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PARALLEL METHODS FOR SOLVING THE
LINEAR ALGEBRAIC SYSTEMS

Popoviciu Ioan

Abstract

By using the domain decomposition methodology, we construct sev-
eral algebraic domain decomposition methods for certain algebraic sys-
tems with sparse matrix. These methods are highly parallelizable. We
show that these methods are convergent and we also discuss the eigen-
value distributions of the corresponding iterative matrices in order to
analyse the convergenge factors of these methods.

1. Algebraic domain decomposition methods

Let us consider the linear algebraic system:

Au = f, (1.1)

where matrix A is a block square matrix denoted by:

A =

 A1,1 · · · A1,2p−1

...
A2p−1,1 · · · A2p−1,2p−1

 , u =

 u1

...
u2p−1

 , f =

 f1

...
f2p−1

 .

As in the domain decomposition methods, we partition the unknown vector u
into p new subvectors x1, xp, xi, 2 ≤ i ≤ p− 1 ::

ũ =

 x1

...
xp

 , with x1 =
[

u1

u2

]
, xp =

[
ũ2p−2

u2p−1

]
, xi =

 ũ2i−2

u2i−1

u2i

 . (1.2)

Note that ũ2i are the unknown vectors associated with the overlapping to the
subvector ũ2i = u2i, i = 1, ..., p. In the same way, we can introduce a new
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vector f̃ from righthandside vector f. Thus, the matrix A is divided into p× p
corresponding block submatrices with overlapping. Then, a corresponding new
matrix Ã can be defined by these p× p block submatrices:

Ã =

 Ã1,1 · · · Ã1,p

...
Ãp,1 · · · Ãp,p

 , (1.3)

where

Ã1,1 =
[

Ã1,1 Ã1,2

Ã2,1 Ã2,2

]
, Ãp,p =

[
A2p−2,2p−2 A2p−2,2p−1

A2p−1,2p−2 A2p−1,2p−1

]
,

Ã1,p =
[

0 Ã1,2p−1

0 Ã2,2p−1

]
, Ã1,i =

[
0 A1,2i−1 Ã1,2i

0 A2,2i−1 Ã2,2i

]
, 2 ≤ i ≤ p− 1,

Ãp,1 =
[

A2p−2,1 0
A2p−1,1 0

]
, Ãp,i =

[
A2p−2,2i−2 A2p−2,2i−1 0
A2p−1,2i−2 A2p−1,2i−1 0

]
,

2 ≤ i ≤ p− 1,

Ãi,1 =

 A2i−2,1 0
A21−1,1 0
A2i,1 0

 , Ãi,p =

 0 A2i−2,2p−1

0 A2i−1,p−1

0 A2i,2p−1

 , 2 ≤ i ≤ p− 1

Ãi,j =

 0 A2i−2,2j−1 A2i−2,2j

0 A2i−1,2j−1 A2i−1,2j

0 A2i,,2j−1 A2i,2j

 , 2 ≤ i < j ≤ p− 1,

Ãj,i =

 A2i−2,2j−2 A2i−2,2j−1 0
A2i−1,2j−2 A2i−1,2j−1 0
A2i,,2j−2 A2i,2j−1 0

 , 2 ≤ i < j ≤ p− 1,

Ãi,i =

 A2i−2,2i−2 A2i−2,2i−1 A2i−2,2i

A2i−1,2i−2 A2i−1,2i−1 A2i−1,2i

A2i,,2i−1 A2i,2i−1 A2i,2i

 , 2 ≤ i ≤ p− 1.

From these definitions, we obtain a new linear system

Âû = f̂ , (1.4)

which is associated with the system (1.1). The following theorem gives the
relation between the equation (1.1) and the system (1.4).
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Theorem 1.1. Suppose that A2i,2i are nonsingular for all i=1, ..., p-1.
Then, the solution of the system (1.1) can be constructed from the solution of
the problem (1.4) and vice versa.

