An. Şt. Univ. Ovidius Constanţa

THE LIE ALGEBRA sl(2) AND ITS REPRESENTATIONS

Camelia Ciobanu

To Professor Silviu Sburlan, at his 60's anniversary

Abstract

In this paper we present same properties of Lie algebra $s l(2)$, then we prove some relations in $\mathcal{U}=\mathcal{U}(s l(2))$ - the enveloping algebra of $s l(2)$ and determine all finite-dimensional \mathcal{U}-modules.

1. The Lie Algebra sl(2)

To simplify matters, we assume for the rest of this section that the ground field k is the field of complex numbers. The Lie algebra $g l(2)=\mathcal{L}\left(M_{2}(k)\right)$ of 2×2-matrices with complex entries is four-dimensional. The four matrices

$$
\begin{aligned}
& X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
& H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

form a basis of $g l(2)$. Their commutators are easily computed. We get

$$
\begin{gather*}
{[X, Y]=H, \quad[H, X]=2 X, \quad[H, Y]=-2 Y,} \\
{[I, X]=[I, Y]=[I, H]=0} \tag{1.1}
\end{gather*}
$$

The matrices of trace zero in $g l(2)$ form the subspace $s l(2)$ spanned by the basis $\{X, Y, H\}$. Relations (1.1) show that $s l(2)$ is an ideal of $g l(2)$ and that there is an isomorphism of Lie algebras

$$
g l(2) \cong s l(2) \oplus k I
$$

which reduces the investigation of the Lie algebra $g l(2)$ to that of $s l(2)$.

The enveloping algebra $\mathcal{U}=\mathcal{U}(s l(2))$ of $s l(2)$ is isomorphic to the algebra generated by the three elements X, Y, H with the three relations

$$
\begin{equation*}
[X, Y]=H, \quad[H, X]=2 X, \quad[H, Y]=-2 Y \tag{1.2}
\end{equation*}
$$

We prove some relations in \mathcal{U}.
Lemma 1.1. The following relations hold in \mathcal{U} for any $p, q \geq 0$:

$$
\begin{gathered}
X^{p} H^{q}=(H-2 p I)^{q} X^{p}, \quad Y^{p} H^{q}=(H+2 p I) Y^{p}, \\
{\left[X, Y^{p}\right]=p Y^{p-1}(H-(p-1) I)=p(H+(p-1) I) Y^{p-1},} \\
{\left[X^{p}, Y\right]=p X^{p-1}(H+(p-1) I)=p(H-(p-1) I) X^{p-1} .}
\end{gathered}
$$

Proof. One proves the first two relations by an easy double induction on p and q using the relations $X H=(H-2 I) X$ and $Y H=(H-2 I) Y$, which is another way of expressing the commutation relation (1.2).

We prove the third relation by induction on p. It trivially holds for $p=1$. When $p>1$, we have

$$
\begin{gathered}
{\left[X, Y^{p}\right]=\left[X, Y^{p-1}\right] Y+Y^{p-1}[X, Y]=} \\
=\left(p-10 Y^{p-2}(H-(p-2) I) Y+Y^{p-1} H=\right. \\
Y^{p-1}((p-1)(H-p I)+H)=p Y^{p-1}(H-p I+I) .
\end{gathered}
$$

We conclude by letting Y^{p-1} jump over H according to the second relation.
As for the last relation, it can be obtained from the third one by applying the automorphism σ of $\operatorname{sl}(2)$ defined by

$$
\begin{equation*}
\sigma(X)=Y, \quad \sigma(Y)=X, \quad \sigma(H)=-H \tag{1.3}
\end{equation*}
$$

Proposition 1.2. The set $\left\{X^{i} Y^{j} H^{k}\right\}_{i, j, k \in \mathbb{N}}$ is a basis of $\mathcal{U}(s l(2))$.
Proof. It is a consequence of the Poincaré-Birkhoff-Witt Theorem.
We close this section by a few remarks on the centre of \mathcal{U}. Let us consider the Casimir element defined as the element

$$
\begin{equation*}
C=X Y+Y X+\frac{H^{2}}{2} \tag{1.4}
\end{equation*}
$$

of the enveloping algebra \mathcal{U}.
Lemma 1.3.3. The Casimir element C belongs to the centre of \mathcal{U}.
Proof. It is enough to show that the Lie brackets of C with H, X, Y vanish. Now, $[H, C]=[H, X] Y+X[H, Y]+[H, Y] X+Y[H, X]+\frac{1}{2}\left[H, H^{2}\right]=$

$$
=2 X Y-2 X Y-2 Y X+2 Y X=0
$$

We also have

$$
\begin{gathered}
{[X, C]=X[X, Y]+[X, Y] X+\frac{1}{2}[X, H] H+\frac{1}{2} H[X, H]=} \\
=X H+H X-X H-H X=0
\end{gathered}
$$

