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K-manifolds locally described by Sasaki
manifolds

Luigia Di Terlizzi and Anna Maria Pastore

Abstract

K-manifolds are normal metric globally framed f -manifolds whose
Sasaki 2-form is closed. We introduce and study some subclasses of
K-manifolds. We describe some examples and we also state local de-
composition theorems.

1 Introduction

Globally framed f -manifolds, also known as f -manifolds with parallelizable
kernel (f.pk-manifolds), represent a natural generalization of almost contact
manifolds ([8, 9]). Such manifolds have been studied by several authors and
from different point of view ([1, 3, 4, 5, 7, 12]). They are manifolds M2n+s

equipped with an f -structure ϕ of rank 2n with kernel parallelizable by s vec-
tor fields ξ1, . . . ξs. Such manifolds always admit Riemannian metrics g which
verify the compatibility condition g(ϕX,ϕY ) = g(X,Y ) −

∑s
i=1 η

i(X)ηi(Y ),
where η1, . . . , ηs are the 1-forms dual to ξ1, . . . ξs. When the normality tensor
field N := [ϕ,ϕ]+2

∑s
i=1 dη

i⊗ ξi, [ϕ,ϕ] being the Nijenhuis torsion of ϕ, van-
ishes and the Sasaki 2-form F = g(−, ϕ−) is closed one obtains a class of man-
ifolds that generalizes quasi-Sasakian manifolds and are called K-manifolds by
D.E. Blair in [1]. Two special subclasses are also defined: S-manifolds, by
requiring that dη1 = · · · = dηs = F , and C-manifolds, by requiring that
dη1 = · · · = dηs = 0.

Key Words: f -structures, K-structures, Sasaki manifold.
2010 Mathematics Subject Classification: Primary 53D10, 53C25; Secondary 53C15
Received: April, 2011.
Revised: April, 2011.
Accepted: February, 2012.

269



270 Luigia Di Terlizzi and Anna Maria Pastore

In this paper we study K-manifolds M2n+s subject either to the condition∑s
i=1 dη

i = F or to
∑s
i=1 dη

i = 0. Since for s = 1 the first case corre-
sponds to the Sasaki manifolds and the second to cosymplectic manifolds, we
shall consider K-manifolds M2n+s with s ≥ 2. We denote by K̂ the sub-
class of manifolds satisfying the first condition, which contains the products
of Sasakian manifolds, and by K

0

the subclass of those satisfying the second,
which obviously contains C-manifolds. We give an example of a K

0

-manifold
non C-manifold.

The most important results are local decomposition theorems: first we
describe the local decomposition of an S-manifold as Riemannian product of a√
s-Sasakian manifold and a flat (s−1)-dimensional manifold. Then we prove

that a K̂-manifold M2n+s with the property that there exists p, 1 ≤ p < s,
such that dηi 6= 0 for i ≤ p and dηi = 0 for i ≥ p+ 1, is locally a Riemannian
product of a K̂-manifold M2n+p

1 and an (s−p)-dimensional flat manifold. This

allows to consider only K̂-manifolds such that dηi 6= 0 for each i ∈ {1, . . . , s}.
We distinguish three subclasses: K̂1 if dηi = dηj for any i, j; K̂2 if dηi 6= dηj

for any i, j; K̂3 if there exists q ≤ s−2, dηi 6= dηj for i, j ≤ q and dηi = dηj for
i, j ≥ q+1. The K̂1-manifolds are strictly linked to S-manifolds and we prove a
local decomposition theorem (Theorem 4.1). After studying certain integrable

and ϕ-invariant distributions, we are able to prove that K̂2-manifolds and
K̂3-manifolds, verifying some hypotheses on the rank of the forms η1, . . . , ηs,
are locally product of s Sasakian manifolds (Theorem 5.2), in the first case,
and of q + 1 Sasakian manifolds and an (s− q − 1)-dimensional flat manifold
(Theorem 5.3) in the last case. Finally, we discuss the case s = 2 and the link
with Vaisman manifolds.

All manifolds are assumed to be connected. We adopt the notation in [10]
for the curvature tensor field.

2 Special types of K-manifolds

It is well known, [3], that the Levi-Civita connection of a K-manifold satisfies,
for each X,Y, Z ∈ Γ(TM),

g((∇
X
ϕ)Y,Z) =

s∑
i=1

(
dηi(ϕY,X)ηi(Z)− dηi(ϕZ,X)ηi(Y )

)
. (2.1)

In [6] we studied a class, here denoted by K∗, of K-manifolds with the pro-
perty that dηi = 0 for some i ∈ {1, . . . , s} and dηj = F for the other values
of the index, that is, up to the order, there exists p, 1 ≤ p < s such that
dη1 = . . . = dηp = F and dηi = 0 for i ≥ p + 1. We proved that such a
K∗-manifold can be viewed locally as a Riemannian product of an integral
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submanifold M1 of the distribution Im ϕ ⊕ < ξ1, . . . , ξp >, which carries a
structure of S-manifold of dimension 2n+p, and an (s−p)-dimensional integral
submanifold M2 of the flat distribution < ξp+1, . . . , ξs >. We begin with a
local decomposition theorem for S-manifolds.

Theorem 2.1. Let (M2n+s, ϕ, ξi, η
i, g) be an S-manifold. Then (M2n+s, g)

is locally a Riemannian product of a
√
s-Sasakian manifold and an (s − 1)-

dimensional flat manifold.

Proof. Let (M2n+s, ϕ, ξi, η
i, g) be an S-manifold. We put ξ =

∑s
i=1 ξi and

η =
∑s
i=1 η

i. Since ξ ∈ kerϕ we fix a basis (ξ̃2, . . . , ξ̃s) of < ξ >⊥ in kerϕ,

ξ̃j = ξ1 − ξj , j ∈ {2, . . . , s}, and we obtain the orthogonal decomposition

TM = (Im ϕ ⊕ < ξ >) ⊕ < ξ̃2, . . . , ξ̃s >. Moreover D1 = Im ϕ ⊕ < ξ >

and D2 =< ξ̃2, . . . , ξ̃s > are both integrable and totally geodesic distributions.
Thus (M2n+s, g) is locally a Riemannian product of integral submanifolds of
D1 and D2, say M1 and M2. Clearly M2 is (s − 1)-dimensional and flat.

