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Abstract

In this paper we present same properties of Lie algebra sl(2), then
we prove some relations in U = U(sl(2)) - the enveloping algebra of sl(2)
and determine all finite-dimensional U -modules.

1. The Lie Algebra sl(2)

To simplify matters, we assume for the rest of this section that the ground
field k is the field of complex numbers. The Lie algebra gl(2) = L(M2(k)) of
2× 2-matrices with complex entries is four-dimensional. The four matrices

X =

(

0 1
0 0

)

, Y =

(

0 0
1 0

)

,

H =

(

1 0
0 − 1

)

, I =

(

1 0
0 1

)

form a basis of gl(2). Their commutators are easily computed. We get

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y,

[I,X] = [I, Y ] = [I,H] = 0. (1.1)

The matrices of trace zero in gl(2) form the subspace sl(2) spanned by the
basis {X,Y,H}. Relations (1.1) show that sl(2) is an ideal of gl(2) and that
there is an isomorphism of Lie algebras

gl(2) ∼= sl(2)⊕ kI,

which reduces the investigation of the Lie algebra gl(2) to that of sl(2).
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The enveloping algebra U = U(sl(2)) of sl(2) is isomorphic to the algebra
generated by the three elements X,Y,H with the three relations

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y. (1.2)

We prove some relations in U .

Lemma 1.1. The following relations hold in U for any p, q ≥ 0 :

XpHq = (H − 2pI)qXp, Y pHq = (H + 2pI)Y p,

[X,Y p] = pY p−1(H − (p− 1)I) = p(H + (p− 1)I)Y p−1,

[Xp, Y ] = pXp−1(H + (p− 1)I) = p(H − (p− 1)I)Xp−1.

Proof. One proves the first two relations by an easy double induction on
p and q using the relations XH = (H − 2I)X and Y H = (H − 2I)Y , which is
another way of expressing the commutation relation (1.2).

We prove the third relation by induction on p. It trivially holds for p = 1.
When p > 1, we have

[X,Y p] =
[

X,Y p−1
]

Y + Y p−1[X,Y ] =

= (p− 10Y p−2(H − (p− 2)I)Y + Y p−1H =

Y p−1 ((p− 1)(H − pI) + H) = pY p−1(H − pI + I).

We conclude by letting Y p−1 jump over H according to the second relation.
As for the last relation, it can be obtained from the third one by applying

the automorphism σ of sl(2) defined by

σ(X) = Y, σ(Y ) = X, σ(H) = −H. (1.3)

Proposition 1.2. The set {X iY jHk}i,j,k∈N is a basis of U(sl(2)).

Proof. It is a consequence of the Poincaré-Birkhoff-Witt Theorem. �

We close this section by a few remarks on the centre of U . Let us consider
the Casimir element defined as the element

C = XY + Y X +
H2

2
(1.4)

of the enveloping algebra U .

Lemma 1.3.3. The Casimir element C belongs to the centre of U .

Proof. It is enough to show that the Lie brackets of C with H,X, Y vanish.
Now, [H,C] = [H,X]Y + X[H,Y ] + [H,Y ]X + Y [H,X] + 1

2 [H,H2] =

= 2XY − 2XY − 2Y X + 2Y X = 0.
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We also have

[X,C] = X[X,Y ] + [X,Y ]X +
1

2
[X,H]H +

1

2
H[X,H] =

= XH + HX −XH −HX = 0.

One shows [Y,C] = 0 in a similar fashion. �

Harish-Chandra constructed an isomorphism of algebras from the centre
of U to the polynomial algebra k[t]. This isomorphism sends C to the gen-
erator t. As a consequence, the Casimir element generates the centre of the
enveloping algebra.

1.2. Representations of sl(2)

We now determine all finite-dimensional U-modules. We start with the
concept of a highest weight vector.

Definition 2.1. Let V be a U-module and λ be a scalar. A vector
v ∈ V, v 6= 0 is a said to be of weight λ ∈ K if Hv = λv. If, in addition, we
have Xv = 0, then we say that v is a highest weight vector of weight λ.

Definition 2.2. Any non-zero finite-dimensional U-module V has a high-
est weight vector.

Proof. Since k is algebraically closed and V is finite-dimensional, the
operator H has an eigenvector w 6= 0 with eingenvalue α : Hw = αw. If
Xw = 0, then w is a highest weight vector and we are done. If not, let us
consider the sequence of vector Xnw. By Lemma 1.1 we have

H(Xnw) = (α + 2n)(Xnw).

Consequently, (Xnw)n≥0 is a sequence of eingenvectors for H with distinct
eingenvalues. As V is finite-dimensional, H can have but a finite number of
eingenvalues; consequently, there exists an integer n such that Xnw 6= 0 and
Xn+1w = 0. The vector Xnw is a highest weight vector. �

Lemma 2.3. Let v be a highest weight vector of weight λ. For p ∈ N, set
vp = 1

p!Y
pv. Then

Hvp = (λ− 2p)vp, Xvp = (λ− p + 1)vp−1, Y vp = (p + 1)vp+1.

