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ON SOME DIOPHANTINE EQUATIONS
(I11)

Diana Savin

Abstract
In this paper we study the Diophantine equations
cr(f+42fg*+49g") + 28d, (f°g + 7fg%) = m”,
where (ci,d,) are solutions of the Pell equation ¢®—7d*= 1.
1. Preliminaries.
We recall a classical result in [1], page 150 and our previous results in
[7].
1.1. For the quadratic field Q(\/7), the ring of integers is Euclidian with

respect to the norm.

4 —n* = Ty? has an infinity of integer solutions.

1.2. The equation m
1.3. The equations of the form
(1) ex(f* +42f%¢> +49¢%) + 28di(f?g + 7fg°) = m?,
where (cy, dy,) is a solution of the Pell equation u®—Tv? = 1, has an infinity
of integer solutions.

2. Studying the equation (1)

Let us fix y as a component of the solution of the equation m*—n* = 732.

Then we have the following result:
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Proposition 2.1.  The only cases for which, from an integer solution
(m,n,y) of the equation m* — n* = Ty, we get integer solutions for the
equations (1) is k =3 (mod 4).

Proof. In [7] we have proved that the equation m* — n* = 7y? has an

infinity of integer solutions.

We know from 1.1. that the ring of algebraic integers A = Z [\/ﬂ of the
quadratic field Q (\/7) is Euclidian with respect to the norm N, N (a+4bv/7) :=
| a® — 767 .

We study the equation m* —n* = 7y? in the ring Z [\/ﬂ . This equation
has at least a solution: m = 463, n = 113, y = 80880. But then it has an

infinity of integer solutions.

Consider m* — n* = 7y? written as (m? — yv/7)(m? + yv/7) = n*.

In [7], we have proved that m? + yv/7 and m? — y+/7 are prime to each
other in Z [\/ﬂ .

This implies that there exists f + ¢gv/7 € Z [\/ﬂ and there exists k € Z
such that

m? + YT = (e + deV/T)-(f + gv/7) " with
o+ dpvT e {x(8+3vD)T  hez),

(8,3) being the fundamental solution of the Pell equation u? — 7v? = 1.
We obtain the equation:

m? +yVT = (cx + dpVT) - (f* + 4f2gVT +42f29 + 28 f¢*V/T + 49g%),
which is equivalent to the system:

m? = ¢ (f*+42f%¢% + 49¢%) + 28dy, (f3g + 7f¢°)
y=di (f*+42f29% + 49¢*) + 4dcr (P9 +Tf9?) .

4

By 1.2., the equation m* — n* = 7y? has an infinity of integer solutions.

Hence, the system

m? = cp (f4+42f%¢% + 49¢%) + 28dy, (f3g + 7f¢°)
y =dy, (f*+42f29g +49g*) + 4ex (f39 + 719°)

has an infinity of integer solutions. Then, the equation

m? = ¢, (f*+42f2¢% +49¢*) + 28d, (f39 + 7f¢°)
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has an infinity of integer solutions.
We want to find those integers k, such that, from a solution of the
equation m* — n* = 7Ty?, we can get solutions for the system:

m? = ¢, (f*+42f2¢% +49¢*) + 28di, (39 + 7f¢°)
y=di (f*+42f2g% + 49¢*) + 4cr (fP9+ Tfg?) .

The system has been obtained from: m?+yv/7 = (¢, +dp\V/7)- (f + gﬁ)4 ,
which is equivalent to the equation: m? +y/7 = (co+ doﬁ)k+1-(f + gﬁ)4 ,

keZ.

First, we give an example. A solution of the equation m*

—nt =Ty? is
m = 463, y = 80880, n = 113.Using this solution, we can get a solution for

the equation: m? + yv/7 = (co +do V7)1 (f + gﬁ)4, k € Z ( where ¢y = 8,
do=3), namely f =15, g=4, k= —1.

For k = 3, the equation m? —l—yﬁ = (co +d0\/7)k+1 . (f + gﬁ)4 becomes:

m? + yV/T = [(8f + 21g) + (8g+ 3) V7] .

8f+21g=15 S . _
Sg+3f—d4 which implies f = 36, g = —13.
Analogously, for k = 7, we obtain: f = 561, g = —212.

We succeed to obtain a general result.
The equation

‘We obtain:

m? + yv/7 = (co + doVT)*F TV (f + g/T)4
is equivalent to the equation:
m® +yVT = (ep + dp VD (f + gV,
and we obtain:
m? + V7 = [(fer +Tgd ) + (ger + fd V]
We counsider the same solution (463, 15,4) and we get that the system:

kau + 7gdk| =15
fdg 4+ gep =4

has the integer solution: g = 4c¢y, — 15dy,; f = 15¢;, — 28dy,..
In general, for a,b € Z, the system:
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few +7gdp =a
fdku + gCp = b
has the solution: f = —7bd, + acy , g = bep — ady, in Z.

In conclusion, in the case k = 3 ( mod 4 ), for each solution of the
equation m* —n* = 7y?, we get an infinity of integer solutions for the system:

y=Adcr (f39+T7f9%) + di (f* +42f%¢% + 49%)
m? = ¢y, (f*+42f%9% +49g*) + 28dy. (f29 + 7f9?),

therefore, an infinity of integer solutions for the equation

m? = cp (f4+42f%¢% + 49¢%) + 28dy, (139 + Tfg°) .

Now we consider the cases k # 3 ( mod 4 ).
We use the following notations: f4+42f2¢%+49¢* = w and f3g+7fg> =

The system:

y=Adc, (f39+Tf9%) +di (f* +42f%¢% + 49¢%)
m? = ¢, (f* +42f29 + 499%) + 284y, (39 + 7f°)

is equivalent to the system:

depv + drpu =y
28d,v + cpu = m2.

