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AN OPTIMAL METHOD OF GALERKIN

TYPE FOR DIFFUSION-DISPERSION
PROBLEMS

Cristina Sburlan

Abstract

The aim of this paper is the study of steady state fluid flow and
transport (diffusion and dispersion) of pollutants in porous media. The
mathematical model of this phenomena yields to some elliptic equations
with boundary conditions. In this paper we present a projection method
of Galerkin type for solving such elliptic equations. The originality of
the work consists in the choice of the system of functions used for the
theoretical discretization, which is a complete system of eigenfunctions
of the duality map between a Hilbert space and its dual. This choice is
optimal because the discretization system is orthonormal, and therefore
we don’t need to use Gramm-matrix preconditioning. Using the prop-
erties of the duality map and the fact that the embedding of the space
H1(Ω) in L2(Ω) is compact, we can also estimate the error obtained by
the method in a easier way. We use this method for finding the weak
solution of the diffusion-dispersion problems, where the duality map is
one of the operators involved in the studied equations.
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1 Diffusion-Dispersion Problem Formulation

The problem formulation of steady state diffusion and dispersion of pollutants
is based on two elliptic problems: the diffusion equation (the fluid flow) and
the dispersion (transport) equation. First we will present these mathematical
models.

Let Ω be a bounded domain in R3, with smooth enough boundary ∂Ω
such that we can apply Green’s formula and Sobolev-Kondrashov embedding
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theorem. We denote by v = (v1, v2, v3) the velocity that generates the flow
and by p the pressure of the fluid. Then p satisfies the following diffusion
problem: ⎧⎨

⎩
∇ · v ≡ −∇ · D∇p = f in Ω
p = p0 on Γ
−D∇p · n = p1 on ∂Ω \ Γ,

(1)

where Γ ⊆ Ω with meas(Γ) > 0; D = (dij)1≤i,j≤3 (the permeability of porous
media) is a symmetric matrix defined in Ω̄ and dij ∈ C1(Ω̄), ∀ 1 ≤ i, j ≤ 3; n
is the exterior normal unit vector to ∂Ω; p0 and p1 are given functions and f
is the given source term. We assume that D satisfies the ellipticity condition

3∑
i,j=1

dijξiξj ≥ λ|ξ|2, λ > 0, ξ ∈ R3,

where by | · | we denote the euclidian norm on R3.

Denote now by c the concentration of a chemical dissolved in the fluid,
which is distributed due to convection-diffusion-dispersion processes. Then,
the steady state distribution of c (the transport equation) is described by the
following problem: ⎧⎨

⎩
−∇ · A∇c + ∇ · (bc) + γc = g in Ω
c = c0 on Γ
(−A∇c + bc) · n = c1 on ∂Ω \ Γ,

(2)

where b is the advection vector field; A = (aij)1≤i,j≤3 is the diffusion-dispersion
tensor which we assume that is a symmetric matrix defined in Ω̄, aij ∈ C1(Ω̄),
∀ 1 ≤ i, j ≤ 3; γ ∈ C(Ω̄), γ ≥ 0; c0, c1 and g are given functions. We also
assume that A satisfies the ellipticity condition

3∑
i,j=1

aijξiξj ≥ λ|ξ|2, λ > 0, ξ ∈ R3.

We can suppose, without losing the generality, that c0 = 0, because making
the translation c − c0, we arrive to an equivalent problem with homogeneous
Dirichlet conditions on Γ.

2 Weak Solutions for Diffusion-Dispersion
Problems

We will define the weak solutions for problems (1) and (2), and further we
will describe a projection method to approximate the weak solutions. First,



AN OPTIMAL METHOD 93

we remark that the two problems presented above are of the same type, so
we will present the method only for problem (2) (problem (1) can be solved
similarly).

Denote now by H := L2(Ω) and V := {v ∈ H1(Ω)|v = 0 on Γ}. Then, H
and V are real Hilbert spaces with respect to the scalar products (see [5]):

(u, v) :=
∫

Ω

u(x)v(x)dx, < u, v >:=
∫

Ω

∇u(x) · ∇v(x)dx

and V ↪→ H with compact embedding by Sobolev-Kondrashov theorem.

Denote by u the solution of problem (2). Consider the operator L : V → V

Lu(x) := −∇ · A(x)∇u(x) + ∇ · (b(x)u(x)) + γ(x)u(x) =

= −
3∑

i,j=1

∂

∂xj

(
aij (x) · ∂u

∂xi
(x)

)
+

3∑
i=1

∂

∂xi
(b(x)u(x)) + γ (x) · u (x) , x ∈ Ω.