Proof. Let u be the solution of the system (1.1). We can construct a
new vector ũ as above from u, by letting the overlapping . Then this ũ is the
solution of the system (1.4).

Suppose that ũ is the solution of the problem (1.4). Because A2i,2i are
nonsingular for i = 1, ..., p − 1, we have u2i = ũ2i, i = 1, ..., p − 1 from
the equation A2i,2i(u2i − ũ2i) = 0. A direct consequence is that the vector
u =

(
uT

1 , ..., uT
2p−1

)
is the solution of the system (1.1).

Theorem 1.1. implies that if the solution of (1.1) is unique, the problem
(1.4) has only one solution. �

Let us denote by λ{A} the set of the eigenvalues of the matrix A.

Theorem 1.2. λ{Ã} = λ{A} ∪
(

p−1⋃
i=1

λ{A2i,2i}
)

.

Proof. We first prove λ{Ã} ⊂ λ{A} ∪
(

p−1⋃
i=1

λ{A2i,2i}
)

.

From Ãũ = λ̃ũ we have A2i,2i(u2i − ũ2i) = λ̃(u2i − ũ2i), i = 1, ..., p − 1.

If u2i 6= ũ2i for some i ∈ {1, ..., p − 1}, then λ̃ ∈ λ{A2i,2i }. Otherwise, if
u2i = ũ2i(∀)i ∈ {1, ..., p− 1}, then λ̃ ∈ λ{A}.

Now we prove that λ{A} ∪
(

p−1⋃
i=1

λ{A2i,2i}
)
⊂ λ{Ã}. From Au = λu ,

we have Ãũ = λũ with u2i = u2i as in (1.2). If A2i,2iv2i = λv2i, for some
i ∈ {1, ..., p}, then we can construct a vector ũ in the following way such that
Ãũ = λũ. Let ω = −(0, ..., 0, vT

2iA
T
2i+1,2i, ..., v

T
2iA2p−1,2i). If this λ /∈ λ{A} then

the equation (A− λI)u = ω has only one solution u. By setting

ũ2j =
{

u2j j 6= i
u2i + v2j j = i,

for this ũ, we can easily show that Ãũ = λũ. Hence,

λ{A} ∪

(
p−1⋃
i=1

λ{A2i,2i}

)
⊂ λ{Ã}. �

Before giving a definition of an asynchronous Schwarz algorithms for the
problem (1.1), we first decompose the linear system (1.1) into p subproblems:
to find x∗i such that

Ãi,ix
∗
i = f̃i −

∑
j 6=i

Ãi,jxj , 1 ≤ i ≤ p, (1.5)
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where ũ =
(
xT

1 , ..., xT
p

)T is regarded as a known vector and ũ∗ =
(
x∗T1 , ..., x∗Tp

)
as

an unknown vector. Let ϕi denote a solver of (1.5). This ϕi is either a direct
solver or an iterative solver. Now we list several possible choices ϕi as the
examples:

a) ũ∗ = ϕi(ũ) and Ãi,iũ
∗ = f̃i −

∑
j 6=i

Ãi,jxj ;

b) ũ∗ = ϕi(ũ) is defined by ri = f̃i −
∑

1≤j≤p

Ãi,jxj ,

αi = (ri, ri)/(Ãi,iri, ri), x∗i = xi+αiri;

c) Let Ãi,i = Mi −Ni, where Mi is an invertible matrix. Then

ũ∗ = ϕi(ũ) and x∗i = xi + M−1
i

f̃i −
∑

i≤j≤p

Ãi,jxj

 .

