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NEW UNKNOWNS ON THE MIDSURFACE

OF A NAGHDI’S SHELL MODEL

Liliana Gratie

To Professor Dan Pascali, at his 70’s anniversary

Abstract

In this work, we revisit Naghdi’s model for linearly elastic shells,
introducing as new primary unknowns for the corresponding quadratic
minimization problem, the linearized change of metric, the linearized
transverse shear strain tensor, and Naghdi’s linearized change of cur-
vature tensor, associated with the displacement and linearized rotation
fields of the middle surface of the shell.

1 Introduction

The mathematical analysis of two commonly used two-dimensional linear shell
models, viz., the Koiter and Naghdi shell models, concerning existence, unique-
ness, and regularity results, is essentially based on a “displacement approach”.
A key ingredient in proving the existence of a solution for the corresponding
minimization problems is a fundamental lemma of J.L. Lions. The positive-
definiteness of the two-dimensional elasticity tensor and Korn’s inequality on
a surface then allow to apply the Lax-Milgram lemma.

Recently, another, and in a sense more realistic, formulation was proposed
and studied in [4], [5], [10], intuitively seen as a “deformation approach” yield-
ing “intrinsic equations”. On the theoretical side, the first step was made in
[4], where the authors considered from this new perspective the pure traction
problem of linearized three-dimensional elasticity, with the linearized strain
tensor as the primary unknown instead of the displacement itself. Their jus-
tification for a new weak version of the St Venant compatibility relations cru-
cially hinges on an H−2 -version of a classical theorem of Poincaré, which
replaces the lemma of J.L. Lions as the keystone in the classical study.
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lems
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The second step undertaken in [5], consisted in an extension to a surface of
these three-dimensional compatibility conditions. As such, it was a challenging
attempt, since all the mathematical “passages” from three dimensions to two
dimensions require some care. This new approach to linear shell theory, more
precisely to Koiter’s model, proposed as the new unknowns the linearized
change of metric and change of curvature tensors, instead of the displacement
field.

In addition to its mathematical novelty, such a method could release signif-
icant engineering applications. Since the constitutive equations of linear shell
theories are invertible, the new minimization problems recast with the new
more realistic unknowns can be easily written as minimization problems with
the stress resultants and bending moments as the only unknowns, which are
of high interest from the mechanical and computational perspectives.

In the present work, we focus on Naghdi’s model for linearly elastic thin
shells, by using this more versatile “deformation” approach. This article is
organized as follows. In Section 2, we recall some necessary notions of differ-
ential geometry and mathematical elasticity, and we describe Naghdi’s model.
Section 3 is devoted to the classical approach, with the primary unknowns as
the displacement field of the middle surface S and the linearized rotation field
of the unit normal vector along S.

Our basic idea, introduced in Section 4, consists in considering the new pri-
mary unknowns as the linearized change of metric, linearized transverse shear
strain tensor, and Naghdi’s linearized change of curvature tensor, associated
with displacement and linearized rotation fields of the middle surface of the
shell.

2 Naghdi’s shell model

In Naghdi’s approach [9], the shell is identified with a one-director Cosserat
surface, i.e., a surface endowed with a director field. P.M. Naghdi based his
derivation on two a priori assumptions (see [9]), one of a mechanical nature
about the stresses inside the shell, which is the same as in Koiter’s approach,
and one of a geometrical nature, different from the Kirchhoff-Love assumption
adopted by Koiter.

The mechanical assumption states that if the thickness is small enough,
then the state of stress is “approximately” planar and the stresses parallel to
the middle surface S vary “approximately linearly” across the thickness, at
least “away from the lateral face”.

The geometrical assumption states that the points situated on a line normal
to S should remain on a line and the lengths are unmodified along this line
after the deformation has taken place (as in Koiter’s derivation), but this line
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need no longer remain normal to the deformed middle surface.
This model takes into account membrane deformation and bending of the

middle surface, altogether with transverse shear deformations.
The unknowns of the linearized version of this problem are the displacement

of the points of the middle surface and the rotation field of the normal vector
to the middle surface.

