J3 of the original operator T. Here we consider
theDouglas -Rachford scheme of Lions and Mercier [9].

We shall present a result, which establishes a relation between two well-
known algorithms: proximal point algorithm and Douglas-Rachford splitting
algorithm.

Preliminary results.

We enumerate some concepts and main results, which will be used to get
our results.

Let H be a real Hilbert space with inner product (-, -) and associated norm
|| -]|. We consider a multi-valued operator T : H — 2. First we recall some
properties of the monotone and maximal monotone operators.

Theorem 1 (Minty [10]). A monotone operator T : H — 2His mazimal if
and only if R(I+T)=H.

For alternative proofs of Theorem 1,or stronger related theorems, see [12],[2]
or [7].

Given any operator A, let J4 denote the operator (I + A)~!. Given any
positive scalar A and an operatorT’, J3 = (I + AT)~! is called the resolvent of
T. An operator B : H — 2 is said to be nonezpansive if

g7yl < llar — ]| for all [z,y]. [a7, 1] € G(B).

Note that nonexpansive operators are necessarily single-valued and Lips-
chitz continuous (see [11]).
An operator C' : H — 2H is said to be firmly nonexpansive if

[y — y|| < (x1 — x,yr —y) for all [x,y], [z, y/] € G(C).

The following lemma summarizes some well-known properties of firmly
nonexpansive operators.

Lemma 2 (Rockafellar [13]). Let T : H — 2% be an operator. The
following statements are hold:

(i) All firmly nonexpansive operators are nonerpansive.

(i) T is firmly nonexpansive if and only if 2T — I is nonexpansive.

(iii) T is firmly nonexpansive if and only if it is of the form %(U—i—[), where
U is nonexrpansive.

(iv) T is firmly nonexpansive if and only if I —T is firmly nonexpansive.

We now give a critical theorem. The “only if” part of the following theorem
has been well-known for some time (see [13]), but the “if” part has appeared in
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[4]. The purpose here is to stress the complete symmetry that exists between
(maximal) monotone operators and (full-domained) firmly nonexpansive op-
erators over any Hilbert space.

Theorem 3 (Eckstein [5]). Let A be any positive scalar. An operator
T : H — 27 is monotone if and only if its resolvent Jp = (I + \T)7! is
firmly nonexpansive. Furthermore, T is mazimal monotone if and only if J3
is firmly nonexpansive and D(J3) = H.

Corollary 4. An operator T is firmly nonexpansive if and only if T—1 —1
is monotone. T is firmly nonexpansive with full domain if and only if T—1 —1T
s mazximal monotone.

Corollary 5. For any A > 0, the resolvent J3 of a monotone operator T
is single-valued. If T is also mazimal, then J3 is defined on all of H.

Corollary 6 (The Representation Lemma). Let A >0 and let T : H — 2H
be monotone. Then every element z € H can be written in at most one way
as x + Ay, where y € Tx. If T is mazximal, then every element z € H can be
written in exactly one way as x + Ay, where y € Tx.

Corollary 7. The correspondence from an operator T into (I +T)7 ! is a
bijection between the collection of mazximal monotone operators on H and the
collection of firmly nonexpansive operators on H.

Remark 8. Corollary 7 reminds us a result of Minty [10], but it is not
identical (Minty did not use the concept of firm nonexpansiveness; see also

[6])-

A root or zero of an operator T is a point x such that

0eTx.

Let zer(T) = T—*(0) denote the set of all such points. The zeroes of a
monotone operator are precisely the fixed points of its resolvents. In other
words the following result is true:

Lemma 9. Given any mazximal monotone operator T, real number A >0,
and x € H, we have 0 € Tz if and only if J}(x) = .

Decomposition: Douglas-Rachford splitting methods

We shall consider the Douglas-Rachford scheme of Lions and Mercier [9].

Let us fix someA > 0 and two maximal monotone operators W and V. The
sequence {z*} is said to obey the Douglas-Rachford recursion for \,\W and V
if
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L= JN 200 — D2 4 (I = J) 2",

Let [z%,v*] € G(V) be, for all k > 0, the unique element such that z* +
vk = 2k (by Corollary 6). Then, for all k, one has

I — J3)2F = af 4+ Mok — 2F = Mok,
\%

(2Jp — 1)zF = 22% — (2% + MoP) = 2% — M.