Let’s distribute the computation on the machine with p processors. Each
processor is assigned to solve one subproblem (1.5). Denote by N as the
whole positive integer set. If we let all processors kept on calculating by using
the most recent available data from neighbour processors, then we have the
following asynchronous method:

Let ũ(0) be a given initial guess vector. The vector sequence ũ(k) will be
defined by the recursion:

xk+1
i = φi

(
x

(s1(k)
1 , ..., x

sp(k)
p

)
,

x
(k+1)
i = x

si(k)
i + ωi

(
x

(k+1)
i − x

si(k)
i

)
if i ∈ J(k),

x
(k+1)
i = x

(k)
i if i /∈ J(k),

u(k+1) =
(
x

(k+1)
1 , ..., x

(k+1)
p

)
,

(1.6)

where {J(k)}k∈N is a sequence of nonempty subsets of the set {1, ..., p}. In
fact, J(k) is the set of subvectors to be updated at the step k. Here,
S = {s1(k), ..., sp(k)} is a sequence of elements of Np with the following
properties: si(k) ≤ k, ∀k ∈ N, (∀)i ∈ {1, ..., p}, and lim

k→∞
si(k) = ∞, (∀)i ∈

{1, ..., p}.
Such a procedure is called the chaotic relaxation Schwarz (CRS) al-

gorithm and is identified by
(
φi, ũ

(0),J,S
)
. Selecting the setting J(k) and

set S = {s1(k), ..., sp(k)}, we give several special cases of CRS algorithm:

a) Algebraic Multiplicative Schwarz (AMS) Algorithm with:

si(k) = k, J(k) ≡ (1 + k)modp, ∀k.



PARALLEL METHODS FOR SOLVING THE LINEAR ALGEBRAIC SYSTEMS 67

b) Algebraic Additive Schwarz (AAS) Algorithm with:

Si(k) = k, J(k) = {1, ..., p} ∀k.

2. Direct Subsolver for All Sub-problems

We use a direct solver for the subproblems in our CRS method. In order to
analyse the convergence factor, we discuss the eigenvalue distribution of the
iterative matrix of AMS and AAS methods. Let the matrix be

Ã = D̃ + L̃ + Ũ ,

where D̃ is a block diagonal matrix, L̃ is a block lower triangular matrix, and
Ũ is a block upper triangular matrix

D̃ =

 Ã1,1 0
. . .

0 Ãp,p

 , L̃ =


0
Ã2,1 0
...

. . . . . .
Ãp,1 · · · Ãp,p−1 0

 ,

Ũ =


0 Ã1,2 · · · Ã1,p

. . . . . .
...

0 Ãp−1,p

0

 .

Assume that, for k = 1, 2, ..., we define a new sequence y(k) by:

y(k) =

 x
(k−1)p+1
1

...
xkp

p

 , with y(0) = ũ(0).

If p subproblems are all solved by the direct solver ϕi with ωi = ω, the
AMS method can be described in one simple form

H̃y(k+1) = B̃y(k) + ωf̃ ,

where H̃ = D̃ + ωL̃ and B̃ = (1 − ω)D̃ − ωŨ and the AAS method can be
rewritten as

D̃ũ(k+1) =
(
D̃ − ωÃ

)
ũ(k) + ωf̃ .

Then the iterative matrices of the AMS method and AAS method satisfy
the following:
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Theorem 2.1. If Ai,2j = 0 for |i− 2j| ≥ 2, then
i) The iterative matrix of the AMS method satisfies:

λ{H̃−1B̃} ⊆ λ

{(
D̈+

·
ωL

)−1

(1− ω) D̈ − ωL̈

}

and

λ

{(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωL̈

)}
\{1− ω} ⊆ λ{H̃−1B̃}.

ii) The iterative matrix of the AAS method satisfies:

λ
{

D̃−1
(
D̃ − ωÃ

)}
⊆ λ

{
D̈−1

(
D̈ − ωÄ

)}
and

λ
{

D̈−1
(
D̈ − ωÄ

)}
\{1− ω} ⊆ λ

{
D̃−1

(
D̃ − ωÃ

)}
.

Here the block diagonal matrix D̈, the lower triangular matrix L̈ and the
upper triangular matrix Ü in the sum expression Ȧ = D̈ + L̈ + Ü have the
forms:

D̈ =


Ä1,1

Ä3.3 0

0
. . .