On the other hand we normalize ξ obtaining ξ̃ = ξ√
s
, as g(ξ, ξ) = s. Then

(M1, ϕ, ξ̃, η̃, g), η̃ = 1√
s
η, is (2n + 1)-dimensional, ϕ(ξ̃) = 0, g(ξ̃, ξ̃) = 1 and

g(X, ξ̃) = η̃(X), so that η̃ is the dual 1-form of ξ̃. It is easy to verify that

ϕ2 = −id+ η̃⊗ ξ̃ and g(ϕX,ϕY ) = g(X,Y )− η̃(X)η̃(Y ) so obtaining an almost

contact metric structure (ϕ, ξ̃, η̃, g) on M1. The normality of the structure

follows from dη̃ ⊗ ξ̃ = 1√
s

∑s
i=1 dη

i ⊗ 1√
s

∑s
j=1 ξj = F ⊗ ξ =

∑s
i=1 dη

i ⊗ ξi
on M1. Finally, for the Sasaki 2-form F̃ of this structure on M1, we obtain
dη̃ = 1√

s
dη = 1√

s

∑s
i=1 dη

i = 1√
s
sF =

√
sF̃ .

Remark 2.1. We recall that an M2n+1 manifold admitting an α-Sasakian
structure (ϕ, ξ, η, g) (i.e. with dη = αF ) carries also a Sasakian structure
given by (ϕ, ξα , αη, α

2 g). Thus, by the above theorem, the S-manifold M2n+s

admits two foliations corresponding to the distributions D1,D2 and each leaf

of the first admits the Sasaki structure (ϕ, ξs , η, sg|M1
).

Corollary 2.1. Let (M2n+s, ϕ, ξi, η
i, g) be a K∗-manifold with p, 1 ≤ p < s,

such that dηi = F for i ≤ p and dηi = 0 for i ≥ p + 1. Then (M2n+s, g) is
locally the Riemannian product of a

√
p-Sasakian manifold and a flat (s− 1)-

dimensional manifold. Moreover, if p ≥ 2, the manifold is also foliated by
Sasaki manifolds and flat manifolds.

Proof. Since (M2n+s, g) is locally the Riemannian product of an S-manifold
of dimension 2n + p and a flat (s − p)-dimensional manifold, we can apply
Theorem 2.1 and Remark 2.1.
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In the sequel we shall study metric f.pk-manifolds of dimension 2n + s,
s ≥ 2, with a condition on the 1-form

∑s
i=1 dη

i. Precisely we consider the
conditions

a) :

s∑
i=1

dηi = F b) :

s∑
i=1

dηi = 0. (2.2)

Actually, assuming the normality of the structure, dF = 0 (which is superflu-
ous if a) holds) and η1 ∧ . . . ∧ ηs ∧ Fn 6= 0, we can consider two subclasses

of K-manifolds: the class K̂ of manifolds satisfying a), and the class K
0

of
manifolds satisfying b).

The class K̂ includes K∗-manifolds with p = 1 and s ≥ 2, while excludes
C-manifolds and S-manifolds. One of the interest in studying this class comes
from the fact that a finite product of Sasakian manifolds carries a structure of
K̂-manifold, as it will be stated in Theorem 2.2. On the other hand the class
K

0

includes C-manifolds and excludes S-manifolds.
From now on,

∑s
i=1 ξi and

∑s
i=1 η

i will be denoted by ξ and η, respectively.
Since in a K-manifold (M2n+s, ϕ, ξi, η

i, g), i ∈ {1, . . . , s}, each ξi is Killing
([1]), we have immediately the following characterizations:

M2n+s is a K̂−manifold if and only if
∑s
i=1∇ξi = ∇ξ = −ϕ

M2n+s is a K
0 −manifold if and only if

∑s
i=1∇ξi = ∇ξ = 0.

(2.3)

From [5] we know that a Da-homothetic deformation, a > 0, of the f.pk-
structure (ϕ, ξi, η

i, g) on M2n+s is a change of the structure tensors as follows:

ϕ̃ = ϕ, η̃i = aηi, ξ̃i =
1

a
ξi, 1 ≤ i ≤ s, g̃ = ag + a(a− 1)

s∑
j=1

ηj ⊗ ηj

and one easily verifies the following result.

Proposition 2.1. The classes K̂ and K
0

are both closed under Da-homothetic
deformations.

Now, we describe an example of K
0

-manifold which is not a C-manifold.

Example 2.1. Let L be a real vector space of dimension m ≥ 4 and s ≥ 2
such that m− s is an even number, say 2n. In L we fix a basis

(Z1, . . . , Zs, X1, . . . , Xn, Y1, . . . , Yn) (2.4)

and define a Lie algebra structure putting the bracket [−,−] = 0 except for

[Xi, Yi] = −[Yi, Xi] =

s∑
t=1

atiZt,
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for any i ∈ {1, . . . , n}, requiring that the matrix (ati) of the type (s, n) has all
its entries not zero and

∑s
t=1 a

t
i = 0, for any i ∈ {1, . . . , n}.

Since [L,L] =< Z1, . . . , Zs > and [L, [L,L]] = 0, L is a nilpotent algebra. We
consider on L the scalar product g0 such that (2.4) is an orthonormal basis,
the tensor ϕ0 of the type (1,1) and the 1-forms η10 , . . . η

s
0 defined, for each

t, r ∈ {1, . . . , s} and i ∈ {1, . . . , n}, by:

ϕ0(Zt) = 0, ϕ0(Xi) = Yi, ϕ0(Yi) = −Xi, η
t
0(Zr) = δtr, η

t
0(Xi) = ηt0(Yi) = 0.

Let G be the connected, simply connected Lie group having L as Lie algebra. It
admits the structure (ϕ, ξt, η

t, g) obtained by left-invariance from the structure
(ϕ0, Zt, η

t
0, g0) on L. A direct computation yields that, for any t ∈ {1, . . . , s},

dηt vanishes except on the left-invariant vector fields (X̃i, Ỹi) determined by
Xi, Yi, i ∈ {1, . . . , n}. In fact:

dηt(X̃i, Ỹi) = −1

2
ηt([X̃i, Ỹi]) = −1

2
ati 6= 0. (2.5)

It is easy to check that (G,ϕ, ξt, η
t, g) is a K-manifold and (2.5) excludes the C-

structure. Finally,
∑s
t=1 dη

t(X̃i, Ỹi) = − 1
2

∑s
t=1 a

t
i = 0, and G has a structure

of K
0

-manifold.

The following result can be easily proved.