Similarly, if [y*,u*] € G(W), then J3) (y* + Au*) = y*.

In view of these identities, one may give the following alternative prescrip-
tion for finding z**! from z*:

(i) Find the unique [y**1, u*+1] € G(W) such that y* 1+ uFt1 = 2k — ok,

(ii) Find the unique [z*T1, v**1] € G(V) such that 21 + Akl = yF+1 4
pUILE

The analysis is centered on the operator

Sy =Jw o (210 =)+ (I = Jp),

where ”0” denotes mapping composition.
Thus the Douglas-Rachford recursion can be written as

2Rt = S‘),‘V’V(zk).

Lions and Mercier [9] showed that Sj,  is firmly nonexpansive, from which
they obtained the convergence of {z¥}. Their analysis can be extended by
exploiting the connection between firm nonexpansiveness and maximal mono-
tonicity.

Consider the operator

Qév,v = (Sﬂ\v,v)_l -1

Using the above algorithmic description (i)-(ii), we obtain the following
expression for the graph of S{/\Vy
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G(Sivv) = {[z+ M,y + M|z, 0] € G(V), [y, u] € GW),y + du =z — \v}.

A simple computation provides an expression for Qf/‘vy = (S‘),‘V,V)’1 —

I,wiyh its graph:

G(@Qwyv) = {ly + M,z —ylllz,v] € G(V), [y, u] € GW),y + du =z — M},

Given any Hilbert space H, a scalar A > 0, and the operators W and V on
H, we define Qév,v to be the splitting operator of W and V' with respect to

A. The following theorem establishes the maximal monotonicity of Qf/‘vyz

Theorem 10. If W and V are monotone then Qf/‘vy is monotone. If W

and V are mazimal monotone then Qév,v is mazximal monotone.
Combining Theorems 10 and 3 , we have the key Lions-Mercier result.

Corollary 11. If W and V are mazximal monotone, then Sé‘v,v =+
Q‘A,V,V)*l is firmly nonexpansive and is defined on all of H.
There is also a relationship between the zeroes of Q%/,v and those of W+V.

Theorem 12. Given A > 0 and the operators W and V on H,we have:

zer(Q%,yv) =7y ={z+ v € Va,—v € Wa} C {a+v|x € zer(W+V),v € Vz}.

In conclusion, given any zero z of Qf/‘vy, J{(2) is azero of W+V. Thus one
may imagine finding a zero of W 4+ V by using the proximal point algorithm
on Qév,v and then applying the operator J%/ to the result. In fact, this is
precisely what the Douglas-Rachford splitting method does.

Theorem 13. The Douglas-Rachford iteration

L= T 2J) — DR+ (I — JP)2"

s equivalent to applying proximal point algorithm to the maximal mono-
tone operator Q%/,v with the proximal point stepsizes A fized at 1, and ezxact
evaluation of the resolvents.

In conclusion the Douglas-Rachford splitting method is a special case of
the proximal point algorithm as applied to the splitting operator Q‘A,V,V.
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Generalized Proximal Point Algorithm

We present a scheme due to Golshtein and Tretyakov [6], which generalizes
proximal point algorithm. They consider iterations of the form

= (I = pi) 2" + prdp ("),

1)

where {pi}re C (0,2) is a sequence of over-or under-relazation factors.

Golshtein and Tretyakov also allow resolvents to be evaluated approxima-
tively, but, unlike Rockafellar, do not allow the stepsize A to vary with k,
restrict H to be finite-dimensional, and do not consider the case in which
zer(T) = @. The following theorem combines the results of Rockafellar and
Golshtein-Tretyakov.

Theorem 14 ( Eckstein [5]). LetT be a mazimal monotone operator on
H, and let {z*} be such that

2T = (I = pp) 2" + prw® for all k>0,

where

l[w® — (I + M\T) "2 (2")|| < &g for all k >0,
and {ex}, {px}, {M} C [0, +00) are sequences such that

Ei =) 7206k < 00, Ay = infr>0 pr >0, Ag = supy>q o <2,

A= inszo Ak >0.