One shows $[Y, C]=0$ in a similar fashion.
Harish-Chandra constructed an isomorphism of algebras from the centre of \mathcal{U} to the polynomial algebra $k[t]$. This isomorphism sends C to the generator t. As a consequence, the Casimir element generates the centre of the enveloping algebra.

1.2. Representations of $\operatorname{sl}(2)$

We now determine all finite-dimensional \mathcal{U}-modules. We start with the concept of a highest weight vector.

Definition 2.1. Let V be a \mathcal{U}-module and λ be a scalar. a vector $v \in V, v \neq 0$ is a said to be of weight $\lambda \in K$ if $H v=\lambda v$. If, in addition, we have $X v=0$, then we say that v is a highest weight vector of weight λ.

Definition 2.2. Any non-zero finite-dimensional \mathcal{U}-module V has a highest weight vector.

Proof. Since k is algebraically closed and V is finite-dimensional, the operator H has an eigenvector $w \neq 0$ with eingenvalue $\alpha: H w=\alpha w$. If $X w=0$, then w is a highest weight vector and we are done. If not, let us consider the sequence of vector $X^{n} w$. By Lemma 1.1 we have

$$
H\left(X^{n} w\right)=(\alpha+2 n)\left(X^{n} w\right)
$$

Consequently, $\left(X^{n} w\right)_{n \geq 0}$ is a sequence of eingenvectors for H with distinct eingenvalues. As V is finite-dimensional, H can have but a finite number of eingenvalues; consequently, there exists an integer n such that $X^{n} w \neq 0$ and $X^{n+1} w=0$. The vector $X^{n} w$ is a highest weight vector.

Lemma 2.3. Let v be a highest weight vector of weight λ. For $p \in \mathbb{N}$, set $v_{p}=\frac{1}{p!} Y^{p} v$. Then

$$
H v_{p}=(\lambda-2 p) v_{p}, \quad X v_{p}=(\lambda-p+1) v_{p-1}, \quad Y v_{p}=(p+1) v_{p+1}
$$

Proof. The first two result from Lemma 1.1 and the third relation is trivial.

We now state the theorem describing simple finite-dimensional \mathcal{U}-modules.

Theorem 2.4. (a) Let V be a finite-dimensional \mathcal{U}-module generated by a highest vector v of weight λ. Then
(i) The scalar λ is an integer equal to $\operatorname{dim}(V)-1$.
(ii) Setting $v_{p}=\frac{1}{p!} Y^{p} v$, we have $v_{p}=0$ for $p>\lambda$ and in addition, $\left\{v=v_{0}, v_{1}, \ldots, v_{\lambda}\right\}$ is a basis for V.
(iii) The operator H acting on V is diagonalizable with the $(\lambda+1)$ distinct eingenvalues $\{\lambda, \lambda-2, \ldots, \lambda-2 \lambda=-\lambda\}$.
(iv) Any other highest weight vector in V is a scalar multiple of v and is of weight λ.
(v) The module V is simple.
(b) Any simple finite-dimensional \mathcal{U}-module is generated by a highest weight vector. Two finite-dimensional \mathcal{U}-modules generated by highest weight vectors of the same weight are isomorphic.