Ä2p-1,2p-1

 , L̈ =


0

Ä3,1 0
Ä5,1 Ä5,3

...
. . . . . .

Ä2p-1,1 Ä2p-1,2p-3 0

 ,

Ü =


0 Ä1,3... Ä1,2p−1

. . . · · ·
...

A2p−5,2p−3 A2p−5,2p−1

0 A2p−3,2p−1

0

 ,

where
Ä1,2j−1 = A1,2j−1 −A1,2A

−1
2,2A2,2j−1, for 1 ≤ j ≤ p,

Ä2p−1,2j−1 = A2p−1,2j−1−A2p−1,2p−2A
−1
2p−2,2p−2A2p−2,2j−1, for 1 ≤ j ≤ p,

Ä2i−1,2j−1 = A2i−1,2j−1−A2i−1,2i−2A
−1
2i−2,2i−2A2i−2,2j−1−A2i−1,2iA

−1
2i,2iA2i,2j−1,

for 1 < i < p and 1 ≤ j ≤ p.
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Proof. Suppose that λ ∈ λ{H̃−1B̃} and ũ is the corresponding eigenvec-
tor, i.e. H̃−1B̃ũ = λũ. So B̃ũ = λH̃ũ. Let

·
u=

(
uT

1 , ..., uT
2p−1

)T be the vector
defined by the subvectors of ũ. Then we have

λ
(
D̈ + ωL̈

) ·
u=

(
(1− ω)D̈ − ωÜ

) ·
u .

Hence, λ ∈ λ
(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)
. Thus,

λ
{

H̃−1B̃
}
⊆ λ

{(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)}
.

Let us consider λ

{(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)}
and u̇ be the corre-

sponding eigenvector, i.e. λ
(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)
u̇. Now we con-

struct an eigenvector ũ of H̃−1B̃ from this eigenvector u̇. Let the subvectors
of ũ be defined by the corresponding subvectors of u̇. The other subvectors of
ũ are uniquely determined by the equation λH̃ũ = B̃ũ if λ 6= 1− ω. It follows
that λ

{
H̃−1B̃

}
. Thus,

λ

{(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)}
\{1− ω} ⊆ λ{H̃−1B̃}. �

We rewrite the block submatrices of A as follows:

A1,1 =
[

A0,0 A0,1

A1,0 A1,1

]
, A2p−1,2p−1 =

[
A2p−1,2p−1 A2p−1,2p

A2p,2p−1 A2p,2p

]
,

A2p−1,1 =
[

A2p−1,0 A2p−1,1

A2p,0 A2p,1

]
, A1,2p−1 =

[
A0,2p−1 A0,2p

A1,2p−1 A1,2p

]
,

A1,i =
[

A0,i

A1,i

]
, Ai,1 =

(
Ai,0, Ai,1

)
, A2p−1,i =

[
A2p−1,i

A2p,i

]
,

for 1 < i < 2p− 1,

Ai,2p−1 =
(
Ai,2p−1, Ai,2p

)
, u1 =

[
ū0

ū1

]
, u2p−1 =

[
ū2p−1

ū2p

]
, 1 < i < 2p−1.

After these rewritings of the sub-matrices along the boundary of the matrix
A, we can obtain the following theorem, which requires less zero sub-matrices
in its assumption. The proof of this theorem is very similar to that of Theorem
2.1. and we omit it
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Theorem 2.2 If Ai,2j = 0 for |i− 2j| ≥ 2, Ai,0 = 0, for 2 ≤ i ≤ 2p, and
Ai,2p = 0, for 1 ≤ i ≤ 2p− 2, then:

i) The iterative matrix of the AMS method satisfies

λ
{

H̃−1B̃
}
⊆ λ

{(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)}
and

λ

{(
D̈ + ωL̈

)−1 (
(1− ω)D̈ − ωÜ

)}
\{1− ω} ⊆ λ

{
H̃−1B̃

}
.