Then, the equation −∇ · A∇u + ∇ · (bu) + γu = g in Ω, becomes

Lu(x) = g(x), x ∈ Ω, (3)

and L is an elliptic operator.
The weak solution of problem (2) is a function u ∈ V such that

(Lu, ϕ) = (g, ϕ), ∀ϕ ∈ V, (4)

or, equivalently (by Green’s formula)

∫
Ω

⎡
⎣ 3∑

i,j=1

aij(x) · ∂u

∂xi
(x) · ∂ϕ

∂xj
(x) + b(x)u(x)divϕ(x) + γ (x) u (x) ϕ(x)

⎤
⎦ dx =

= (g, ϕ) +
∫

∂Ω\Γ

c1(x)ϕ(x)ds, ∀ϕ ∈ V.

It is known that problem (4) has an unique weak solution (see [5], p. 50–51).

3 Numerical Projection Method

We will approximate the weak solution using a discretization of the problem.
For this, we need the following result (see [5], p. 63):
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Theorem 1. Let V and H be two real Hilbert spaces (H identified with its
dual H∗), V being compactly embedded in H. Then there exist the sequences
{ϕn} ⊂ V and {λn} ⊂ (0,∞) such that:
(i) {ϕn} is an orthogonal basis in V ;
(ii)

{√
λnϕn

}
is an orthogonal basis in H;

(iii) {λnϕn} is an orthogonal basis in V ∗;
(iv) {λn} is a monotone increasing sequence that diverges to +∞.

We have V ↪→ H ↪→ V ∗. From the proof of this theorem (see [5]), we know
that λn are the eigenvalues of the duality mapping J : V → V ∗, and ϕn are
the corresponding eigenfunctions.

Remember the following well-known results:

Lemma 1. If VN is a finite dimensional subspace of V with the basis
ϕ1, ..., ϕN , then for any u ∈ V , there exists a unique uN ∈ VN satisfying:

< u − uN , ϕ >V = 0, ∀ϕ ∈ VN . (5)

( uN is called the orthogonal projection of u on VN ).

Equivalently, we say that uN is the best approximation of u in VN in the
norm of V , i.e.

‖u − uN‖V = inf
ϕ∈VN

‖u − ϕ‖V . (6)

In our case (H := L2(Ω) and V := {v ∈ H1(Ω)|v = 0 on Γ}), we have that
J = −∆, and consider the system {ϕn}n≥1 obtained from the Theorem 1.

Denote by a : V × V → R,

a(u, v) =
∫
Ω

[
3∑

i,j=1

aij(x) · ∂u

∂xi
(x) · ∂v

∂xj
(x) + b(x)u(x)divv(x) +

+γ (x)u (x) v(x)]dx, u, v ∈ V. (7)

In the case when there is no advection (so b = 0 on Ω), we easily see that
a (u, v) is a scalar product on V , and denote this product by (·, ·)V and the
induced norm by ||| · |||V .

Let now N ∈ N∗ and SN(Ω) be the space generated by the eigenfunctions
ϕ1, ϕ2, ..., ϕN .

Consider instead of VN from the above theorem, the space SN (Ω). In this
case, the matrix G = (Gij), Gij = (ϕi, ϕj)V is the unity matrix, because
{ϕi}i=1,2,...,N form an orthonormal system.
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Denote by TN : V → SN (Ω) the operator which satisfies:

(u − TNu, ϕ)V = 0, ∀ϕ ∈ SN (Ω) (8)

or equivalently,
|‖u − TNu‖|V = inf

ϕ∈SN(Ω)
|‖u − ϕ‖|V . (9)

Now we state the approximate problem corresponding to the problem (4):

Find uN ∈ SN (Ω) such that:

(uN , ϕ)V = (g, ϕ) +
∫

∂Ω\Γ

c1(x)ϕ(x)ds for any ϕ ∈ SN (Ω) . (10)

Because uN ∈ SN (Ω), we have that

uN =
N∑

i=1

αiϕi (11)

and the relations (10) and (11) lead us to the algebraic system:

N∑
i=1

αi (ϕi, ϕj)V = (g, ϕj) +
∫

∂Ω\Γ

c1(x)ϕ(x)ds, j = 1, 2, ..., N,

where αi are not known and must be determined.

Further, we will prove the existence, the uniqueness and the error estima-
tion for approximate problem (10).