Proof. (a) According to Lemma 2.3, the sequence $\left\{v_{p}\right\}_{p \geq 0}$ is a sequence of eingenvectors for H with distinct eingenvalues. Since V is finite-dimensional, there has to exist an integer n such that $v_{n} \neq 0$ and $v_{n+1}=0$. The formulas of Lemma 2.3 then show that $v_{m}=0$ for all $m>n$ and $v_{m} \neq 0$ for all $m \leq n$. We get $n=\lambda$ since we have $0=X v_{n+1}=(\lambda-n) v_{n}$ by Lemma 2.3. The family $\left\{v=v_{0}, \ldots, v \lambda\right\}$ is free, for it is composed of non-zero eingenvectors for H with distinct eingenvalues. It also generates V; indeed the formulas of Lemma 2.3 show that any element of V, which is generated by v as a module, is a linear combination of the set $\left\{v_{i}\right\}_{i}$. It results that $\operatorname{dim} V=\lambda+1$. We have thus proved (i) and (ii). The assertion (iii) is also a consequence of Lemma 2.3.
(iv) Let v^{\prime} be another highest weight vector. It is an eingenvector for the action of H; hence, it is a scalar multiple of some vector v_{i}. But, again by Lemma 2.3 the vector v_{i} is killed by X if and only if $i=0$.
(v) Let V^{\prime} be a non-zero \mathcal{U}-submodule of V and let v^{\prime} be a highest weight vector of V^{\prime}. Then v^{\prime} also is a highest weight vector for V. By (iv), v^{\prime} is a non-zero scalar multiple on V. Therefore v is in V^{\prime}. Since v generates V, we must have $V \subset V^{\prime}$, which proves that V is simple.
(b) Let v be a highest weight vector of V; if V is simple, then the submodule generated by v is necessarily equal to V. Consequently, V is generated by a highest weight vector.

If V and V^{\prime} are generated by highest weight vectors v and v^{\prime} with the same weight λ, then the linear map sending v_{i} to v_{i}^{\prime} for all i is an isomorphism of \mathcal{U}-modules.

Up to isomorphisms, the simple \mathcal{U}-modules are classified by the nonnegative integers: given such an integer n, there exists a unique (up to isomorphism) simple \mathcal{U}-module of dimension $n+1$, generated by a highest weight
vector of weight n. We denote this module by $V(n)$ and the corresponding morphism of Lie algebras by $\rho(n): s l(2) \rightarrow g l(n+1)$.

For instance, we have $V(0)=k$ and $\rho(0)=0$, which means that the module $V(0)$ is trivial, as is also the case for all modules of dimension 1.

More generally, any trivial \mathcal{U}-module is isomorphic to a direct sum of copies of $V(0)$.

Observe that the morphism $\rho(1): s l(2) \rightarrow g l(2)$ is the natural embedding of $s l(2)$ into $g l(2)$ and that the module $V(2)$ is isomorphic to the adjoint representation of $s l(2)$ via the map sending the highest weight vector v_{0} onto X, v_{1} onto H and v_{2} onto Y.

As for the higher-dimensional module $V(n)$, the generators X, Y and H acts by operators represented by the following matrices in the basis $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$:

$$
\begin{aligned}
& \rho(n)(X)=\left(\begin{array}{cccccc}
0 & n & 0 & \cdots & \cdots & 0 \\
0 & 0 & n-1 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & & \vdots \\
0 & 0 & \ddots & \ddots & \ddots & 1 \\
0 & 0 & \cdots & \cdots & 0 & 0
\end{array}\right) \\
& \rho(n)(Y)=\left(\begin{array}{cccccc}
0 & 0 & \cdots & \cdots & 0 & 0 \\
1 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 2 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & n & 0
\end{array}\right)
\end{aligned}
$$

$$
\text { and } \rho(n)(H)=\left(\begin{array}{cccccc}
n & 0 & \cdots & \cdots & 0 & 0 \\
0 & n-2 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & -n+2 & 0 \\
0 & 0 & \cdots & \cdots & 0 & -n
\end{array}\right)
$$

Let us determine the action of the Casimir element on the simple module $V(n)$.

Lemma 2.5. Any central element of \mathcal{U} acts by a scalar on the simple module $V(n)$. In particular, the Casimir element C acts on $V(n)$ by multiplication by the scalar $\frac{n(n+2)}{2}$, which is non-zero when $n>0$.

Proof. Let Z be a central element in \mathcal{U}. It commutes with H which decomposes $V(n)$ into a direct sum of one-dimensional eingenspaces.