Theorem 2.2. The product manifold M̃ =
∏s
i=1Mi of a family of almost

contact metric manifolds (M2ni+1
i , ϕi, ξi, η

i, gi), i ∈ {1, . . . , s}, with the struc-

ture defined by ϕ̃ = ϕ1 + . . . + ϕs, ξ̃1 = ξ1, . . . , ξ̃s = ξs, η̃
1 = η1, . . . , η̃s = ηs

and g̃ = g1 + . . .+ gs, is a metric f.pk-manifold. Furthermore, the normality
tensor field and the Sasaki 2-form of M̃ are related to the analogous tensor
fields of the factors by Ñ =

∑s
i=1Ni and F̃ =

∑s
i=1 Fi. Moreover

1) if each factor is a contact metric manifold then M̃ satisfies (2.2)a),

2) if each factor is a Sasakian manifold then M̃ is a K̂-manifold,

3) if there exists p ∈ N, 1 ≤ p < s such that M1, . . . ,Mp are Sasakian and

Mp+1, . . . ,Ms are cosymplectic, then M̃ is a K̂-manifold.

3 The K̂-manifolds

Proposition 3.1. Let (M2n+s, ϕ, ξi, η
i, g) be a K̂-manifold. Then we have

1) RξXY = (∇Xϕ)Y , RXY ξ = (∇Y ϕ)X − (∇Xϕ)Y , X, Y ∈ Γ(TM)
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2) ∇η = F

Proof. Since ξ is Killing, by (2.3), we get

(∇
X
ϕ)Y = ∇

X
(ϕY )− ϕ∇

X
Y = −∇

X
(∇

Y
ξ) +∇∇

X
Y
ξ = −R

Xξ
Y = R

ξX
Y.

The first Bianchi identity completes 1). A direct computation shows 2).

Next proposition implies that the class K̂ is closed under finite products.

Proposition 3.2. Let us suppose that (M2n+s
1 , ϕ1, ξi, η

i, g1), i ∈ {1, . . . , s},
and (M2m+t

2 , ϕ2, ζj , ω
j , g2), j ∈ {1, . . . , t}, are K̂-manifolds. Then the Rie-

mannian product (M2n+s
1 ×M2m+t

2 , g̃) admits a K̂-structure.

Proof. On the product manifold M̃ , we consider the f -structure ϕ̃ = ϕ1 +ϕ2.
Then it is easy to verify that (ϕ̃, ξi, ζj , ηi, ωj , g̃), i ∈ {1, . . . , s}, j ∈ {1, . . . , t}
is the required structure, since Ñ = N1 +N2 and F̃ = F1 + F2.

Remark 3.1. In [4] it has been proved that no Einstein S-manifold can exist.

On the other hand we can construct an Einstein K̂-manifold taking s Sasakian-
Einstein manifolds Mi, with the same dimension 2n + 1, and making their
Riemannian product as in Theorem 2.2. It is well known that Rici = λgi,
Rici being the Ricci tensor field on Mi, with Einstein constant λ = 2n, which
is also the Einstein constant of the product.

Example 3.1. We consider the coordinates (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)
on R3n, n ≥ 2, and we put:

ξi =
∂

∂zi
, ηi = dzi + 2yidxi, i ∈ {1, . . . , n}

ϕ =

 0 −In 0
In 0 0
0 Y 0

 , g =

Z 0 Y
0 In 0
Y 0 In


where Y = diag(2y1, . . . , 2yn) , Z = diag(1 + 4(y1)2, . . . , 1 + 4(yn)2).

From long but easy computations we get that R3n is a K̂-manifold. In parti-
cular, we have η1 ∧ . . . ∧ ηn ∧ Fn 6= 0 and

dηi = −2dxi ∧ dyi, F =

n∑
i=1

(−2dxi ∧ dyi) =

n∑
i=1

dηi.
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Example 3.2. Another significant example can be obtained as a particular
case of the example constructed in section 1.2 of [7].

Let G be a Lie group with Lie algebra g, P
π→ M a G-principal fibre bundle

and ω a connection on P . Moreover we suppose that there is given on G
an almost contact metric structure ZG determined by left-invariance of the
following objects on g: a scalar product gg, an almost contact structure ϕg,
a vector ξ and a 1-form η satisfying the usual compatibility conditions. The
induced Sasaki 2-form and the normality tensor field NG on G are also left-
invariant and they are determined by the corresponding bilinear maps Fg and
Ng on g. We suppose that (ϕM , ζ, µ, gM ) is an almost contact metric structure
on M with Sasaki 2-form FM and normality tensor field NM .

The connection ω ensures for each p ∈ P the splitting TpP = Hp⊕Vp. Via
the well-known isomorphisms ω : Vp → g, dπ : Hp → Tπ(p)M we can define
on TP an f -structure ϕP in such a way that the following diagram

TpM
dπ←−−−− Hp ⊕ Vp

ω−−−−→ g

ϕM

y ϕP

y yϕg

TpM
dπ←−−−− Hp ⊕ Vp

ω−−−−→ g

commutes. Moreover, via the isomorphism dπ × ω : TpP → Tπ(x)M × g we

define on P a Riemannian metric gP , the vector fields ξ̃, ζ̃, and the 1-forms
η̃, µ̃, obtaining on P a metric f.pk-structure (ϕP , ξ̃, ζ̃, η̃, µ̃, gP ) ([7]). Such a
structure is G-invariant if and only if (ϕg, ξ, η, gg) is AdG-invariant.

In [7] it is proved that if ω is flat and (ϕM , ζ, µ, gM ), (g, ϕg, ξ, η, gg) are
normal, then the structure on P is normal.
Thus, assuming that ω is flat and (M,ϕM , ζ, µ, gM ), (g, ϕg, ξ, η, gg) are Sasaki,

then (P,ϕP , ξ̃, ζ̃, η̃, µ̃, gP ) is a K̂-manifold. Namely, by Lemma 2.2 of [7] we
get immediately the following identities

dη̃ = dη ◦ (ω ∧ ω), dµ̃ = π∗(dµ), FP = Fg ◦ (ω ∧ ω) + π∗FM = dη̃ + dµ̃,

where FP is the Sasaki 2-form associated to the f.pk-structure on P .

We state now a theorem which, in some way, reduces the study to the
K̂-manifolds such that dηi 6= 0 for each i ∈ {1, . . . , s}.