To begin with, we recall some notations and definitions that will be sub-
sequently needed. As is customary in mathematical elasticity theory, Greek
indices or exponents: α, β, µ , etc. take their values in the set {1,2}, while
Latin indices or exponents: i, j, k, etc. take their values in the set {1,2,3},
and the summation convention on repeated indices and exponents is used; for
instance,

aαβστγστγαβ =
∑

α,β,σ,τ=1,2

aαβστγστγαβ and piηi =
∑

i=1,2,3

piηi .

Let (e1 , e2 , e3) be the canonical orthonormal basis of the three-dimensional
Euclidean space identified with R3. We note a · b the inner-product of
a,b ∈ R3, |a| =

√
a · a the associated Euclidean norm of a ∈ R3 , and

a ∧ b the exterior product of a,b ∈ R3.
Let ω be a domain in R2, i.e., an open, bounded, connected subset with

a Lipschitz-continuous boundary γ = ∂ω , the set ω being locally on one side
of γ . Let y = (yα) denote a generic point in the closed set ω̄ . The area
element in ω is dy and the partial derivatives with respect to the variable y
are denoted ∂α := ∂

∂yα
and ∂αβ := ∂2

∂yα∂yβ
.

Let θ : ω̄ ⊂ R2 → R3 be an injective and smooth enough mapping, such
that the two vectors aα(y) := ∂αθ (y) are linearly independent at all points
y = (x1, x2) ∈ ω̄ . They then form the covariant basis of the tangent plane
to the surface S := θ(ω̄) at the point θ (y) . The two vectors aα(y) , defined
by the relations aα(y) · aβ(y) = δα

β , form the contravariant basis of the same
tangent plane.

At each point θ (y) , we also introduce a third vector, normal to S at the
point θ (y) , with Euclidean norm one, defined by

a3(y) = a3(y) :=
a1(y) ∧ a2(y)
|a1(y) ∧ a2(y)| .

The triple
(
a1(y) , a2(y) , a3(y)

)
is the contravariant basis at θ (y) and

(a1(y), a2(y), a3(y)) is the covariant basis at the same point.
A general shell structure can be fully represented by a middle surface geom-

etry S := θ(ω̄) and the thickness at each point of its middle surface. We deal
only with shells of constant thickness 2ε . Note that Koiter’s equations are
often preferred for the numerical simulations of shells with “small” thickness,
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while Naghdi’s equations are generally favored for those of shells with ”mod-
erate” thickness. For a detailed study of shells and of the required differential
geometry, we refer to [3].

The reference configuration of a shell is the three-dimensional set Θ(Ω̄) ,
where Ω = ω × ]−ε, ε[ ⊂ R3 , and the mapping Θ : Ω̄ → R3 is defined by

Θ(y, x3) := θ(y) + x3a3(y).

The area element along the surface S = θ(ω̄) is
√

ady where a := det(aαβ(y)),
and

aαβ(y) := aα(y) · aβ(y) = ∂αθ (y)· ∂βθ (y)

are the covariant components of the metric tensor of the surface S (also named
the first fundamental form of S). The contravariant components of the metric
tensor of S are defined by aαβ = aα · aβ .

Note that the matrix (aαβ(y)) is positive-definite since the vectors aα(y)
are assumed to be linearly independent. In particular, there exists a positive
constant a0 such that 0 < a0 ≤ a(y) , for all y ∈ ω̄ .

Every metric notion on a surface, such as lengths of arcs, angles between
curves, and surface areas can be expressed in terms of its metric tensor, but a
surface is not determined by the three functions aαβ . In addition, one needs
to compute curvatures of curves drawn along it. The second fundamental form
provides this valuable information.

The covariant and mixed components of the curvature tensor of S (also
named the second fundamental form of the surface) are respectively defined
by

bαβ = a3 · ∂βaα and bβ
α = aβσbσα .

Finally, the Christoffel symbols of the surface S are defined by Γσ
αβ =

aσ · ∂βaα.
We assume for simplicity that the shell is made of an homogeneous isotropic

material and that the reference configuration Θ(Ω̄) is a natural state, i.e.,
stress-free. Hence, the material is characterized by its two Lamé constants
λ > 0 and µ > 0 . The contravariant components aαβστ of the “two-
dimensional” shell elasticity tensor, also named the constitutive tensor in en-
gineering literature, are then given by

aαβστ :=
4λµ

λ + 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ) .