Such a sequence {z*} is said to be conform to the generalized prowimal
point algorithm. If T possesses a zero, then {z*} converges weakly to a zero
of T. If T has no zeroes, then {z*} is an unbounded sequence.

We make some remarks:

- Theorem 14 states also that, in a general Hilbert space, the proximal
point algorithm produces an unbounded sequence when applied to a maximal
monotone operator that has no zeroes.

- In view of Theorems 14 and 12, we immediately obtain the following
Lions-Mercier convergence result:

If W4V has a zero, then the Douglas-Rachford splitting method produces
a sequence {zF} weakly convergent to a limit z of the form x + v, where
x € zer(W+V),veVa,and —v € Wa.
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- Using Remark 15, we deduce the following result:
Suppose W and V' are mazimal monotone operators and zer(W+V) = Q.
Then the sequence {z*} produced by Douglas-Rachford splitting is unbounded.

We intend to establish a relation between the Peaceman-Rachford
algorithm and the generalized proximal point algorithm presented
above.

The following result will be used in the next presentation. We adapt a
theorem, which was stated and proved in [1], in view of our goal.

Theorem 18. Assume that T is a maximal monotone operator on H and
zer(T) be a nonempty set. We consider that the following statements hold:

(i) 0 < A < Ag for all k € N*,

(i1) 0 < p < px < 2 for all k € N*.

Then the sequence {z*} generated by the rule (1) weakly converges to an
element of zer(T) and it is such that

lim ||zF — 2571 = 0.
k—o0

In the following analysis, we use the Peaceman-Rachford scheme of Lions
and Mercier [9]. Let us consider some A > 0 and two maximal monotone
operators W and V. The sequence {z*} is obtained by Peaceman-Rachford
algorithm if

= (273, — D)2y — )2~

(2)
Given any sequence satisfying (2), let [2*, v*] be, for all k > 0, the unique
element of G(V') such that

2P 4+ P = 2k,

The existence and uniqueness of this element follow from Corollaries 5, 6.
Then for all k, one has

(2J) — I)2% = 227 — (2% + 2oP) = 2F — MoF

Similarly, if [y*, u*] € G(W), then
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TN (F + Mb) = .
Using these relations, we can give the following alternative scheme for

finding z**! from z*:
(i) Find the unique element [y**1 u**1] € G(W)such that

yk—i-l 4 )\U,k+1 _ $k _ )\’Uk,

(ii) Find the unique element [z**1 v¥*1] € G(V) such that

$k+1 + )\,Uk+1 _ yk+1 _ )\,Uk+1

From (2) we obtain

L= 208 (200 — I)2F + 2(1 — JP) 2% — 2F.

This relation suggests us to use the operator

Sy =Jy o (2Jp —I)+ (I = Jp).
The Peaceman-Rachford recursion (2) can be written as follows:
U =28) (&) — 28 = (28, — 1)F"

(3)

Consider the operator

Qév,v = (SVAV,VY1 -1,

Since Theorem 10 implies that Qév,v is maximal monotone, we can define
the operator

Phy =20+ Quy) " —T=20+ Q) +(1-2)I.
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We rewrite (3) using Plf‘Vy, in the form

A= Py (2F) =200+ Qv (27) + (1 —2)2".

Theorem 19. The Peaceman-Rachford iteration

A= (275 — D2y — 1)zF

is equivalent to applying the generalized proximal point algorithm to the
mazimal monotone operator Qév,v with the proximal point stepsizes Ay fized
at 1 and the relaxzation factors py = 2 for all k > 1.

Proof. The Peaceman-Rachford iteration is

A= Py (),

which is just

A= (1-2)2% +2(1 + Qi) 1Y),

that is the generalized proximal point scheme (1) with py = 2 for all k£ > 1.
In view of the Theorems 18 and 12, we immediately obtain the following
result.

Corollary 20. If W +V has a zero, then the Peaceman-Rachford splitting
method produces a sequence {z*} weakly convergent to a limit z of the form
x + v, where x € zer(W +V), v €V and —v € W

Proof. From the Theorem 18, we obtain that the sequence {z*} converges
weakly to a limit z € zer(Q‘A,V’V). Applying Theorem 12, we have
z=1x+ v,
where z € zer(W +V), v € Ve and —v € Wz.
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