ii) The iterative matrix of the AAS method satisfies

λ
{

D̃−1
(
D̃ − ωÃ

)}
⊆
{

D̈−1
(
D̈ − ωÄ

)}
and

λ
{

D̈−1
(
D̈ − ωÄ

)}
\{1− ω} ⊆ λ

{
D̃−1

(
D̃ − ωÃ

)}
,

where
Ä = D̈ + L̈ + Ü ,

D̈ =


Ä1,1

Ä3,3

. . .
Ä2P−1,2P−1

 ,

L̈ =


0

Ä3,1 0
Ä3,1 Ä3,3 0
...

. . . . . .
Ä2P−1,1 Ä2P−1,2P−3 0

 ,

Ü =


0 Ä1,3 · · · Ä1,2P−1

. . . · · ·
...

Ä2P−5,2P−3 Ä2P−5,2P−3

0 Ä2P−3,2P−1

0

 ,

where, for 1 ≤ i ≤ p, Ä1,2i−1 = A1,2i−1 −A1,0A
−1

0,0A0,2i−1 −A1,2A
−1

2,2A2,2i−1

Ä2p−1,2i−1 = A2p−1,2i−1−A2p−1,2pA
−1

2p,2pA2p,2i−1−A2p−1,2p−2A
−1

2p−2,2p−2A2p−2,2i−1
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and, for 2 ≤ i ≤ p− 1,m = 1 or 2p− 1,

Ä2i−1,m = A2i−1,m −A2i−1,2i−2A
−1

2i−2,2i−2A2i−2,m −A2i−1,2iA
−1

2i,2iA2i,m.

From Theorems 2.1 and 2.2, we establish the relation between eingenvalues
of the the matrices A and Ȧ or Ä. In order to obtain the convergence factors
of the AMS method, we further discuss the relation between A and Ȧ, as well
as A and Ä in following lemma.

Lemma 2.1. Suppose that Ai,2j = 0 and A2j,i = 0 for |i− 2j| ≥ 2;
then:

i) If A is symmetric, then Ȧ is symmetric. If A is positive definite, then Ȧ
is positive definite.

ii) Assume Ai,0, A0,i = 0, for 2 ≤ i ≤ 2p and Ai,2p = 0, A2p,i = 0, for
1 ≤ i ≤ 2p− 2.

Then, if A is symmetric, then Ä is symmetric. If A is positive definite,
then Ä is positive definite.

iii) If A is an M - matrix, then Ȧ is an M matrix.
iv) Assume Ai,0 = 0, A0,i = 0 for 2 ≤ i ≤ 2p and Ai,2p = 0, A2p,i = 0,

for 1 ≤ i ≤ 2p− 2.If A is an M - matrix, then Ä is an M - matrix.

Proof. Since the proof of (ii) and (iv) is similar to that of (i) and (iii),
we only prove (i) and (ii) here.

i) Because Ai,2j = 0 for |i− 2j| ≥ 2, it is obvious that Ȧ is symmetric.

From u̇T Ȧu̇ =
T∑

i,j=1

u̇T
2i−1Ȧ2i−1,2j−1

u̇2j−1, we let

u2i = −A−1
2i,2i (A2i,2i−1 u̇2i−1 + A2i,2i+1u̇2i+1)

and construct a vector u by putting these subvectors u̇2i−1 and u2i. Then

u̇T Ȧu̇ =
p∑

i,j=12i−1

u̇T
2i−1Ȧ2i−1,2j−1u̇2j−1 =

2p−1∑
i,j=1

uT
i Ai,juj .

Hence, if A is positive definite then Ȧ is positive definite.

iii) For any ḃ =
(
ḃT
1 , ḃT

3 , ..., ḃT
2p−1

)T

≥ 0, there exists a vector u̇ such that

Ȧu̇ = ḃ. Let u be a vector whose subvectors are defined from the vector u̇ and
the solutions u2i of A2i,2iu2i = − (A2i,2iu̇2i−1 + A2i,2i+1u̇2i+1) .