This tensor is uniformly positive-definite: there exists a constant C > 0 such
that
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C
∑
α,β

|tαβ |2 ≤ aαβστ (y) tστ tαβ ,

for all y ∈ ω̄ and all symmetric matrices (tαβ) of order two.
Assume that the shell is subjected to applied forces acting only in its interior

and on its “upper” and “lower” faces Θ(ω̄ × {ε}) and Θ(ω̄ × {−ε}) , whose
resultant after integration across the thickness of the shell has contravariant
components pi ∈ L2(ω) . Assume that the lateral face of the shell is free,
i.e., the displacement is not subjected to any boundary condition there. This
means that we are dealing only with the pure traction problem for a linearly
elastic shell.

For a Naghdi shell, constant shear deformations are allowed across the
thickness of the shell, in the sense that the displacement of the point (θ(y) +
x3a

3(y)) is given by the vector ηi(y)ai(y)+ x3rα(y)aα(y), where ηi : ω̄ → R3

are the covariant components of the displacement field ηi ai of the middle
surface S and rα : ω̄ → R are the covariant components of the linearized
rotation field rα aα of the unit normal vector a3 along S. Therefore, in this
model, there are five unknowns defined on the middle surface of the shell: the
three functions ηi (as in Koiter’s model) and in addition, the two functions
rα .

Given a surface S = θ(ω̄) and a displacement field η = ηiai of S with
smooth enough covariant components ηi : ω̄ → R , the covariant components
of the linearized change of metric tensor are given by:

γαβ(η) :=
1
2
[aαβ(η) − aαβ]lin =

1
2

(∂αη · aβ + ∂βη · aα) .

The covariant components of Naghdi’s linearized change of curvature tensor
are given by:

χαβ(η, r) := [bαβ(η, r) − bαβ ]lin =
1
2

(∂αη · ∂βa3 + ∂βη · ∂αa3 + ∂αr · aβ + ∂βr · aα) .

The linearized transverse shear strain tensor which is specific to this type
of shells has the following covariant components:

δα3(η, r) :=
1
2

(∂αη3 + bσ
αησ + rα) =

1
2

(∂αη · a3 + r · aα) .

3 The classical approach

The “classical” unknowns (η , r) = ((ηi), (rα)) belong to the space

V(ω) := H1(ω) = [H1(ω)] 5 ,
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equipped with the norm:

‖ (η , r)‖V(ω) := {
∑

i

‖ ηi ‖2
1,ω +

∑
α

‖ rα ‖2
1,ω}1/2 .

Obviously, the space V(ω) is a Hilbert space.

The energy functional jN : V(ω) → R is defined by

jN (η , r) := 1
2

∫
ω

[ε aαβστγστ (η)γαβ(η) + ε3

3 aαβστχστ (η , r)χαβ(η , r)

+8ε µ aαβ δα3(η , r)δβ3(η , r)]
√

a dy − ∫
ω

piηi
√

a dy,

where the functions p = (pi) : ω → R3 take into account the given applied
body and surface forces acting on the shell, viewed as a three-dimensional
body.

The two-dimensional shell equations proposed by Naghdi [1963] then take
the form of a quadratic minimization problem:

Find (η∗ , r∗) = ((η∗
i ), (r∗α)) ∈ V(ω) such that j(η∗, r∗) = inf

(η,r)∈V(ω)
j(η, r ) .

Define the space of infinitesimal rigid displacements of the surface S:

Rig(ω) := { (η , r) ∈ V(ω) ; γαβ(η) = χαβ(η, r) = δα3(η, r) = 0 in L2(ω)}.

As shown by Coutris [7] (see also [1, Lemma 3.4]), the space Rig(ω) is also
given by:

Rig(ω) := { (η , r) ∈
V(ω); ηiai = a + b ∧ θ, rαaα = b ∧ a3, a ∈ R3, b ∈ R3}.