Theorem 3.1. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂-manifold and

suppose that there exists p, 1 ≤ p < s, such that dηi 6= 0 for any i ∈ {1, . . . , p}
and dηi = 0 for any i ≥ p+1. Then M2n+s is locally a Riemannian product of
a K̂-manifold (M2n+p

1 , ϕ, ξi, η
i, g), i ∈ {1, . . . , p}, and an (s− p)-dimensional

flat manifold.
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Proof. We can consider the orthogonal decomposition TM = D1 ⊕D2, where
D1 = Im ϕ ⊕ < ξ1, . . . , ξp > and D2 =< ξp+1, . . . , ξs >. Since the distri-
butions D1 and D2 are both integrable and totally geodesic, (M2n+s, g) is
locally a Riemannian product of their integral submanifolds, say M1 and M2.
Clearly M2 is (s−p)-dimensional and flat. It is easy to check that the induced
structure (ϕ, ξ1, . . . , ξp, η

1, . . . , ηp, g) on M1 is a K-structure. Finally, for its
Sasaki 2-form F ′ we have F ′(X,Y ) =

∑s
i=1 dη

i(X,Y ) =
∑p
i=1 dη

i(X,Y ) and
this completes the proof.

Owing to the above theorem, we shall study the K̂-manifolds such that
dηi 6= 0 for each i ∈ {1, . . . , s}. The following cases can occur:

1) dηi = dηj , for any i, j.

2) dηi 6= dηj , for any i, j.

3) There exists q ≤ s − 2 such that dηi 6= dηj , i, j ≤ q and dηi = dηj ,
i, j ≥ q + 1.

which give rise to three subclasses, denoted by K̂1, K̂2 and K̂3, respectively.
In the last case, the first possibility is dη1 6= dη2 = dη3 and of course s ≥ 3.
Note that Example 3.1 and 3.2 belong to the class K̂2. Examples in the class
K̂1 can be constructed starting from S-manifolds, as described in next section.

4 The class K̂1

We denote by G(M2n+s, ϕ, ξi, η
i) the set of the metric tensor fields compatible

with the f.pk-structure (ϕ, ξi, η
i).

Proposition 4.1. Let (M2n+s, ϕ, ξi, η
i), i ∈ {1, . . . , s}, s ≥ 2, be a normal

f.pk-manifold such that dη1 = . . . = dηs 6= 0. Then M2n+s admits a metric
g ∈ G(M2n+s, ϕ, ξi, η

i) that makes M2n+s an S-manifold if and only if there

exists g̃ ∈ G(M2n+s, ϕ, ξi, η
i) that makes M2n+s a K̂1-manifold.

Proof. If M2n+s is an S-manifold, we can consider the new metric

g̃ = sg − (s− 1)

s∑
i=1

ηi ⊗ ηi . (4.1)

Then, it is easy to check that g̃ ∈ G(M2n+s, ϕ, ξi, η
i) and (2.2)a) holds. Vice

versa let g̃ ∈ G(M2n+s, ϕ, ξi, η
i) such that (2.2)a) holds. The transformation

g = 1
s g̃+ (s−1)

s

∑s
i=1 η

i⊗ ηi, gives (M2n+s, ϕ, ξi, η
i) a structure of S-manifold.
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Proposition 4.2. Let (M2n+s, ϕ, ξi, η
i), i ∈ {1, . . . , s}, s ≥ 2, be an S-

manifold and g̃ the metric (4.1), that makes M2n+s a K̂1-manifold. Then
the Levi-Civita connections are tied by

∇̃XY = ∇XY +
s− 1

s
(η(Y )ϕX + η(X)ϕY ) , (4.2)

for each X,Y ∈ Γ(TM). Moreover the curvature tensor fields are linked by

R̃XY Z = RXY Z +
s− 1

s

(
dη(X,Z)ϕY − dη(Y, Z)ϕX + 2dη(X,Y )ϕZ

+ η(Y )g(ϕX,ϕZ)ξ − η(X)g(ϕY, ϕZ)ξ

+
s+ 1

s

(
η(Y )η(Z)ϕ2X − η(X)η(Z)ϕ2Y

))
, (4.3)

for each X,Y, Z ∈ Γ(TM).

Proof. The proofs are long but direct computations. We only notice that to
obtain (4.2) we use ηi(∇̃XY ) = X(ηi(Y )) − g(X,ϕY ), i ∈ {1, . . . , s} and to

prove (4.3) we use η(∇̃Y Z) = η(∇Y Z), (∇Xη)Z = dη(X,Z) and (4.2).

Theorem 4.1. Let (M2n+s, ϕ, ξi, η
i, g̃) be a K̂1-manifold. Then (M2n+s, g̃)

is locally a Riemannian product of a 1√
s
-Sasakian manifold and an (s − 1)-

dimensional flat manifold.

Proof. By Proposition 4.1 we know that there exists on M2n+s an S-structure
(ϕ, ξi, η

i, g), and the metrics are linked by (4.1). As in Theorem 2.1 we have

TM = (Im ϕ ⊕ < ξ >) ⊕ < ξ̃2, . . . ξ̃s >, the distributions D1 = Im ϕ ⊕ < ξ >

and D2 =< ξ̃2, . . . , ξ̃s > are both integrable, and one easily checks that they
are parallel with respect to the Levi-Civita connection of g̃ and then totally
geodesic. Thus (M2n+s, g̃) is locally a Riemannian product of the integral
submanifolds M1 and M2 of D1 and D2. Clearly M2 is (s − 1)-dimensional
and flat. Furthermore it is easy to verify that (M1, ϕ, ξ

′, η′, g1), η′ = 1√
s
η,

ξ′ = 1√
s
ξ, g1 = g̃|M1

is a (2n+1)-dimensional normal contact metric manifold.

We remark that g1 6= sg|M1
since g1(ξ′, ξ′) = 1 while sg(ξ′, ξ′) = s. Finally,

F ′(X,Y ) = g1(X,ϕY ) = g̃(X,ϕY ) = sg(X,ϕY ) = sF (X,Y ) = dη =
√
sdη′

on M1 and this completes the proof.

Remark 4.1. As in Remark 2.1 we have that the K̂1-manifold M2n+s admits
two foliations corresponding to the distributions D1,D2 and the leaves of the
first admit a Sasaki structure (ϕ, ξ, ηs ,

1
sg1). This structure can be obtained

from that given in the same remark, (ϕ, ξs , η, sg), applying the Da-homothetic
transformation with a = 1

s .
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Proposition 4.3. Let (M2n+s, ϕ, ξi, η
i, g) be a K-manifold and assume that

dη1 = . . . = dηs 6= 0. Then M is a K̂1-manifold if and only if ∇ξi = − 1
sϕ,

for each i ∈ {1, . . . , s}.

Proof. Since each ξi is Killing then the condition dηi = dηj is equivalent to
∇ξi = ∇ξj and the result follows again from (2.3).