Then this vector u satisfies Au = b, where b =
(
ḃT
1 , 0, ḃT

3 , 0, ..., 0, ḃT
2p−1

)T

.

Since A−1 ≥ 0 and b ≥ 0, it follows that u = A−1b ≥ 0. Thus Ȧ−1 ≥ 0.
Note that Ȧ is positive definite. So the diagonal elements of Ȧ must be
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positive. Now we prove that the off-diagonal elements of Ȧ are negative. Let
u̇ be the vector such that only one component of u̇ is one and the other
components are zero. Let

Ȧu̇ = ḃ where ḃ =
(
ḃT
1 , 0, ḃT

3 , 0, ..., 0, ḃT
2p−1

)
and

A2i,2iu2i = − (A2i,2i−1u̇2i−1 + A2i,2i+1u̇2i+1) , 1 ≤ i ≤ p− 1.

Because A2i,2i−1u̇2i−1 + A2i,2i+1u̇2i+1 ≤ 0 and A−1
2i,2i ≥ 0, we have

u2i ≥ 0, 1 ≤ i ≤ p− 1.

Then a vector u is defined and Au = b, with b =
(
ḃT
1 , 0, ḃT

3 , 0, ..., ḃT
2p−1

)
.

From this equation, we can obtain that the component of ḃ corresponding to
the nonzero components of u̇ must be strictly positive and other components
of ḃ are negative. Then Ȧ is an M - matrix.

Remarks. We can use [3] one the spectrum δ of the block Jacobi iterative
matrices of Ȧ and Ä to get the optimal ω:

ωopt =
2

1 +
√

1− δ2
.

This choice makes the convergence factor λ = ω − 1 minimum. Since
δ < 1, we prefer to choose 1 < ω < 2 in AMS and AAS methods.

3. Iterative Subsolver for All Sub-problems
We write the matrix A as the sum of a diagonal matrix D, a lower triangular

matrix L and a upper triangular matrix U , A = D + L + U = D + C, where

D =

 D1,1

. . .
D2p−1,2p−1

 ,

L =


L1,1

A2,1 L2,2

...
. . . . . .

A2p−1,1 · · · A2p−1,2p−2 L2p−1,2p−1



U =


U1,1 A1,2 · · · A1,2p−1

U2,2

...
. . . . . . A2p−2,2p−1

U2p−1,2p−1

 .



PARALLEL METHODS FOR SOLVING THE LINEAR ALGEBRAIC SYSTEMS 73

Then, the matrix Ã has a corresponding decomposition denoted as

Ã = D̂ + L̂ + Û = D̂ + Ĉ,

where

D̂ =

 D̂1,1

. . .
D̂p,p

 , L =


L̂1,1

Â2,1 L̂2,2

...
. . . . . .

Âp,1 · · · Âp,p−1 L̂p,p

 ,

Û =


Û1,1 Â1,2 · · · Â1,p

Û2,2

...
. . . . . . Âp−1,p

Ûp,p

 .

Here we let:

D̂1,1 =
[

D1,1

D2,2

]
, D̂p,p =

[
D2p−2,2p−2

D2p−1,2p−1

]
,

L̂1,1 =
[

L1,1

A2,1 L2,2

]
, L̂p,p =

[
L2p−2,2p−2

A2p−1,2p−2 L2p−1,2p−1

]
,

Û1 =
[

U1,1 A1,2

U2,2

]
, Ûp =

[
U2p−2,2p−2 A2p−2,2p−1

U2p−1,2p−1

]
.