Proof. The first two result from Lemma 1.1 and the third relation is
trivial. �

We now state the theorem describing simple finite-dimensional U-modules.
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Theorem 2.4. (a) Let V be a finite-dimensional U-module generated by
a highest vector v of weight λ. Then

(i) The scalar λ is an integer equal to dim(V )− 1.

(ii) Setting vp = 1
p!Y

pv, we have vp = 0 for p > λ and in addition,

{v = v0, v1, ..., vλ} is a basis for V.

(iii) The operator H acting on V is diagonalizable with the (λ + 1)
distinct eingenvalues {λ, λ− 2, ..., λ− 2λ = −λ}.

(iv) Any other highest weight vector in V is a scalar multiple of v and
is of weight λ.

(v) The module V is simple.

(b) Any simple finite-dimensional U-module is generated by a highest weight
vector. Two finite-dimensional U-modules generated by highest weight vectors
of the same weight are isomorphic.

Proof. (a) According to Lemma 2.3, the sequence {vp}p≥0 is a sequence of
eingenvectors for H with distinct eingenvalues. Since V is finite-dimensional,
there has to exist an integer n such that vn 6= 0 and vn+1 = 0. The formulas
of Lemma 2.3 then show that vm = 0 for all m > n and vm 6= 0 for all m ≤ n.
We get n = λ since we have 0 = Xvn+1 = (λ − n)vn by Lemma 2.3. The
family {v = v0, ..., vλ} is free, for it is composed of non-zero eingenvectors
for H with distinct eingenvalues. It also generates V ; indeed the formulas of
Lemma 2.3 show that any element of V , which is generated by v as a module,
is a linear combination of the set {vi}i. It results that dim V = λ+1. We have
thus proved (i) and (ii). The assertion (iii) is also a consequence of Lemma
2.3.

(iv) Let v′ be another highest weight vector. It is an eingenvector for the
action of H; hence, it is a scalar multiple of some vector vi. But, again by
Lemma 2.3 the vector vi is killed by X if and only if i = 0.

(v) Let V ′ be a non-zero U-submodule of V and let v′ be a highest weight
vector of V ′. Then v′ also is a highest weight vector for V. By (iv), v′ is a
non-zero scalar multiple on V. Therefore v is in V ′. Since v generates V, we
must have V ⊂ V ′, which proves that V is simple.

(b) Let v be a highest weight vector of V ; if V is simple, then
the submodule generated by v is necessarily equal to V. Consequently, V is
generated by a highest weight vector.

If V and V ′ are generated by highest weight vectors v and v′ with the same
weight λ, then the linear map sending vi to v′i for all i is an isomorphism of
U-modules. �

Up to isomorphisms, the simple U-modules are classified by the
nonnegative integers: given such an integer n, there exists a unique (up to iso-
morphism) simple U-module of dimension n+1, generated by a highest weight
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vector of weight n. We denote this module by V (n) and the corresponding
morphism of Lie algebras by ρ(n) : sl(2) → gl(n + 1).

For instance, we have V (0) = k and ρ(0) = 0, which means that the module
V (0) is trivial, as is also the case for all modules of dimension 1.

More generally, any trivial U-module is isomorphic to a direct sum of copies
of V (0).

Observe that the morphism ρ(1) : sl(2) → gl(2) is the natural embedding
of sl(2) into gl(2) and that the module V (2) is isomorphic to the adjoint
representation of sl(2) via the map sending the highest weight vector v0 onto
X, v1 onto H and v2 onto Y.

As for the higher-dimensional module V (n), the generators X,Y and H
acts by operators represented by the following matrices in the basis {v0, v1, ..., vn} :

ρ(n)(X) =

















0 n 0 . . . · · · 0
0 0 n− 1 · · · · · · 0
...

. . .
. . .

. . .
...

0 0
. . .

. . .
. . . 1

0 0 · · · · · · 0 0

















ρ(n)(Y ) =















0 0 · · · · · · 0 0
1 0 · · · · · · 0 0
0 2 · · · · · · 0 0
...

... · · · · · ·
...

...
0 0 · · · · · · n 0















and ρ(n)(H) =















n 0 · · · · · · 0 0
0 n− 2 · · · · · · 0 0
...

... · · · · · ·
...

...
0 0 · · · · · · −n + 2 0
0 0 · · · · · · 0 −n















Let us determine the action of the Casimir element on the simple module
V (n).

Lemma 2.5. Any central element of U acts by a scalar on the simple mod-
ule V (n). In particular, the Casimir element C acts on V (n) by multiplication

by the scalar n(n+2)
2 , which is non-zero when n > 0.

Proof. Let Z be a central element in U . It commutes with H which
decomposes V (n) into a direct sum of one-dimensional eingenspaces.
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Consequently, the operator Z is diagonal with the same eingenvectors
{v = v0, ..., vn} as H. In particular, there exists scalars α0, ..., αn such that
Zvp = αpvp for all p. Now

αp+1Y vp = αp+1(p + 1)vp+1 = (p + 1)Zvp+1 = ZY vp = Y Zvp = αpY vp.