Proposition 4.4. Let (M2n+s, ϕ, ξi, η
i, g) be a K̂1-manifold. Then,

(∇
X
ϕ)Y =

1

s
{g(ϕY, ϕX)ξ + η(Y )ϕ2X} (4.4)

R
XY
ξ =

1

s
{η(X)ϕ2Y − η(Y )ϕ2X} (4.5)

K(X, ξ) =
1

s
, K(X, ξi) =

1

s2
, X ∈ Γ(D). (4.6)

Here K denotes the sectional curvature.

Proof. Since (2.2)a) can be written as F = sdη1, then (2.1) becomes

g((∇
X
ϕ)Y, Z) = dη1(ϕY,X)η(Z)− dη1(ϕZ,X)η(Y )

=
1

s

(
g(ϕY, ϕX)g(Z, ξ) + g(Z,ϕ2X)η(Y )

)
=

1

s
g
(
g(ϕY, ϕX)ξ + η(Y )ϕ2X,Z

)
and we get (4.4). Now using Proposition 3.1 we obtain

R
XY
ξ = (∇

Y
ϕ)X − (∇

X
ϕ)Y =

1

s

(
η(X)ϕ2Y − η(Y )ϕ2(X)

)
.

Analogously, for any i ∈ {1, . . . , s} since ∇ξi = − 1
sϕ and ξi is Killing we have

R
ξiX

Y = −∇
X

(∇
Y
ξi) +∇∇

X
Y
ξi =

1

s
(∇

X
ϕY − ϕ∇

X
Y ) =

1

s
(∇

X
ϕ)Y

and then

R
XY
ξi =

1

s
((∇

Y
ϕ)X − (∇

X
ϕ)Y ) =

1

s
R
XY
ξ =

1

s2
(
η(X)ϕ2Y − η(Y )ϕ2(X)

)
.

In particular, for any unit X ∈ Γ(D) we have

R
Xξi

ξi =
1

s2
(−ϕ2X) =

1

s2
X , R

Xξ
ξ =

1

s

(
−η(ξ)ϕ2X

)
=

1

s
(sX) = X

which give K(X, ξi) = 1
s2

and K(X, ξ) = 1
s .
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5 Some results on the classes K̂2 and K̂3

We begin considering some distributions determined on a K̂-manifold.

Lemma 5.1. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂-manifold. Hence

for each i ∈ {1, . . . , s}, the distributions ker dηi and ker ηi ∩ ker dηi are inte-
grable and ϕ-invariant.

Proof. Let be X1, X2 ∈ ker dηi and Y ∈ Γ(TM2n+s). Then, since iX1(dηi) =
iX2

(dηi) = 0, we have 0 = 3d2ηi(X1, X2, Y ) = −dηi([X1, X2], Y ), which
implies [X1, X2] ∈ ker dηi. Now for any X1, X2 ∈ ker ηi ∩ ker dηi, we get
ηi([X1, X2]) = −2dηi(X1, X2) = 0 so that [X1, X2] ∈ ker ηi. Furthermore,
the ϕ-invariance follows easily, since the normality of the structure implies
dηi(X, ξj) = 0 and dηi(ϕX, Y ) = −dηi(X,ϕY ), for any i, j ∈ {1, . . . , s}.

Lemma 5.1 implies that, for each i ∈ {1, . . . , s}, there exist two foliations
determined by the distributions ker ηi ∩ ker dηi and ker dηi. We notice that
< ξ1, . . . , ξs >= kerϕ ⊆ ker dηi. Thus, if dηi = F for some i ∈ {1, . . . , s},

then ker dηi = kerϕ and ker ηi ∩ ker dηi =< ξ1, . . . , ξi−1, ξi+1, . . . , ξs >, which
are both flat distributions. By the contrary, fixed i ∈ {1, . . . , s} with dηi 6= F ,
which includes the possibility dηi = 0, one easily obtains the following result.

Proposition 5.1. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂-manifold.

Then, for any i ∈ {1, . . . , s} such that dηi 6= F , the induced structure

(ϕ, ξ1, . . . , ξi−1, ξi+1, . . . , ξs, η
1, . . . , ηi−1, ηi+1, . . . , ηs, g)

on any integral submanifold N of the distribution ker ηi ∩ ker dηi turns out to
be a K̂-structure. Furthermore, any integral submanifold Ñ of ker dηi, with
the induced structure (ϕ, ξ1, . . . , ξs, η

1, . . . , ηs, g), becomes a K̂-manifold. Ob-

viously, if dηi = 0 then Ñ = M2n+s.

Theorem 5.1. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂-manifold. For

each j ∈ {1, . . . , s}, the distribution

Dj =
⋂
i6=j

(ker ηi ∩ ker dηi), (5.1)

is integrable and ϕ-invariant. Moreover, for each j, h ∈ {1, . . . , s}, j 6= h, Dj

and Dh are orthogonal.

Proof. Integrability and ϕ-invariance follow from Lemma 5.1. Let X ∈ Dj ,
Y ∈ Dh. Then for any i 6= j we have ηi(X) = 0, dηi(X,−) = 0, and,
since h 6= j, ηh(X) = 0, dηh(X,−) = 0. Analogously, for any i 6= h,
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ηi(Y ) = 0, dηi(Y,−) = 0, in particular, ηj(Y ) = 0, dηj(Y,−) = 0. It fol-
lows that

∑s
t=1 η

t(X)ηt(Y ) = 0 and g(X,Y ) = g(ϕX,ϕY ) = F (ϕX, Y ) =∑s
t=1 dη

t(ϕX, Y ) = 0.

Remark 5.1. If, for some i ∈ {1, . . . , s}, dηi = F , then Dj =< ξj > for each
j 6= i. Namely we have ξj ∈ Dj and, being Dj ⊂ ker dηi =< ξ1, . . . , ξs >, for
any X ∈ Dj we get X =

∑s
h=1 α

hξh. Then, for any h 6= j, ηh(X) = 0 implies
αh = 0 and X ∈< ξj >.

Proposition 5.2. Let (M2n+s, ϕ, ξi, η
i, g), be a K̂2-manifold or a K̂3-manifold

such that each ηt has rank 2kt + 1 and k1 + · · · + ks = n. Then, for each
t ∈ {1, . . . , s}, dηt 6= F .

Proof. In the given hypotheses, F = dηt for some index t implies kt = n and
dηj = 0, for any j 6= t, which is impossible.

5.1 A decomposition theorem for certain K̂2-manifolds

Proposition 5.3. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂2-manifold

such that rank(ηi) = 2ki + 1 and k1 + · · · + ks = n. Then the integral sub-
manifolds of any Dj inherit a structure of Sasakian manifold.