D̂i =

 D2i−2,2i−2

D2i−1,2i−1

D2i,2i

 ,

L̂i =

 L2i−2,2i−2

A2i−1,2i−2 L2i−1,2i−1

A2i,2i−2 A2i,2i−1 L2i,2i



Ûi =

 U2i−2,2i−2 A2i−2,2i−1 A2i−2,2i

U2i−1,2i−1 A2i−1,2i

U2i,2i

 .
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Suppose that p subproblems are solved using point Jacobi iterative method,
with ωi = ω, i = 1, ..., p. Then, the AAS algorithm can be written in the form:

D̂ũ(k+1) =
(
D̂ − ωÂ

)
ũ(k) + ωf,

and the AMS method can be represented by(
D̂ + ωL̂

)
y(k+1) =

(
D̂ − ω

(
D̂ + Û

))
y(k) + ωf.

Theorem 3.1. Suppose that Di,i are invertible, for i = 1, ..., 2p− 1. Then
we have

λ
{

D̂−1
(
D̂ − ωÂ

)}
= λ

{
D−1 (D − ωA)

}
∪

(
p⋃

i=1

λ
{
D−1

2i (D2i − ωA2i,2i)
})

.

Proof. Suppose that λ
{

D̂−1
(
D̂ − ωÂ

)}
and û is the corresponding

eigenvector, i.e. λD̂û =
(
D̂ − ωÂ

)
û.

If u2i 6= û2i for 1 ≤ i ≤ p− 1, then we haveλ ∈ λ
{
D−1

2i (D2i − ωA2i,2i)
}

.

If u2i = û2i for i = 1, ..., p − 1, then we have λ ∈ λ
{
D−1 (D − ωA)

}
and

we already show that

λ
{

D̂−1
(
D̂ − ωÂ

)}
⊆ λ

{
D−1 (D − ωA)

}
∪

(
p⋃

i=1

λ
{
D−1

2i (D2i − ωA2i,2i)
})

.

Now we prove that

λ
{
D−1 (D − ωA)

}
∪

(
p⋃

i=1

λ
{
D−1

2i (D2i − ωA2i,2i)
})

⊆ λ
{

D̂−1
(
D̂ − ωÂ

)}
.

Assume that

λ ∈ λ
{
D−1 (D − ωA)

}
∪

(
p⋃

i=1

λ
{
D−1

2i (D2i − ωA2i,2i)
})

.

If λ ∈ λ
{
D−1 (D − ωA)

}
and u is the associated eigenvector, i.e.,

−λDu+(D−ωA)u = 0, then we construct an eigenvector û of D̂−1
(
D̂ − ωÂ

)
,

from the eigenvector û, by letting û2i = u2i, for i = 1, ..., p− 1. If

λ =
(

p⋃
i=1

λ
{
D−1

2i (D2i − ωA2i,2i)
})

and λ /∈ λ
{
D−1 (D − ωA)

}
, then an
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eigenvector û of the matrix D̂−1
(
D̂ − ωÂ

)
is constructed by the following

procedure. Assume that v2i is the solution of the equation:

−λD2iv2i + (D2i − ωA2i,2i) v2i = 0,

i.e. v2i is the eigenvector of D−1
2i (D2i − ωA2i,2i) . By solving the equation

−λDu+(D−ωA)u = w, where w =
(
0T , ..., 0T , ωvT

2iA2i+1,2i, ..., ωvT
2iA

T
2p−1,2i

)
we obtain a vector u. Define û2i = v2i + u2i. The other subvectors of û are
defined by û2j = u2j , j = 1, ..., i− 1, i + 1, ..., p− 1. This û satisfies

−λD̂û +
(
D̂ − ωÂ

)
û = 0, and then λ ∈ λ

{
D̂−1

(
D̂ − ωÂ

)}
.

Theorem 3.2. Suppose that A is an M - matrix, the matrixD + ω


0

A2,1

...
A2p−1,1 · · · A2p−1,2p−2 0




exists and is nonnegative, and the matrix

D − ω

 A1,1 · · · A1,2p−1

. . .
...

A2p−1,2p−1


is nonnegative. Then Â−1 and

(
D̂ + ωL̂

)−1

exist and are nonnegative, and

D̂ − ω
(
D̂ + Û

)
is nonnegative. So the spectrum of the AMS iterative matrix

AMS
(
D̂ + ωL̂

)−1 (
D̂ − ω

(
D̂ − Û

))
is less than 1.

