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Quasipolar Subrings of 3× 3 Matrix Rings

Orhan Gurgun, Sait Halicioglu and Abdullah Harmanci

Abstract

An element a of a ring R is called quasipolar provided that there
exists an idempotent p ∈ R such that p ∈ comm2(a), a + p ∈ U(R)
and ap ∈ Rqnil. A ring R is quasipolar in case every element in R is
quasipolar. In this paper, we determine conditions under which subrings
of 3 × 3 matrix rings over local rings are quasipolar. Namely, if R is
a bleached local ring, then we prove that T3(R) is quasipolar if and
only if R is uniquely bleached. Furthermore, it is shown that Tn(R) is
quasipolar if and only if Tn

(
R[[x]]

)
is quasipolar for any positive integer

n.

1 Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. Following Koliha and Patricio [11], the commutant and double com-
mutant of an element a ∈ R are defined by comm(a) = {x ∈ R | xa = ax},
comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)}, respectively. If
Rqnil = {a ∈ R | 1 + ax ∈ U(R) for every x ∈ comm(a)} and a ∈ Rqnil,
then a is said to be quasinilpotent [10]. An element a ∈ R is called quasipolar
provided that there exists an idempotent p ∈ R such that p ∈ comm2(a),
a + p ∈ U(R) and ap ∈ Rqnil. A ring R is quasipolar in case every element
in R is quasipolar. Properties of quasipolar rings were studied in [6, 7, 14].

For a ring R, let T3(R) =


 a11 0 0
a21 a22 a23
0 0 a33

 | a11, a21, a22, a23, a33 ∈ R
.
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Then T3(R) is a ring under the usual addition and multiplication, and so
T3(R) is a subring of M3(R). Motivated by results in [3] and [5], we study
quasipolar subrings of 3 × 3 matrix rings over local rings. We prove that Z(2) 0 0

Z(2) Z(2) Z(2)

0 0 Z(2)

 is quasipolar but the full matrix ring M3(Z(2)) is not

quasipolar.
In this paper, Mn(R) and Tn(R) denote the ring of all n × n matrices

and the ring of all n × n upper triangular matrices over R, respectively. We
write R[[x]], U(R) and J(R) for the power series ring over a ring R, the set
of all invertible elements and the Jacobson radical of R, respectively. For
A ∈Mn(R), χ(A) stands for the characteristic polynomial det(tIn −A).

2 Quasipolar Elements

In [12], Nicholson gives several equivalent characterizations of strongly clean
rings through the endomorphism ring of a module. Analogously, we present
similar results for quasipolar rings. For convenience, we use left modules and
write endomorphisms on the right. For a module RM , we write E = EndR(M)
for the ring of endomorphisms of RM .

Lemma 2.1. [12, Lemma 2] Let β, π2 = π ∈ EndR(M). Then both Mπ and
M(1− π) are β-invariant if and only if πβ = βπ.

Similar to [4, Theorem 2.1] we have the following results for quasipolar
endomorphisms of a module.

Theorem 2.2. Let α ∈ E = EndR(M). The following are equivalent.

(1) α is quasipolar in E.

(2) There exists π2 = π ∈ E such that π ∈ comm2
E(α), απ is a unit in πEπ

and α(1− π) is a quasinilpotent in (1− π)E(1− π).

(3) M = P ⊕ Q, where P and Q are β-invariant for every β ∈ commE(α),
α|P is a unit in End(P ) and α|Q is a quasinilpotent in End(Q).

(4) M = P1⊕P2⊕· · ·⊕Pn for some n ≥ 1, where Pi is β-invariant for every
β ∈ commE(α), α|Pi

is quasipolar in End(Pi) for each i.

Proof. (1)⇒ (2) Since α is quasipolar in E, there exists an idempotent τ ∈ R
such that τ ∈ comm2

E(α), α + τ = η ∈ U(E) and ατ ∈ Eqnil. Let π = 1− τ .
Clearly, π2 = π ∈ comm2

E(α). Note that α, π, η and τ all commute. Now,
multiplying α + τ = η by π yields απ = ηπ = πη ∈ πEπ. Since η−1π ∈ πEπ
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this gives (απ)(η−1π) = (πη)(η−1π) = π. Similarly, (η−1π)(απ) = π so απ
is a unit in πEπ. Let (1 − π)γ(1 − π) ∈ comm(1−π)E(1−π)(α(1 − π)). Then
(1 − π)γ(1 − π) ∈ commE(α(1 − π)). The remaining proof is to show that
(1−π) +α(1−π)γ(1−π) is a unit in (1−π)E(1−π). Since α(1−π) ∈ Eqnil,
1 +α(1− π)γ(1− π) is a unit in E and so (1− π) +α(1− π)γ(1− π) is a unit
(1− π)E(1− π).