We will assume that the linear form L(η, r) =
∫
ω

piηi
√

ady associated with

the applied forces satisfies the compatibility conditions:

L(η, r) = 0 for all (η, r) ∈ Rig(ω) ,

since these are clearly necessary for the existence of a minimizer of the energy
functional jN over the space V(ω) . Then, the above minimization problem
becomes well-posed over the quotient space V̇(ω) := V(ω)/Rig(ω) , viz.,

Find (η̇∗, ṙ∗) ∈ V̇(ω) such that jN (η̇∗, ṙ∗) = inf
(η̇,ṙ)∈V̇(ω)

j(η̇, ṙ ) .
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In order to establish the existence and uniqueness of a minimizer of the
energy functional over the space V̇(ω) , it suffices, thanks to the positive-
definiteness of the two-dimensional shell elasticity tensor, to show that the
mapping

(η̇, ṙ) ∈ V̇(ω) → ‖ (γ(η̇), χ(η̇, ṙ), δ(η̇, ṙ) )‖0,ω ,

where γ(η̇) = (γαβ(η̇)) , χ(η̇, ṙ) = (χαβ(η̇, ṙ)) , δ(η̇, ṙ) = (δα3(η̇, ṙ)) , is a
norm over the quotient space V̇(ω) , equivalent to the quotient norm ‖ . ‖V̇(ω)

.
Define the norms:

‖ (γ, χ, δ)(η, r) ‖0,ω =

{
∑
α,β

‖ γαβ(η) ‖2
0,ω +

∑
α,β

‖χαβ(η, r) ‖2
0,ω +

∑
α

‖ δα3(η, r) ‖2
0,ω}1/2 ,

for all (γ, χ, δ) ∈ L2
sym(ω) × L2

sym(ω) × L2(ω) ,

‖ (η , r)‖V(ω) := {∑
i

‖ ηi ‖2
1,ω +

∑
α
‖ rα ‖2

1,ω}1/2 for all (η, r) ∈ V(ω) ,

‖ (η̇, ṙ) ‖V̇(ω) := inf
(ξ,s)∈Rig(ω)

‖ (η , r) + (ξ, s) ‖V(ω)

for all (η̇, ṙ) ∈ V̇(ω) = V(ω)/Rig(ω) .

The first stage is to establish a basic Korn inequality on a surface due to
[1] over the space V(ω) :

Theorem 1. Let there be given a domain ω ⊂ R2 and an immersion θ ∈
C3(ω̄;R3) . Then there exists a constant c = c(ω, θ) > 0 such that

‖ (η, r) ‖V(ω) ≤ c {
∑

i

‖ ηi ‖2
0,ω +

∑
α

‖ rα ‖2
0,ω + ‖ (γ, χ, δ)(η, r) ‖2

0,ω}1/2

for all (η, r) ∈ V(ω) .

Proof. The essence of this inequality is that the two Hilbert spaces V(ω) and

W(ω) := {(η, r) = ((ηi), (rα)) ∈ L2(ω) = [L2(ω)]5;
γαβ(η) ∈ L2(ω), χαβ(η, r) ∈ L2(ω), δα3(η, r) ∈ L2(ω)}

coincide. The keystone of the proof is a fundamental Lemma of J.L. Lions
(see [8]):
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Let Ω be a domain in Rn and let v be a distribution on Ω . Then
{

v ∈ H−1(Ω) and ∂iv ∈ H−1(Ω), 1 ≤ i ≤ n
} ⇒ v ∈ L2(Ω).

The second stage consists in establishing another basic Korn inequality on
a surface, this time over the quotient space V̇(ω) :

Theorem 2. Let there be given a domain ω ⊂ R2 and an immersion θ ∈
C3(ω̄;R3) . Then there exists a constant ċ = ċ(ω, θ) such that

‖ η̇, ṙ ‖V̇(ω) ≤ ċ ‖ (γ, χ, δ)(η̇, ṙ) ‖0,ω

for all (η̇, ṙ) ∈ V̇(ω) = V(ω)/Rig(ω) .
Thanks to the Korn inequality and the positive-definiteness of the elasticity

tensor, the existence and the uniqueness of a solution to the Naghdi equations
follow.
Remarks. (a) In [2], Blouza and Le Dret extended these results to Naghdi’s
equations for shells whose middle surface has little regularity, in the sense that
the mapping θ ∈ C3(ω̄;R3) need only be in the space W 2,∞(ω;R3) , hereby
allowing the middle surface to have discontinuous curvatures. Their main
idea was to consider the unknowns of the problem as vector-valued functions
instead of identifying them with their covariant or contravariant components,
as is usually done in the classical approach.