Proof. The hypotheses imply that for each i ∈ {1, . . . , s} dηi 6= F . Let be
j ∈ {1, . . . , s} and N an integral submanifold of Dj . Then surely ξj ∈ Γ(TN)
and ξi ∈ Γ(TN⊥) for any i 6= j. Furthermore, N has odd dimension since
it is ϕ-invariant and the orthogonal complement of < ξj > in TN verifies
< ξj >

⊥⊂ Imϕ. Then, by restriction and reduction, ϕ′ = (ϕ|<ξj>⊥)# is an
almost complex structure. Hence it is easy to check that the induced structure
(ϕ′, ξj , η

j , g), is a Sasakian structure on N and dimN = 2kj + 1.

Proposition 5.4. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s} be a K̂2-manifold

such that rank(ηi) = 2ki + 1 and k1 + · · · + ks = n. For each j ∈ {1, . . . , s},
the distributions ker ηj∩ker dηj and Dj =

⋂
i 6=j(ker ηi∩ker dηi) are orthogonal

and complementary.

Proof. The two distributions are ϕ-invariant. They are also orthogonal since
forX ∈ Dj and Y ∈ ker ηj∩ker dηj we have F (ϕX, Y ) =

∑s
i=1 dη

i(ϕX, Y ) = 0
and this implies g(X,Y ) = g(ϕX,ϕY ) = 0. We choose a local ϕ-adapted basis
of Dj , {ξj , e1, . . . , ekj , ϕe1, . . . , ϕekj} and we complete it to a ϕ-adapted basis
of M2n+s adding the vector fields

{ξ1, . . . , ξj−1, ξj+1, . . . ξs, ekj+1, . . . , en, ϕekj+1, . . . , ϕen}.

By the orthogonality it follows that such vector fields span the distribution
ker ηj ∩ ker dηj .
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Theorem 5.2. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s} be a K̂2-manifold such

that rank(ηi) = 2ki+1 and k1+ · · ·+ks = n. Then M2n+s is locally a product
of s Sasakian manifolds.

Proof. We argue by induction on s. Assume that (M2n+2, ϕ, ξ1, ξ2, η
1, η2, g)

is a K̂2-manifold and that η1, η2 have rank 2k1 + 1 and 2k2 + 1 respectively,
with k1 + k2 = n. Then D1 = ker η2 ∩ ker dη2 and D2 = ker η1 ∩ ker dη1

are integrable, ϕ-invariant, orthogonal and complementary. It follows that
M2n+2 is locally a product of the integral submanifolds which, as in Propo-
sition 5.3, inherit Sasakian structures. Now, assume that s > 2 and con-
sider the integrable, ϕ-invariant, orthogonal and complementary distributions
Ds =

⋂
i 6=s(ker ηi ∩ ker dηi) and ker ηs ∩ ker dηs. Thus M2n+s is locally a pro-

duct of integral submanifolds. The integral submanifolds of Ds are Sasakian
manifolds and, as stated in Proposition 5.1, the integral submanifolds of
ker ηs ∩ ker dηs have a K̂-structure which clearly satisfies the hypotheses. An
application of the induction hypothesis completes the proof.

Remark 5.2. The above theorem applies to Example 3.1.

5.2 A decomposition theorem for certain K̂3-manifolds

Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂3-manifold. Let dηi 6= dηj for

each i, j ∈ {1, . . . , q} and dηi = dηj for each i, j ≥ q+ 1, q ≤ s− 2. Moreover,
we assume that rank(ηt) = 2kt + 1, t ∈ {1, . . . , s}, and k1 + · · · + ks = n,
q ≤ s− 2. Then it is easy to verify that Propositions 5.3 and 5.4 hold for any
j ≤ q so we obtain the following result.

Proposition 5.5. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂3-manifold.

Let dηi 6= dηj for each i, j ∈ {1, . . . , q} and dηi = dηj for each i, j ≥ q + 1,
q ≤ s − 2. Moreover assume that rank(ηt) = 2kt + 1, t ∈ {1, . . . , s}, and
k1 + · · ·+ ks = n. Then one has

a) For any j ≤ q, the integral submanifolds of Dj inherit a structure of
Sasakian manifold.

b) For any j ≥ q + 1, Dj =< ξj > and its integral submanifolds are 1-
dimensional and flat.

Proof. Let be j ∈ {1, . . . , q}. Arguing as in Proposition 5.3 we obtain a).
Now, fixed j ≥ q + 1, we get that ξj ∈ Dj . Moreover for any X ∈ Dj and
any Y ∈ Γ(TM2n+s), since dηj = dηs, we have F (X,Y ) =

∑s
t=1 dη

t(X,Y ) =
dηj(X,Y ) = dηs(X,Y ) = 0 and this implies that X ∈ kerF = kerϕ that is
X =

∑s
t=1 α

tξt. Then, being ηt(X) = 0 for any t 6= j, we obtain X = αjξj
and X ∈< ξj >, concluding the proof.
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Theorem 5.3. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂3-manifold. Let

dηi 6= dηj for each i, j ∈ {1, . . . , q} and dηi = dηj for each i, j ≥ q + 1,
q ≤ s − 2. Moreover assume that rank(ηt) = 2kt + 1, t ∈ {1, . . . , s}, and
k1 + · · · + ks = n. Then M2n+s is locally a product of (q + 1) Sasakian
manifolds and a flat (s− q − 1)-dimensional manifold.

Proof. We argue by induction on q. If q = 1, the distributions D1 and
ker η1 ∩ ker dη1 are integrable, ϕ-invariant, orthogonal and complementary,
so, applying the above theorem and Proposition 5.1, M2n+s is locally pro-
duct of a Sasakian manifold and a K̂-manifold which belongs to the class K̂1.
Therefore by Remark 4.1, we obtain (locally) a product of two Sasakian mani-
folds and a flat (s − 2)-dimensional manifold. Now we assume that q ≥ 2.
Thus considering the integrable, ϕ-invariant, orthogonal and complementary
distributions Dq =

⋂
i6=q(ker ηi ∩ ker dηi) and ker ηq ∩ ker dηq, M2n+s turns

out to be locally a product of integral submanifolds of such distributions. The
integral submanifolds of Dq are Sasakian manifolds and, as stated in Propo-

sition 5.1, the integral submanifolds of ker ηq ∩ ker dηq have a K̂-structure
(actually K̂3) with dηi 6= dηj for any i, j ∈ {1, . . . , q − 1} and dηi = dηj for
any i, j ∈ {q+1, . . . , s}. An application of the induction hypothesis completes
the proof.