(2) ⇒ (3) Given π as in (2), let P = Mπ and Q = M(1 − π). Then
M = P ⊕Q. For any β ∈ commE(α), the hypothesis π ∈ comm2

E(α) implies
that πβ = βπ. By Lemma 2.1, both P and Q are β-invariant. As in the proof
[12, Theorem 3], απ = α|P is a unit in End(P ). Let γ ∈ commEnd(Q)(α|Q). We
show that 1Q+α|Qγ is a unit in End(Q). Clearly, γ ∈ comm(1−π)E(1−π)(α(1−
π)). Since α(1−π) is a quasinilpotent in (1−π)E(1−π), (1−π) +α(1−π)γ
is a unit in (1− π)E(1− π). Let [(1− π) + α(1− π)γ]−1 = (1− π)τ(1− π) =
τ0 ∈End(Q) and let q ∈ Q. Then (q)[1Q + α|Qγ]τ0 = (q + q(1 − π)αγ)τ0 =
(q(1 − π) + qα(1 − π)γ)τ0 = q[(1 − π) + α(1 − π)γ]τ0 = (q)1Q. Hence (1Q +
α|Qγ)τ0 = 1Q. Similarly, τ0(1Q + α|Qγ) = 1Q. Thus α|Q is a quasinilpotent
in End(Q).

(3) ⇒ (4) Suppose M = P ⊕ Q as in (3). Since α|P is a unit in End(P ),
α|P is a quasipolar in End(P ) by [6, Example 2.1]. As α|Q is a quasinilpotent
in End(Q), 1Q + α|Q is a unit in End(Q). Further, 12Q = 1Q and 1Q ∈
comm2

End(Q)(α|Q) so α|Q is quasipolar in End(Q).

(4)⇒ (1) Let λi ∈End(Pi). Given the situation in (4), extend maps λi in

End(Pi) to λi in End(M) by defining (
n∑
j=1

pj)λi = (pi)λi for any pj ∈ Pj . Then

λi λj = 0 if i 6= j while λi µi = λiµi and λi+µi = λi + µi for all µi ∈End(Pi).
By hypothesis, there exists π2

j = πj ∈ comm2
End(Pj)

(α|Pj
), σj ∈ U

(
End(Pj)

)
such that α|Pj

+ πj = σj and α|Pj
πj ∈End(Pj)

qnil. If π =
n∑
j=1

πj and

σ =
n∑
j=1

σj then π2 =
n∑
j=1

πj
2 = π ∈End(M) and σ is a unit in E because

σ−1 =
n∑
j=1

σj
−1. Since α =

n∑
j=1

α|Pj
=

n∑
j=1

(−πj + σj) = −π + σ, we show that

π ∈ comm2
E(α) and απ ∈ Eqnil. Since for each β ∈ commE(α), P and Q are

β-invariant. Hence, πβ = βπ by Lemma 2.1 and so π ∈ comm2
E(α). For any

β ∈ commE(απ), we only need to show that 1E + βαπ is an isomorphism in
E. Note that β|Pj ∈ commEnd(Pj)(α|Pj ) and 1Pj + β|Pjα|Pj = (π + βα)|Pj .

Since α|Pj
πj ∈ End(Pj)

qnil, 1Pj
+ β|Pj

α|Pj
πj = (π + βπα)|Pj

is a unit in
End(Pj). Let γj ∈End(Pj) be such that (1Pj

+ β|Pj
α|Pj

πj)γj = 1Pj
=

γj(1Pj
+ β|Pj

α|Pj
πj) and let m =

n∑
j=1

pj with pj ∈ Pj . So (
n∑
j=1

pj)(1E +
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βαπ)γ =
( n∑
j=1

pj + (
n∑
j=1

pj)βαπ
)
γ =

( n∑
j=1

(pj)1Pj
+ (

n∑
j=1

(pj)[β|Pj
α|Pj

πj ]
)
γ =( n∑

j=1

(pj)[1Pj
+β|Pj

α|Pj
πj ]
)
γ =

( n∑
j=1

(pj)[1Pj
+β|Pj

α|Pj
πj ]γj

)
=

n∑
j=1

(pj)[1Pj
]=m

where γ =
n∑
j=1

γj . Similarly, we have (
n∑
j=1

pj)γ(1E +βαπ) =
n∑
j=1

(pj)[1Pj
] = m.

Therefore απ ∈ Eqnil, the proof is completed.

The following result is a direct consequence of Theorem 2.2.

Corollary 2.3. Let R be a ring. The following are equivalent for a ∈ R.

(1) a ∈ R is quasipolar.

(2) There exists e2 = e ∈ R such that e ∈ comm2
R(a), ae ∈ U(eRe) and

a(1− e) ∈ (1− e)R(1− e)qnil.