(b) Non-homogeneous and anisotropic linearly elastic materials are likewise
amenable to Naghdi’s approach.

(c) Other shell models that also include constant shear deformations differ
from Naghdi’s model only by some strictly positive factor appearing in front of
the “shear strain part”

∫
ω

aαβ δα3(η , r)δβ3(η , r)
√

a dy , and the analysis made

in [1] applies as well to these cases.

4 Formulation of the existence problem with the new
unknowns

Our main objective is to introduce the following new unknowns:
γαβ(η) ∈ L2(ω) = covariant components of the linearized change of metric

tensor,
χαβ(η, r) ∈ L2(ω) = covariant components of the linearized change of

curvature tensor,
δα3(η, r) ∈ L2(ω) =covariant components of the linearized transverse shear

strain tensor.
The new energy functional will be then written as
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EN (γ, χ, δ) :=
1
2

∫
ω

[ε aαβστγστγαβ +
ε3

3
aαβστχστχαβ + 8ε µ aαβ δα3δβ3]

√
ady − L(γ, χ, δ) ,

and the new space for the “admissible” unknowns is

T(ω) := {(γ, χ, δ) ∈ L2
sym(ω) × L2

sym(ω) × L2(ω) ; R(γ, χ, δ) = 0 in
H−2(Ω̂)} ,

where R(γ, χ, δ) = 0 are ad-hoc compatibility conditions. Accordingly, the
new minimization problem reads:

Find (γ∗, χ∗, δ∗) ∈ T (ω) such that EN (γ∗, χ∗, δ∗) = inf
(γ,χ,δ)∈T(ω)

EN (γ, χ, δ)
.

To find the compatibility relations R(γ, χ, δ) = 0 , we will use two basic
tools, namely, the weak versions of a classical theorem of Poincaré and of St
Venant compatibility conditions.

In [4], P.G. Ciarlet and P. Ciarlet Jr. consider the linearized strain tensor
e ∈ L2

sym(Ω) as the primary unknown instead of the displacement, for the pure
traction problem of linearized three-dimensional elasticity. Their main objec-
tive was to characterize those symmetric 3× 3 matrix fields with components
eij ∈ L2

sym(Ω) that can be written as

eij =
1
2
(∂jvi + ∂ivj) ,

for some v = (vi) ∈ H1(Ω) , where Ω is a domain in R3 . Their main results
are the following, the second one being obtained as a consequence of the first
one:

Theorem 3 (Poincaré ’s Theorem in weak form). Let Ω be a simply-connected
domain in R3 . Let hk ∈ H−1(Ω) be distributions that satisfy ∂lhk = ∂khl in
H−2(Ω) . Then there exists a function p ∈ L2(Ω) , unique up to an additive
constant, such that hk = ∂kp in H−1(Ω) .

Theorem 4 (weak form of St Venant compatibility conditions). Let Ω be a
simply-connected domain in R3 . If e = (eij) ∈ L2

sym(Ω) satisfy the compati-
bility conditions:

Rijkl(e) := ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω) ,

then there exists v = (vi) ∈ H1(Ω) such that e = 1
2 (∇vT + ∇v) in L2

sym(Ω) ,
or
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eij =
1
2
(∂jvi + ∂ivj) ,

and all other solutions differ by infinitesimal rigid displacements.

Remark. For smooth functions, these conditions go back to St Venant [1864].