6 c-K-manifolds, c ∈ Rs.

Definition 6.1. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K-manifold and

c = (c1, . . . , cs) ∈ Rs. (M2n+s, ϕ, ξi, η
i, g) is called a c-K-manifold if for each

i ∈ {1, . . . , s}, dηi = ciF .

Considering
∑s
i=1(ci)2 one can distinguish two cases:

∑s
i=1(ci)2 = 0,

which corresponds to the C-manifolds in [1], and
∑s
i=1(ci)2 6= 0.

Notice that
• If ci = 1 for each i ∈ {1, . . . , s}, we get the usual definition of S-manifold.
• If there exists p < s such that, up to the order, ci = 1 for i ∈ {1, . . . , p} and
ci = 0 otherwise, we obtain the definition of K∗-manifold.
• If s = 1, then c = c1 = 1 and c = c1 6= 1 correspond to Sasaki and c-Sasaki
manifolds, respectively.
• We also have

∑s
i=1 dη

i = (
∑s
i=1 c

i)F , so if
∑s
i=1 c

i = 0, the manifold be-

longs to the class K
0

, while if
∑s
i=1 c

i = 1 the manifold belongs to the class K̂.

Now in the case:
∑s
i=1 c

i 6= 0 we prove a local decomposition theorem.

Theorem 6.1. Let (M2n+s, ϕ, ξi, η
i, g), be a c-K-manifold,

∑s
i=1 c

i 6= 0.
Then (M2n+s, g) is locally a Riemannian product of a

√
α-Sasakian manifold,

α =
∑s
i=1(ci)2, and an (s− 1)-dimensional flat manifold.
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Proof. We put ξ =
∑s
i=1 c

iξi and η =
∑s
i=1 c

iηi. Since ξ ∈ kerϕ, we
can consider a basis (ξ2, . . . , ξs) of < ξ >⊥ in kerϕ, so that we obtain
the orthogonal decomposition TM = (Im ϕ ⊕ < ξ >) ⊕ < ξ2, . . . , ξs >.
Namely, for a ζ ∈ kerϕ such that g(ζ, ξ) = 0, we have ζ =

∑s
j=1 λ

jξj and

0 = g(
∑s
j=1 λ

jξj ,
∑s
i=1 c

iξi) =
∑s
i=1 λ

ici. Thus for any h ∈ {2, . . . , s} there

exist constants βih such that ξh =
∑s
i=1 β

i
hξi. Moreover, the dual 1-forms are

given by ηh =
∑s
i=1 β

i
hη
i and it is easy to check that dηh = 0, from which

∇ξh = 0 follows.

Since D1 = Im ϕ ⊕ < ξ > and D2 =< ξ2, . . . , ξs > are both integrable,
totally geodesic distributions, then (M2n+s, g) is locally a Riemannian product
of integral submanifolds M1 of D1 and M2 of D2. Clearly M2 is (s − 1)-

dimensional and flat. Now, we normalize ξ obtaining ξ̃ = ξ√
α

, α =
∑s
i=1(ci)2.

Then (M1, ϕ, ξ̃, η̃, g), η̃ = 1√
α
η, is (2n+1)-dimensional. One easily checks that

(M1, ϕ, ξ̃, η̃, g) is an almost contact metric manifold and the normality follows

from dη̃ ⊗ ξ̃ = 1√
α

∑s
i=1 c

idηi ⊗ 1√
α

∑s
j=1 c

jξj = F ⊗ ξ =
∑s
i=1 dη

i ⊗ ξi on

M1. Finally, dη̃ = 1√
α
dη = 1√

α

∑s
i=1 c

idηi = 1√
α

∑s
i=1(ci)2 F =

√
αF̃ . This

completes the proof.

As corollaries we obtain Theorem 2.1 and its corollary.

Remark 6.1. Suppose that (M2n+s, ϕ, ξi, η
i, g) is a c-K-manifold such that∑s

i=1 c
i = 1. Then

∑s
i=1 dη

i = F and the manifold turns out to be a K̂-
manifold. After an application of Theorem 3.1, if necessary i.e. if some ci = 0,
we have that M2n+s or its non flat factor (M2n+p

1 , ϕ, ξi, η
i, g), (

∑p
i=1 c

i = 1),

falls in one of the classes K̂1, K̂2, K̂3. Let us suppose that they belong to
K̂1. Then, by Theorem 4.1, (M2n+s, g) is locally a Riemannian product of a
1√
s
-Sasakian manifold and an (s− 1)-dimensional flat manifold. On the other

hand, from
∑s
i=1 dη

i = F and dη1 = . . . = dηs it follows dηi = 1
sF , ci = 1

s
for each i ∈ {1, . . . , s} and α =

∑s
i=1(ci)2 = 1

s , according to Theorem 6.1.
Finally we remark that being each ηi of rank 2n+ 1, Theorems 5.2 and 5.3 do
not apply to these manifolds.

7 K̂-manifolds of dimension 2n+ 2

We begin proving the following result.

Proposition 7.1. Let (M2n+s, ϕ, ξi, η
i), i ∈ {1, . . . , s}, be a normal f.pk-

manifold such that dη1 = . . . = dηp 6= 0, 1 ≤ p < s, and dηi = 0 for any
i ≥ p + 1. Then M2n+s admits a metric g ∈ G(M2n+s, ϕ, ξi, η

i) that makes
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M2n+s a K
∗
-manifold with F = dη1 = . . . = dηp if and only if there exists a

metric g̃ ∈ G(M2n+s, ϕ, ξi, η
i) that makes M2n+s a K̂-manifold.

Proof. The proof goes on as in Proposition 4.1, simply considering the metric
g̃ = pg − (p− 1)

∑s
i=1 η

i ⊗ ηi. Finally, F̃ = pF =
∑p
i=1 dη

i =
∑s
i=1 dη

i.

Theorem 7.1. Let (M2n+2, ϕ, ξi, η
i), i ∈ {1, 2}, be a normal f.pk-manifold

and suppose that dη1 6= 0 and dη2 = 0. Then the following assertions are
equivalent:

(a) there exists a metric g ∈ G(M2n+2, ϕ, ξi, η
i) that makes M2n+2 a K-

manifold with F = dη1,

(b) (M2n+2, g) carries a structure of Vaisman manifold.