Consequently, the operator Z is diagonal with the same eingenvectors $\left\{v=v_{0}, \ldots, v_{n}\right\}$ as H. In particular, there exists scalars $\alpha_{0}, \ldots, \alpha_{n}$ such that $Z v_{p}=\alpha_{p} v_{p}$ for all p. Now

$$
\alpha_{p+1} Y v_{p}=\alpha_{p+1}(p+1) v_{p+1}=(p+1) Z v_{p+1}=Z Y v_{p}=Y Z v_{p}=\alpha_{p} Y v_{p} .
$$

Consequently, all scalars α_{p} are equal, which shows that Z acts as a scalar.
In order to determine the action of the Casimir element on $V(n)$, we have only to compute $C v$ for the highest weight vector v. By (1.4) and by Lemma 2.3 we get

$$
C v=X Y v+Y X v+\frac{H^{2}}{2} v=n v+\frac{n^{2}}{2} v=\frac{n(n+2)}{2} v
$$

We finally show that any finite-dimensional \mathcal{U}-module is a direct sum of simple \mathcal{U}-modules.

Theorem 2.6. Any finite-dimensional \mathcal{U}-module is semisimple.
Proof. We know that is suffices to show that for any finite-dimensional \mathcal{U}-module V and any submodule V^{\prime} of V, there exists another submodule $V^{\prime \prime}$ such that V is isomorphic to the direct sum $V^{\prime} \oplus V^{\prime \prime}$. Set $\mathcal{L}=\operatorname{sl}(2)$.

1. We shall first prove the existence of such a submodule $V^{\prime \prime}$ in the case when V^{\prime} is of codimension 1 in V. We proceed by induction on the dimension of V^{\prime}.

If $\operatorname{dim}\left(V^{\prime}\right)=0$, we may take $V^{\prime \prime}=V$. If $\operatorname{dim}\left(V^{\prime}\right)=1$, then necessarily V^{\prime} and V / V^{\prime} are trivial one-dimensional representations. Therefore there exist a basis $\left\{v_{1} \in V^{\prime}, v_{2}\right\}$ of V such that $\mathcal{L} v_{1}=0$ and $\mathcal{L} v_{2} \subset V^{\prime}=k v_{1}$.

Consequently, we have $[\mathcal{L}, \mathcal{L}] v_{i}=0$ for $i=1,2$. Formulas (1.2) show that the action of \mathcal{L} on V is trivial. We thus may take for $V^{\prime \prime}$ any supplementary subspace of V^{\prime} in V.

We now assume that $\operatorname{dim}\left(V^{\prime}\right)=p>1$ and that the assertion to be proved holds in all dimensions $<p$. We have the following alternative: either V^{\prime} is simple, or it is not.
(i) Let us first suppose that V^{\prime} is not simple; then there exists a submodule V_{1} of V^{\prime} such that $0<\operatorname{dim}\left(V_{1}\right)<\operatorname{dim}\left(V^{\prime}\right)=p$. Let π be the canonical projection of V onto $\bar{V}=V / V_{1}$. The module $\overline{V^{\prime}}=\pi\left(V^{\prime}\right)$ is a submodule of \bar{V} of codimension one and its dimension is $<p$. This allows us to apply the induction hypothesis and to find a submodule $\overline{V^{\prime \prime}}$ of \bar{V} such that $\bar{V} \cong \overline{V^{\prime}} \oplus \overline{V^{\prime \prime}}$. Lifting this isomorphism to V, we get

