
An. Şt. Univ. Ovidius Constanţa Vol. 11(1), 2003, 179–186

A NOTE ON THE DANILOVSKAIA’S

PROBLEM

Răzvan Răducanu

To Professor Silviu Sburlan, at his 60’s anniversary

Abstract

The present paper describes a thermal shock problem on a semispace

within the frame of linear thermoelasticity. The analytical solution is

obtained and two type of a finite difference numerical algorithm to solve

the problem are also described. The solutions are discussed.

1.Introduction

The present paper presents the famous problem of thermal shock on a semi
space, called Danilovskaia’s problem. So, we’ll consider the equations of linear
thermoelasticity to predict the way in which the heat will propagate through
the elastic semi space. We will implement two kinds of finite difference method:
an explicit one and an implicit one. The results are plotted and the differences
between these two methods are discussed across the paper.

2.Basic equations

Let’s consider the Cartesian frame Ox1x2x3 the three dimensional Euclid-
ian space. Suppose that the semi space D = {x = (x1, x2, x3)|x1 > 0 is
occupied by an isotropic and homogenous medium, as in the figure 1.

As in [3], the basic equations of the linear thermoelasticity are:
• the motion equations:

tji,j + ρ0fi = ρ0iii on D × I (2.1)

• the energy equation:

ρ0θ0

·

η= ρ0s + qi,i on D × I (2.2)

Key Words: thermal shock, thermoelasticity, Danilovskaia’s problem, numerical methods

179



180 R. Răducanu

Figure 1: The frame

• the constitutive equations:

tij = 2µεij + λεkkδij − βθδij (2.3)

ρ0η = βεij + aθ (2.4)

qi = kθi (2.5)

• the strain-displacement relations:

εij = ui,j + uj,i on D × I (2.6)

where, I = [0,∞) is the time interval, ui are the components of the displace-
ment vector, tij are the components of the stress tensor, εij are the compo-
nents of the strain tensor, fi are the components of the specific body force,
s is the specific heat supplied, η is the entropy density on mass unit, θ is the
temperature measured from a constant reference temperature θ0,λ, µ, β, k are
constants, characteristic of the material. We’ll attach the following boundary
conditions:

ui = ui, θ = θ̄ on Γ× I (2.7)

tjinj = t̄i, qini = q̄ on Γ× I (2.8)



A note on the Danilovskaia’s problem 181

where ūi, t̄i, θ̄, q̄ are continuous functions given on the boundary, Γ = ∂D and
the following initial conditions:

ui(x, 0) = ai(x), ui(x, 0) = bi(x), x ∈ D (2.9)

η(x, 0) = η0(x), x ∈ D, (2.10)

where ai(x), bi(x), η(x) are given continuous functions.
Thus the boundary value problem is to find ui(x, t), θ(x, t) which satisfy

(2.1)-(2.6), the boundary conditions (2.7) and (2.8) and the initial conditions
(2.9) and (2.10). After some elementary computations, we obtain the following
equations:

µui,jj + (λ + µ)uj,ji − βθi + ρ0fi = ρ0
..
ui in D × I (2.11)

kθj,ii − θ0βur,r − aθ0

.

θ= −ρ0s in D × I. (2.12)

To these equations we’ll attach the corresponding initial and boundary
conditions, that follow immediately from (2.9) and (2.10).

In the rest of the paper, as in [3] we’ll suppose that fi = 0, s = 0, and
the boundary surface x1 = 0 is traction free. We will also suppose that the
thermal field that acts on does not depend on position.

Thus our problem becomes: find ui(x, t) and θ(x, t) that satisfy the equa-
tions:

µui,jj + (λ + µ)uj,ji − βθi = ρ0iii in D × I (2.13)

kθj,ii − θ0βur,r − aθ0

·

θ= 0 in D × I. (2.14)

And the corresponding initial conditions are:

ui(x, 0) = 0,
·

ui (x, 0), θ(x, 0) = 0, x x ∈ D (2.15)

and the boundary conditions are:

tjinj = 0, θ = l(t) on x1 = 0, t > 0, (2.16)

ui, ui,j , θ, θi → 0, x →∞. (2.17)

In the following, invoking the domain symmetry we’ll search for the solution
of the form:

u1 = u1(x, t), u2 = u3 = 0, θ = θ(x1, t). (2.18)

In the following we will use the notations:

x =
cc1

k
x1, τ =

cc2
1

k
t, u =

cc1

k
u1, T =

1

T0θ
, (2.19)



182 R. Răducanu

where

c1 =

√

λ + 2µ

ρ0
. (2.20)

In these new variables, our problem reads: find u(x, τ) and T (x, τ) that
satisfy the equations:

(

∂2

∂x2
− ∂2

∂τ2

)

u−A
∂T

∂x
= 0 (2.21)

(

∂2

∂x2
− ∂

∂τ

)

T − β

c

∂2u

∂τ∂x
= 0, (2.22)

where

A =
βθ0

ρ0c2
1

. (2.23)

The attached initial conditions are:

u(x, 0) = 0,
∂u

∂τ
(x, 0) = 0, T (x, 0) = 0, x > 0. (2.24)

The corresponding boundary conditions are:

t11 = 0, T = f(τ) on x, τ > 0, (2.25)

u,
∂u

∂x
, T,

∂T

∂x
→ 0(x →∞). (2.26)

Danilovskaia studied the uncoupled case of the problem exposed here, sup-
posing:

f(τ) = T ∗H(τ), (2.27)

where H(τ) is the Heaveside function. So, let us consider this specific case in
the following. We’ll take:

(

∂2

∂x2
− ∂

∂τ

)

T = 0. (2.28)

Thus, applying the Laplace transform to the equations (2.21) and (2.22),
after some computations we obtain the following analytical solution of our
problem:

θ(x, t) = θ0erfc

{

z

2
√

τ

}

, (2.29)



A note on the Danilovskaia’s problem 183

where τ is given by (2.19) and erfc is the complementary error function given
by:

erfc{y} =
2√
π

∞
∫

y

e−s2

ds. (2.30)

In the same manner one can obtain an analytical expression for u, x, t).
We won’t write it explicitly here.