Proof. From Proposition 7.1 it follows that the metric g makes M2n+2 a K̂-
manifold. Then, the equivalence between (a) and (b) is proved in [11, 6] and
the links between the two structures are given by

ξ2 = B, ξ1 = JB, η2 = ω, η1 = −ω ◦ J, ϕ = J + η1 ⊗ ξ2 − η2 ⊗ ξ1,

where B is the unit Lee vector field and ω the Lee form.

Now, fixed a K̂-manifold (M2n+2, ϕ, ξi, η
i, g), i ∈ {1, 2}, with dη1 6= 0 and

dη2 6= 0, we have the following possibilities: dη1 6= dη2 or dη1 = dη2, which
means that the manifold belongs to the class K̂2, K̂1, respectively.

In the first case, dη1 and dη2 are both different from F , otherwise, being
dη1 +dη2 = F , one of them must vanish. Hence Theorem 5.2 ensures that the
manifold is locally product of two Sasakian manifolds.

In the last case, by Theorem 4.1 we know that the manifold is locally
a Riemannian product of a 1√

2
-Sasakian manifold and a 1-dimensional flat

manifold. Moreover, we have:

Proposition 7.2. Let (M2n+2, ϕ, ξi, η
i, g), i ∈ {1, 2} be a K̂-manifold such

that dη1 = dη2, then M2n+2 admits a Vaisman structure.

Proof. Let us put η̃1 = η1+η2√
2

, η̃2 = η1−η2√
2

, ξ̃1 = ξ1+ξ2√
2

, ξ̃2 = ξ1−ξ2√
2

. It is easy

to verify that (M2n+2, ϕ, ξ̃i, η̃
i, g), i ∈ {1, 2} is a normal metric f.pk-manifold

and that dη̃1 = 1√
2
F , dη̃2 = 0. Here F is the Sasaki 2-form of both the

structures on M2n+2. It is well known ([9]) that J = ϕ − η̃1 ⊗ ξ̃2 + η̃2 ⊗ ξ̃1
gives (M2n+2, g) a Hermitian structure with Kähler form Ω = F + η̃1 ∧ η̃2.
Hence dΩ = 1√

2
F ∧ η̃2 = 1√

2
η̃2 ∧ Ω, that is ω = 1√

2
η̃2 is the Lee form.
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An interesting example related to the above proposition arises from the
S-structure on the 4-dimensional manifold U(2) described in [7]. On U(2),
one considers the left-invariant vector fields, ξ1, ξ2, X, Y , determined, in the
same order, by the following basis of the Lie algebra u(2):

ıE11, −ıE22, E12 − E21, ı(E12 + E21)

where (Eij)i,j∈{1,2} is the canonical basis of gl(2,C). Then,

[X,Y ] = 2ξ1 + 2ξ2, [X, ξi] = −Y, [Y, ξi] = X, [ξi, ξj ] = 0

for any i, j ∈ {1, 2}. One considers the left-invariant 1-forms η1 and η2 de-
termined by the dual 1-forms of ıE11 and −ıE22, respectively, a left-invariant
tensor field ϕ such that ϕ(X) = Y , ϕ(Y ) = −X and ϕ(ξ1) = ϕ(ξ2) = 0
and a left-invariant metric g such that the vector fields ξ1, ξ2, X, Y form an
orthonormal basis. Then (U(2), ϕ, ξ1, ξ2, η

1, η2, g) becomes an S-manifold.

Hence, by Proposition 4.1 we obtain a K̂1-structure with the new metric
g̃ = 2g − η1 ⊗ η1 − η2 ⊗ η2 and we can apply Proposition 7.2.

Theorem 7.2. Let M be a (2n+2)-dimensional manifold. Then the following
propositions are equivalent

(a) M admits a K̂-structure (ϕ, ξ1, ξ2, η
1, η2, g) with 0 6= dη1 6= dη2 6= 0

(b) M admits a K-structure (ϕ, ξ̃1, ξ̃2, η̃
1, η̃2, g) such that the Sasaki 2-form

F verifies F = α dη̃1 + β dη̃2, where α, β ∈ R and α2 + β2 = 2.

Proof. Let us assume (a). Then we take θ ∈ [0, 2π[ and put

ξ̃1 = cos θ ξ1 + sin θ ξ2, ξ̃2 = − sin θ ξ1 + cos θ ξ2

η̃1 = cos θ η1 + sin θ η2, η̃2 = − sin θ η1 + cos θ η2.

Clearly, one has g(X, ξ̃1) = η̃1(X), g(X, ξ̃2) = η̃2(X), for any X ∈ Γ(TM).

Furthermore, from η̃1(X)ξ̃1 + η̃2(X)ξ̃2 = η1(X)ξ1 + η2(X)ξ2 it follows that

ϕ2(X) = −X+η̃1(X)ξ̃1+η̃2(X)ξ̃2. Analogously the compatibility of the metric
can be proved observing that η̃1 ⊗ η̃1 + η̃2 ⊗ η̃2 = η1 ⊗ η1 + η2 ⊗ η2 and the
normality of the structure follows by dη̃1⊗ ξ̃1 +dη̃2⊗ ξ̃2 = dη1⊗ ξ1 +dη2⊗ ξ2.
One obtains F = dη1 + dη2 = (cos θ + sin θ)dη̃1 + (cos θ − sin θ)dη̃2, since

η1 = cos θ η̃1− sin θ η̃2, η2 = sin θ η̃1 + cos θ η̃2. Hence, (M,ϕ, ξ̃1, ξ̃2, η̃
1, η̃2, g)

is a K-manifold and (b) follows by putting α = cos θ+sin θ and β = cos θ−sin θ.

Now assuming (b), α2+β2 = 2 implies (α+β)2

4 + (α−β)2
4 = 1, so that one can

put cos θ = α+β
2 , sin θ = α−β

2 . It follows that α = cos θ+sin θ, β = cos θ−sin θ
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and F = α dη̃1 +β dη̃2 = (cos θ+ sin θ)dη̃1 + (cos θ− sin θ)dη̃2. Then, putting

η1 = cos θ η̃1 − sin θ η̃2 η2 = sin θ η̃1 + cos θ η̃2

ξ1 = cos θ ξ̃1 − sin θ ξ̃2 ξ2 = sin θ ξ̃1 + cos θ ξ̃2

one verifies that (ϕ, ξ1, ξ2, η
1, η2, g) is a K-structure and F = dη1 + dη2.

Remark 7.1. The family of K-structures described in condition (b) is para-
meterized on the sphere S1 of radius

√
2. In particular for θ ∈ {0, 12π, π,

3
2π}

one obtains the structure given in (a) and those obtained reversing (ξ1, η
1)

and/or (ξ2, η
2).
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