The proof of this theorem is similar to that of Lemma 2.1.

Let all subproblems be solved by the SOR method with ωi = 1 and
i = 1, ..., p.

Then, the AAS method can be expressed byD̂ + ω

 L̂1,1

. . .
L̂p,p


u(k+1) =

(
(1− ω)D̂ − ω

(
L̂ + Û

))
u(k)+ωf.
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Hence, the corresponding iterative matrix is

Ĵ =

D̂ + ω

 L̂1,1

. . .
L̂p,p



−1 (

(1− ω)D̂ − ω
(
L̂ + Û

))
.

The AMS method can also be written in the simple form:(
D̂ + ωL̂

)
y(k+1) =

(
(1− ω)D̂ − ωÛ

)
y(k) + ωf,

with the iterative matrix:

Ŝ =
(
D̂ + ωL̂

)−1 (
(1− ω)D̂ − ωÛ

)
.

Theorem 3.3. Assume that A is an M - matrix,D + ω

 L1,1

. . .
L2p−1,2p−1



−1

exists and is nonnegative, and

(1− ω)D − ω


0

A2,1

...
A2p−1,1 · · · A2p−1,2p−2

− ωU is nonnegative.

Then A−1 and

D̂ + ω

 L̂1,1

. . .
L̂p,p


 exist and are nonnegative.

So, the spectrum of the AAS iterative matrix Ĵ is strictly less than 1.

The proof is similar to that of Lemma 2.1.

Denote
M = (D + ωL)−1((1− ω)D − ωU)

and
M2i,2i = (D2i,2i + ωL2i,2i)

−1 ((1− ω)D2i,2i − ωU2i,2i.
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Theorem 3.4. Assume that all Di,i are nonsingular. Then, we have

λ{Ŝ} = λ{M} ∪

(
p−1⋃
i=1

λ{M2i,2i}

)
.

Proof. Assume that λ = λ{Ŝ} and û is the corresponding eigenvector, i.e.

λû = Ŝû, λ
(
D̂ + ωL̂

)
û =

(
(1− ω)D̂ − ωÛ

)
û.

If u2i 6= û2i for some 1 ≤ i ≤ p− 1 then λ ∈ λ{M2i,2i}. If u2i = û2i for all

1 ≤ i ≤ p− 1 then λ ∈ λ{M}. Hence, λ{Ŝ} ⊆ λ{M} ∪
(

p−1⋃
i=1

λ{M2i,2i}
)

.

Now we show that λ{M} ∪
(

p−1⋃
i=1

λ{M2i,2i}
)
⊆ λ{Ŝ}.

Let λ ∈ λ{M} and u be the associated eigenvector, i.e.

λu = Mu and λ(D + ωL)u = ((1− ω)D − ωU)u.

Define û by letting û2i = u2i. Then, this û is the eigenvector of Ŝ and
λû = Ŝû. Thus, λ{M} ⊆ λ{Ŝ}.

Assume λ ∈ λ{M2i,2i}, λ /∈ λ{M}. Denote v2i to be the corresponding
eigenvector, i.e. λv2i = M2i,2i. We solve the following equation and get a
solution: (λ(D + ωL) + ωU + (ω − 1)D) u = w,where
w = −λω

(
0T , ..., 0T , vT

2iA2i+2i, ..., v2iA2p−1,2i

)T . Since λ /∈ λ{M}, this prob-
lem has only one solution. We define a new vector by letting

û2j =
{

v2j + u2i , j = i,
u2j , j 6= i.

.

This û satisfies λû = Ŝû. Hence, û is the eigenvector of Ŝ.
From above theorems and lemmas, we conclude that the convergence fac-

tors of the AAS method and AMS method are almost the same as the block
Jacobi method and the SOR method.
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