Then u being an integer number, we get u = —7dgy + cym? and v =
(cxy — dpm?) / 4.
When is v an integer number?
We take cx + diV/7 = (co + doVT)* Tk € Z, ¢y = 8, dy = 3, and we
obtain the
equalities:

{ e = 1 [(co + dov/D ! + (co — dov/T) ]

keZ.
di = 2_\1/7 [(co+ do V) — (co — do\/?)kJrl] 1€

These are equivalent to the equalities:

cp =8+ CF, 9785+ Ot 9272883 L
dp = (k+1)-88-3+C3, | -8-2.3%.74+ Cp, | -8"4.35.72 + .
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By computing these values, we obtain the following result:
If k is an odd number, then ¢ is an odd number too ( ¢ = +1 ( mod
8)) and di
is an even number (dy =0 ( mod 8 )).
If k is an even number, then ¢ is an even number ( ¢, = 0 ( mod 8 ))
and dj, is an
odd number ( d = £3 ( mod 8 )) and knowing that m is an odd number
we obtain that ¢,y — dim? is an odd number. This implies that v is not an
integer number.
If k is an odd number, k¥ = 1( mod 4), then d, =0 (mod 4 ), y =0 (
mod 4 ),
therefore cpy — dpm? = 0 ( mod 4 ). This implies v € Z.
Then the system:

fA4+42f%g% +49¢9* = u
fPa+7fg° =v

is equivalent to the system:

{ fA+42f%9% + 49¢* = —Tdpy + cpm?
cry—drm?
f39+7f93: kY 4km .

Let s be the least common divisor of u and v. We prove that s = 1. If

s > 1, we take a prime divisor s; of s.Since s1/u and s1/v, we get that s; /
(4egv + di-u) and s1/ (28dy-v + cx-u), hence s1/ y and s1/ m?, therefore s;/

n?, in contradiction with the assumption (m,n) = 1. Therefore, s = 1.

We come back to the system:

fA442f%¢% +49¢9* = u
fRg+7fg> =v.

We have the equation
vft —ufdg+420f2¢% — Tufg® + 49vg* = 0.

This is equivalent to:

v-(§>4 - u(§>3 + 421)-(5)2 — 7wl 49v =0,
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We denote 5 = t and we get the equation vt* —ut?+42vt% —Tut+49v = 0.
Let ¢ = vt* — ut® + 420t% — Tut + 49v be a polynomial in Z [t] . We may
take a
monic polynomial p;deduced from ¢ :

e1(t) =vdp (L) =0’ [U- (%)4 - u (%)3 + 420- (%)2 — Tv-£ +49v| hence

v

o1 = t* —ut® + 42022 — Tuv?t + 490t € Z[t].

We consider 7 = t* —ut® € Z7 [t] . The only divisor of degree 1 < 2 of
v € 2y [t]
isg =t —m.
We search for a representative of @ ( in Z7) found in the interval(—%; %] ,
therefore in [—3, 3].
But u = —7dgy + cym?. This implies u = cpym?(mod 7). As ¢ = 1(mod
7), we have
u = m?(mod 7). Knowing that, for any m € Z, m? = 1,2 or 4(mod 7), we
obtain that u = 1,2 or —3(mod 7), hence g=t—lorg=t—2org=1t+3
is a divisor of ;.
Case I: g = ¢t — 1 implies that ¢; = (t — 1)-p2, with ¢ € Z[t], hence
¢ = Lp1(vt) = & (vt — 1)-pa(vt). Therefore L € Q is a root of .

We come back at the notation established and we get g = vf.
4 2,2 4 _
But f +é:132f g +3499 =u
fPa+7fg"=v

FH1 4 4207 +4901) = u
A +7?%) =1,

, therefore, we obtain :

The only integer solutions of this system are f € {—1,1}, v =0,
g=0,u=1.
Case II: g = ¢ — 2 implies that ¢; = (t — 2)-p2, with @3 € Z[t], hence
¢ = Z5-¢1(vt) = Z5(vt — 2)-p2(vt). Therefore 2 € Q is a root of .

We obtain g = f—;
If g € Z, knowing that f3g + 7fg® = v, we get f*(4 + Tv?) = 8.The
equation does not have integer solutions.

Case IIL: g = ¢ + 3 implies that ¢1 = (t + 3)-p2, with @9 € Z ][],
hence

=5 p1(vt) = L (vt +3) - pa(vt). Therefore to = —3 is a root of .
fv

Then we get g = —-
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If g € Z, from f3g+7fg> = v, we get f4(9+ 7v?) = —9. This
equation
does not have integer solutions.
We come back to the cases I and IT and we obtain f € {—1,1}, v =0,
9=70,
u = 1.This implies y = dg, m? = ¢, n € {—1,1}.
We look for m € Z such that m2 = ¢,.
Knowing that £ =1 ( mod 4 ), we obtain:
cp = % {(co + dm/?)kJrl + (co — doﬁ) k+1] This implies:

cp = 842, 8974 O, 85739272 4 L (9:7) ", therefore
cr =635 ( mod 8 ), hence ¢, =7 ( mod 8 ). Then there is not an
integer m such that m? = c.
From the previously proved, we got that ¢;does not have divisors
of degree 1,
therefore ¢1does not have integer roots. This implies that ¢ does not have

rational
roots. Hence, the system:

fH442f2¢% +49¢* = u
fPg+7fg° =v
does not have nontrivial integer solutions.
In conclusion, in the case k =1 ( mod 4 ), for each solution of

the equation

m?* —n* = 7y?, we do not get integer solutions for the equation:

m? = ¢, (f* +42f29% + 49¢*) + 28di (f39+ 7fg°) .
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