In our case, the analog of Theorem 4 takes the following form:

Theorem 5. Let ω ⊂ R2 be a simply-connected domain and an injective
immersion θ ∈ C3(ω̄;R3) . There exist ε0 > 0 and a linear continuous mapping

R : L2
sym(ω) × L2

sym(ω) × L2(ω) → H−2(Ω̂),

where Ω̂ = ω × ]−ε0, ε0 [ and H−2(Ω̂) := (H−2(Ω̂))6 , such that a pair of
symmetric matrix [γ, χ] ∈ S2

sym(ω) × S2
sym(ω) and vector [δ] ∈ R2 fields

satisfy
R((γαβ), (χαβ), (δα3)) = 0 in H−2(Ω̂),

if and only if there exists a vector field (η, r) ∈ V(ω) such that

γαβ = γαβ(η) , χαβ = χαβ(η, r ) , δα3 = δα3(η, r ) in L2(ω).

Then any other solution differs by an infinitesimal rigid displacement.
Surprisingly, this approach provides “as by-products” new proofs of the

Korn inequalities on a surface of Theorem 1. First, one proves:

Theorem 6. Let there be given a simply-connected domain ω ⊂ R2 and an
immersion θ ∈ C3(ω̄;R3) . Define the space

T(ω) := {(γ, χ, δ) ∈ L2
sym(ω)×L2

sym(ω)×L2(ω); R(γ, χ, δ) = 0 in H−2(Ω̂)},
Given any element (γ, χ, δ) ∈ T(ω) , there exists a unique equivalent class

(η̇, ṙ) in the quotient space V̇(ω) such that

γ(η̇ ) = γ , χ(η̇, ṙ) = χ in L2
sym(ω) , and δ(η̇, ṙ) = δ in L2(ω).

Then the mapping

H : T(ω) → V̇(ω) , H(γ, χ, δ) := (η̇, ṙ)

is an isomorphism between the Hilbert spaces T(ω) and V̇(ω) .
The Korn inequalities are then obtained as simple corollaries of this theo-

rem:
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Theorem 7. Let there be given a simply-connected domain ω ⊂ R2 and an
immersion θ ∈ C3(ω̄;R3) . The fact that the mapping H : T(ω) → V̇(ω) is
an isomorphism implies both Korn’s inequalities on a surface, i.e.,

‖ (η, r) ‖V(ω) ≤ c {∑
i

‖ ηi ‖2
0,ω +

∑
α
‖ rα ‖2

0,ω + ‖ (γ, χ, δ)(η, r) ‖2
0,ω}1/2

for all (η, r) ∈ V(ω) , and

‖ (η̇, ṙ )‖V̇(ω) ≤ ċ ‖ (γ, χ, δ)(η̇, ṙ) ‖0,ω for all (η̇, ṙ) ∈ V̇(ω) = V(ω)/Rig(ω).

We are now in a position to answer the main question addressed here,
at least for the pure traction problem for a linearly elastic shell modeled by
Naghdi’s equations. Recall that in this case, the quadratic functional jN is to
be minimized over the whole space V(ω) , since we did not impose boundary
conditions.

Theorem 8. Given a simply-connected domain ω ⊂ R2 and an immersion
θ ∈ C3(ω̄;R3) , define the quadratic functional EN : L2

sym(ω) × L2
sym(ω) ×

L2(ω) → R by

EN (γ, χ, δ) :=
1
2

∫

ω

[ε aαβστγστγαβ +
ε3

3
aαβστχστχαβ + 8ε µ aαβ δα3δβ3]

√
ady − L(γ, χ, δ) .

Then the minimization problem

Find (γ∗, χ∗, δ∗) ∈ T(ω) such that EN (γ∗, χ∗, δ∗) = inf
(γ,χ,δ)∈T(ω)

EN (γ, χ, δ)
.

has one and only one solution. Furthermore,

(γ∗, χ∗, δ∗) = (γ(η̇∗), χ(η̇∗, ṙ∗), δ(η̇∗, ṙ∗)) ,

where (η̇∗, ṙ∗) is the unique solution of the “classical” minimization problem:

Find (η̇∗, ṙ∗) ∈ V̇(ω) := V(ω)/Rig(ω) such that
jN (η̇∗, ṙ∗) = inf

(η̇,ṙ)∈V̇(ω)
j(η̇, ṙ) .

The detailed proofs of the results presented here can be found in [6].
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