Theorem 2. In the above conditions, we have that
(i) If g ∈ L2 (Ω), there exists an unique uN ∈ SN (Ω) satisfying (10);
(ii) If u is the solution of problem (4) and uN ∈ SN (Ω) satisfies (10), then
u − uN satisfies the relation (8), i.e. uN = TNu and we have:

|‖u − uN‖| = inf
ϕ∈SN (Ω)

|‖u − ϕ‖| . (12)

Proof. (i) As SN (Ω) ⊂ V , (·, ·)V is also a scalar product on SN (Ω). For a
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fixed g in L2 (Ω), ĝ (ϕ) := (g, ϕ)+
∫

∂Ω\Γ
c1(x)ϕ(x)ds is a linear and continuous

functional on SN , and by Riesz-Frechet theorem, it results that equation (10)
has a unique solution in SN (Ω), for any g ∈ L2 (Ω).

(ii) By (4) and (10), uN satisfies:

(u − uN , ϕ)V = 0 , ∀ϕ ∈ SN (Ω) (13)

We have that

|‖u − uN‖|2 = (u − uN , u − uN )V .

From (13), for any ϕ ∈ SN (Ω) , we have:

|‖u − uN‖|2 = (u − uN , u − ϕ + ϕ − uN)V = (u − uN , u − ϕ)V +(u − uN , ϕ − uN)V .

But (u − uN , ϕ − uN )V = 0, because ϕ−uN ∈ SN (Ω) (see relation (13) ).
So,

|‖u − uN‖|2 = (u − uN , u − ϕ)V ≤ |‖u − uN‖| · |‖u − ϕ‖| ,
from Cauchy-Buniakowski-Schwartz inequality. From this it results that

|‖u − uN‖| ≤ |‖u − ϕ‖| , ∀ϕ ∈ SN (Ω)

i.e. (12), so uN = TNu.

Now we can estimate the error as follows:

Theorem 3. For any ε > 0, there exists Nε ∈ N∗ such that for any N ≥ Nε,
then

‖u − TNu‖2
H ≤ ε · ‖u‖2

V .

Proof. From the Theorem 1, we have

Jϕn = λnϕn, J : V → V ∗. (14)

We have that
{√

λnϕn

}
is an orthonormal basis in H := L2 (Ω), so in

L2 (Ω) we can write:

u =
∞∑

n=1

cn

√
λnϕn,

where cn = (u,
√

λnϕn) =
√

λn(u, ϕn).
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We have, using (14) and Green’s formula for functions in the space V =
{v ∈ H1(Ω)|v = 0 on Γ} (see [5], p.28), that

(u, ϕn) =
∫
Ω

u (x)ϕn (x) dx =
1
λn

∫
Ω

u (x)λnϕn (x) dx =

=
1
λn

∫
Ω

u (x) Jϕn (x) dx =
1
λn

∫
Ω

Ju (x) · ϕn (x) dx

so

u(x) =
∞∑

n=1

1
λn

⎛
⎝∫

Ω

Ju (x)
√

λnϕn (x) dx

⎞
⎠ √

λnϕn =
∞∑

n=1

1
λn

(Ju,
√

λnϕn)·
√

λnϕn .

Because TNu =
N∑

n=1
cn

√
λnϕn, we obtain:

u − TNu =
∞∑

n=N+1

1
λn

· (Ju,
√

λnϕn) ·
√

λnϕn.

It results from this that:

‖u − TNu‖2
H =

∞∑
n=N+1

1
λ2

n

· (Ju,
√

λnϕn)2.

Let now be ε > 0 arbitrary fixed. Because λn ↗ ∞, we have that there
exists Nε ∈ N such that

1
λn

<
√

ε, ∀n ≥ Nε.

If N ≥ Nε, then:

‖u − TNu‖2
H ≤ ε

∞∑
n=N+1

(Ju,
√

λnϕn)2 ≤

≤ ε
∞∑

n=1

(Ju,
√

λnϕn)2 = ε ‖Ju‖2
H ,

so
‖u − TNu‖2

H ≤ ε ‖Ju‖2
H = ε ‖u‖2

V .
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4 Conclusions

Using the theoretical discretization presented above, we can find a very good
approximation of the weak solution for the diffusion-dispersion problem we
have considered. The method is optimal with respect to other discretization
methods because the discretization system (ϕn)n≥1, that is formed with eigen-
functions of Laplacian (involved in the equations), is orthonormal, and there-
fore we don’t need to use the Gramm-matrix preconditioning. The method
can be also used to approximate the weak solution of other problems from con-
tinuous mechanics in which are involved elliptic operators, such as problems
for the elasticity theory or steady state Stokes equation.
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