3.Numerical implementation

In this section we will implement the finite difference method ([2], [4])
for solving our problem. First we will implement an explicit finite difference
method and second an implicit finite difference method. For both these meth-
ods we will consider a spatial mesh and a mesh in time. To set these, we can
write:

% L the interval length
% T the time limit
% n number of subintervals for x
% m number of subintervals for t
h = L/n; k = T/m;
Next, we will denote the solution at a grid point T (xi, ti) by Tij . In order

to implement the explicit finite difference method, we will replace the space
derivative by a finite difference formula at the j − th time step and the time
derivative by a forward difference formula. Thus, we can write the following
system of equations for T at the grid points:

1

k
[Ti,j+1 − Ti,j ] =

1

h2
[Ti−1,j − 2Ti,j + Ti+1,j ] . (2.31)

If we employ the following notation:

r =
k

h2
(2.32)

the equation (2.31) becomes:

Ti,j+1 = rTi−1,j + (1− 2r)Ti,j + rTi+1, for i = 1, ..., n− 1. (2.33)

Now the idea is to find the solution step by step, because the initial solution
is known. The problem with this explicit method is to consider the meshes in
such a way to ensure stability. If we’ll take those meshes such as 0 < r ≤ 1

2 the
stability is ensured, as it is mentioned in []. To find the solution within this
algorithm at the first time step, we should use the following MATLAB code:



184 R. Răducanu

r = a ∗ k/hˆ2; rr = 1− 2 ∗ r;
u(1, 1) = r ∗ y0 + rr ∗ y(1) + r ∗ y(2);
u(2 : n− 2, 1) = r ∗ y(1 : n− 3)′+ rr ∗ y(2 : n− 2)′+ r ∗ y(3 : n− 1)′;
u(n− 1, 1) = r ∗ y(n− 2) + rr ∗ y(n− 1) + r ∗ L;
For the next steps of the algorithm a similar code may be implemented.

Within this explicit frame, we can draw the following surface.

Figure 2: Explicit case

In this figure, the space is expanding from left to right and the time is
progressing down the page.

In order to implement the implicit finite difference method, we will replace
the space derivative by a centered difference formula at the forward time step
j + 1 and the time derivative by a forward difference formula. We can write
the following system of equations for T at the grid points:

1

k
[Ti,j+1 − Ti,j ] =

1

h2
[Ti−1,j − 2Ti,j + Ti+1,j ] . (2.31)

The equation (2.31) can be written:

Ti,j+1 = rTi−1,j + (1− 2r)Ti,j + rTi+1, for i = 1, ..., n− 1. (2.33)



A note on the Danilovskaia’s problem 185

The advantage of this algorithm consists in the fact that it is uncondition-
ally stable. To implement it, one should consider an algorithm of the following
type for the time steps 2 to m.

%w0t is the initial condition function from (2.27)
w(1 : n− 1, 1) = x(1 : n− 1)′; for j = 2 : m
cc(1) = r ∗ w0t(j) + w(1, j − 1);
cc(2 : n− 2) = w(2 : n− 2, j − 1);
cc(n− 1) = r ∗ wat(j) + w(n− 1, j − 1);
x = LU tridiag solve(aa, dd, bb, cc);w(1 : n− 1, j) = x(1 : n− 1)′;
end.
In the above code the function LU tridiag solve solves a tridiagonal system

using LU factorization. The LU tridiag solve function can be written:
functionx = LU tridiag solve(a, d, b, r)
n = length(d);
z(1) = r(1);
for i = 2 : n
z(i) = r(i)− b(i) ∗ z(i− 1);
end
x(n) = z(n)/d(n);
for i = n− 1 : −1 : 1
x(i) = (z(i)− a(i) ∗ x(i + 1))/d(i);
end
Implementing the implicit algorithm MATLAB code, one can draw the

figure 3. In this figure, we used the same convention as in the previous picture.
Observing the graphical results obtained by these two kinds of finite dif-

ference method, one could notice the difference between these two methods.
In a future paper, an error analysis will be made.



186 R. Răducanu

Figure 3: Implicit case

References

[1] Ghinea M., Fireteanu V., MATLAB calcul numeric, grafica, aplicatii.

[2] Hornbeck, R.W., Numerical methods, Prentice Hall, Englewood Cliffs,NJ, 1996.

[3] Iesan D., Teoria termoelasticitatii, Ed. Acad. R.S.R., Bucureşti, 1979.

[4] Jaeger, J.C., An Introduction to Applied Mathematics, Claredon Press, Oxford, U.K.,
1951.

Al. I. Cuza University,
Department of Applied Mathematics,
6600- Iassy,
Romania