$$
V=V^{\prime}+\pi^{-1}\left(\overline{V^{\prime \prime}}\right)
$$

Now, since $\operatorname{dim}\left(\overline{V^{\prime \prime}}\right)=1$, the vector space V_{1} is a submodule of codimension one of $\pi^{-1}\left(\overline{V^{\prime \prime}}\right)$. We again apply the induction hypothesis in order to find a
submodule $V^{\prime \prime}$ of $\pi^{-1}\left(\overline{V^{\prime \prime}}\right)$ such that $\pi^{-1}\left(\overline{V^{\prime \prime}}\right) \cong V_{1} \oplus V^{\prime \prime}$. Let us prove that the one-dimensional submodule $V^{\prime \prime}$ has the expected properties, namely $V \cong V^{\prime} \oplus V^{\prime \prime}$. Indeed, the above argument implies that $V=V^{\prime}+V_{1}+V^{\prime \prime}$; now V_{1} is contained in V^{\prime}, which shows that V is the sum of V^{\prime} and of $V^{\prime \prime}$. The formula $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)+\operatorname{dim}\left(V^{\prime \prime}\right)$ implies that this is a direct sum.
(ii) If the submodule V^{\prime} is simple of dimension >1, then Lemma 2.5 implies that the Casimir element C acts on V^{\prime} as a scalar $\alpha \neq 0$. Consequently, the operator C / α is the identity on V^{\prime}. Now V / V^{\prime} is one-dimensional, hence a trivial module. Therefore C sends V into the submodule V^{\prime}, which means that the map C / α is a projector of V onto V^{\prime}. As C / α commutes with any element of \mathcal{U},the map C / α is a morphism of \mathcal{U}-modules, then the submodule $V^{\prime \prime}=\operatorname{Ker}(C / \alpha)$ is a supplementary submodule to V^{\prime}.
2. General case. We are now given two finite-dimensional modules $V^{\prime} \subset V$ without any restriction on the codimension. We shall reduce the situation to the codimension-one case by considering vector spaces $W^{\prime} \subset W$ defined as follows: W (resp W^{\prime}) is the subspace of all linear maps from V to V^{\prime} whose restriction to V^{\prime} is a homothety (respectiv is zero). It is clear that W^{\prime} is of codimension one in W. In order to reduce to Part 1, we have to equip W and W^{\prime} with \mathcal{U}-modules structures. We give $\operatorname{Hom}\left(V, V^{\prime}\right)$ the \mathcal{U}-module structure defined by relation $(x f)(v)=x f(v)-f(x v)$ for all $x \in \mathcal{L}, v \in V$. Let us check that W and W^{\prime} are \mathcal{U}-submodules. For $f \in W$, let α be the scalar such that $f(v)=\alpha v$ for all $v \in V^{\prime}$; then for any $x \in \mathcal{L}$, we have

$$
(x f)(v)=x f(v)-f(x v)=x(\alpha v)-\alpha(x v)=0
$$

A similar argument proves that W^{\prime} is a submodules. Appling Part 1, we get a one-dimensional submodule $W^{\prime \prime}$ such that $W \cong W^{\prime} \oplus W^{\prime \prime}$. Let f be a generator of $W^{\prime \prime}$. By definition, it acts on V^{\prime} as a scalar $\alpha \neq 0$. It follows that f / α is a projection of V onto V^{\prime}. To conclude, it suffices to check that f (hence f / α) is a morphism o modules. Now, since $W^{\prime \prime}$ is a one-dimensional submodule, it is trivial.

Therefore, we have $x f=0$ for all $x \in \mathcal{L}$, which by relation $(x f)(v)=$ $=x f(v)-f(x v), x \in \mathcal{L}, v \in V$, translates into $x f(v)-f(x v)$ for all $v \in V$.

References

[Ba] D.W.Barnes, Lie algebras, Lecture Notes, University of Tubingen, 1969.
[Bo] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris, 1960.
[C,E] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie Algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
[Ci] C. Ciobanu, Cohomological study of Lie p-algebras, Ph. D. Thesis, Ovidius University, Constantza, 2001.
[Ci] C. Ciobanu, On a class of Lie p-algebras, Ann. St. Univ. Ovidius, Constantza, vol. 7(2), 1999, 9-16.
[Di] J. Dixmier, Algèbres Enveloppantes, Bordas (Gauthier-Villars), Paris, 1974, English transl: Enveloping Algebras, North-Holland Publ. Co., Amsterdam, 1977.
[Hu] J.E. Humphreys, Introduction of Lie Algebras and their Representation Theory, GTM 9, Springer Verlag, New York, 1972.
[Ja] N. Jacobson, Lie Algebras, Dover Publ., New York, 1979.
[Re] C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford, 1993.
[Se] J-P. Serre, Lie Algebras and Lie Groups, W.A. Benjamin Inc., New York, Amsterdam, 1965.
[Sc] J.R. Schue, Cartan decomposition for Lie algebras of prime characteristic, J. Algebra, 11 (1969), 25-52.
[Wi] D.J. Winter, Abstract Lie algebras, MIT Press, 1972.
,,Mircea cel Batrân" Naval Academy,
Department of Mathematics and Informatics,
Str. Fulgerului 1,
8700 - Constantza,
Romania