Consequently, all scalars αp are equal, which shows that Z acts as a scalar.
In order to determine the action of the Casimir element on V (n), we have

only to compute Cv for the highest weight vector v. By (1.4) and by Lemma
2.3 we get

Cv = XY v + Y Xv +
H2

2
v = nv +

n2

2
v =

n(n + 2)

2
v. �

We finally show that any finite-dimensional U-module is a direct sum of
simple U-modules.

Theorem 2.6. Any finite-dimensional U-module is semisimple.

Proof. We know that is suffices to show that for any finite-dimensional
U-module V and any submodule V ′ of V, there exists another submodule V ′′

such that V is isomorphic to the direct sum V ′ ⊕ V ′′. Set L = sl(2).
1. We shall first prove the existence of such a submodule V ′′ in the case

when V ′ is of codimension 1 in V . We proceed by induction on the dimension
of V ′.

If dim(V ′) = 0, we may take V ′′ = V. If dim(V ′) = 1, then necessarily V ′

and V/V ′ are trivial one-dimensional representations. Therefore there exist a
basis {v1 ∈ V ′, v2} of V such that Lv1 = 0 and Lv2 ⊂ V ′ = kv1.

Consequently, we have [L,L]vi = 0 for i = 1, 2. Formulas (1.2) show that
the action of L on V is trivial. We thus may take for V ′′ any supplementary
subspace of V ′ in V.

We now assume that dim(V ′) = p > 1 and that the assertion to be proved
holds in all dimensions < p. We have the following alternative: either V ′ is
simple, or it is not.

(i) Let us first suppose that V ′ is not simple; then there exists a submodule
V1 of V ′ such that 0 < dim(V1) < dim(V ′) = p. Let π be the canonical
projection of V onto V = V/V1. The module V ′ = π(V ′) is a submodule of
V of codimension one and its dimension is < p. This allows us to apply the
induction hypothesis and to find a submodule V ′′of V such that V ∼= V ′⊕V ′′.
Lifting this isomorphism to V , we get

V = V ′ + π−1(V ′′).

Now, since dim(V ′′) = 1, the vector space V1 is a submodule of codimension
one of π−1(V ′′). We again apply the induction hypothesis in order to find a
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submodule V ′′ of π−1(V ′′) such that π−1(V ′′) ∼= V1 ⊕ V ′′. Let us prove
that the one-dimensional submodule V ′′ has the expected properties, namely
V ∼= V ′ ⊕ V ′′. Indeed, the above argument implies that V = V ′ + V1 + V ′′;
now V1is contained in V ′, which shows that V is the sum of V ′ and of V ′′.
The formula dim(V ) = dim(V ′) + dim(V ′′) implies that this is a direct sum.

(ii) If the submodule V ′ is simple of dimension > 1, then Lemma 2.5 implies
that the Casimir element C acts on V ′ as a scalar α 6= 0. Consequently, the
operator C/α is the identity on V ′. Now V/V ′ is one-dimensional, hence a
trivial module. Therefore C sends V into the submodule V ′, which means
that the map C/α is a projector of V onto V ′. As C/α commutes with any
element of U ,the map C/α is a morphism of U-modules, then the submodule
V ′′ = Ker(C/α) is a supplementary submodule to V ′.

2. General case. We are now given two finite-dimensional modules
V ′ ⊂ V without any restriction on the codimension. We shall reduce the
situation to the codimension-one case by considering vector spaces W ′ ⊂ W
defined as follows: W (resp W ′) is the subspace of all linear maps from V to
V ′ whose restriction to V ′ is a homothety (respectiv is zero). It is clear that
W ′ is of codimension one in W . In order to reduce to Part 1, we have to equip
W and W ′ with U-modules structures. We give Hom(V, V ′) the U-module
structure defined by relation (xf)(v) = xf(v)−f(xv) for all x ∈ L, v ∈ V. Let
us check that W and W ′ are U-submodules. For f ∈ W , let α be the scalar
such that f(v) = αv for all v ∈ V ′; then for any x ∈ L, we have

(xf)(v) = xf(v)− f(xv) = x(αv)− α(xv) = 0.

A similar argument proves that W ′ is a submodules. Appling Part 1, we
get a one-dimensional submodule W ′′ such that W ∼= W ′ ⊕ W ′′. Let f be
a generator of W ′′. By definition, it acts on V ′ as a scalar α 6= 0. It follows
that f/α is a projection of V onto V ′. To conclude, it suffices to check that
f (hence f/α) is a morphism o modules. Now, since W ′′ is a one-dimensional
submodule, it is trivial.

Therefore, we have xf = 0 for all x ∈ L, which by relation (xf)(v) =
= xf(v)− f(xv), x ∈ L, v ∈ V , translates into xf(v)− f(xv) for all v ∈ V. �
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