3 The Rings T3(R)

For a ring R, let a ∈ R, la : R → R and ra : R → R denote, respectively,
the abelian group endomorphisms given by la(r) = ar and ra(r) = ra for all
r ∈ R. Thus, for a, b ∈ R, la, rb is an abelian group endomorphism such that
(la− rb)(r) = ar− rb for any r ∈ R. A local ring R is called bleached [1] if, for
any a ∈ J(R) and any b ∈ U(R), the abelian group endomorphisms lb−ra and
la−rb of R are both surjective. A local ring R is called uniquely bleached if, for
any a ∈ J(R) and any b ∈ U(R), the abelian group endomorphisms lb−ra and
la − rb of R are isomorphic. According to [8, Example 2.1.11], commutative
local rings, division rings, local rings with nil Jacobson radicals, local rings
for which some power of each element of their Jacobson radicals is central are
uniquely bleached. Clearly uniquely bleached local rings are bleached. But so
far it is unknown whether a bleach local ring is uniquely bleached. Obviously, a11 0 0
a21 a22 a23
0 0 a33

 ∈ U(T3(R)
)

if and only if a11, a22, a33 ∈ U(R). Further,

J
(
T3(R)

)
=


 a11 0 0
a21 a22 a23
0 0 a33

 | a11, a22, a33 ∈ J(R), a21, a23 ∈ R

. Note

that if, for every A ∈ T3(R), there exists E2 = E ∈ comm2(A) such that
A − E ∈ U

(
T3(R)

)
and EA ∈ J

(
T3(R)

)
⊆ T3(R)qnil, then −A is quasipolar

and so T3(R) is quasipolar. We use this fact in the proof of Theorem 3.1
without mention.
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By [13, Example 1] and [9, Remark 3.2.11], M3(R) is not quasipolar in
general. Our next aim is to determine to find conditions under which T3(R)
is quasipolar. In this direction we can give the following theorem.

Theorem 3.1. Let R be a bleached local ring. The following are equivalent.

(1) R is uniquely bleached.

(2) T3(R) is quasipolar.

(3) T2(R) is quasipolar.

Proof. (1)⇒ (2) Let A =

 a11 0 0
a21 a22 a23
0 0 a33

 ∈ T3(R). Consider the following

cases.
Case 1. a11, a22, a33 ∈ J(R). Then A + I3 ∈ U(T3(R)) and AI3 = A ∈

J
(
T3(R)

)
⊆ T3(R)qnil. So A is quasipolar.

Case 2. a11, a22, a33 ∈ U(R). Then A + 0 ∈ U(T3(R)) and A0 = 0 ∈
T3(R)qnil. So A is quasipolar.

Case 3. a11 ∈ U(R), a22, a33 ∈ J(R). There exists a unique element

e21 ∈ R such that a22e21 − e21a11 = a21. Let E =

 0 0 0
e21 1 0
0 0 1

. Then

E2 = E, A− E ∈ U
(
T3(R)

)
and AE ∈ J

(
T3(R)

)
⊆ T3(R)qnil. We show that

E ∈ comm2(A). Let X =

 x11 0 0
x21 x22 x23
0 0 x33

 ∈ comm(A). Then XA = AX

and so

a11x11 = x11a11, a22x22 = x22a22, a33x33 = x33a33

x21a11 + x22a21 = a21x11 + a22x21

x22a23 + x23a33 = a22x23 + a23x33

(i)

(ii)

(iii)

Since a22e21 − e21a11 = a21, a22[x22e21 − e21x11 − x21] − [x22e21 − e21x11 −
x21]a11 = 0 by (i) and (ii). By (1), la22 − ra11 is injective and so x22e21 −
e21x11 = x21. That is, XE = EX. Hence E ∈ comm2(A).

Case 4. a11 ∈ J(R), a22 ∈ U(R), a33 ∈ J(R). There exist unique ele-
ments e21, e23 ∈ R such that a22e21 − e21a11 = −a21 and a22e23 − e23a11 =

−a23. Let E =

 1 0 0
e21 0 e23
0 0 1

. Then E2 = E, A − E ∈ U
(
T3(R)

)
and AE ∈ J

(
T3(R)

)
⊆ T3(R)qnil. We prove E ∈ comm2(A). Let X =
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 x11 0 0
x21 x22 x23
0 0 x33

 ∈ comm(A). Then XA = AX. Since a22e21 − e21a11 =

−a21, a22[−x22e21 + e21x11−x21]− [−x22e21 + e21x11−x21]a11 = 0 by (i) and
(ii). By (1), la22−ra11 is injective and so x22e21+x21 = e21x11. Since a22e23−
e23a11 = −a23, a22[−x22e23 + e23x33 − x23]− [−x22e23 + e23x33 − x23]a11 = 0
by (i) and (iii). By (1), la22 − ra11 is injective and so x22e23 + x23 = e23x33.
That is, XE = EX. Hence E ∈ comm2(A).

Case 5. a11, a22 ∈ J(R), a33 ∈ U(R). There exists a unique element

e23 ∈ R such that a22e23 − e23a33 = a23. Let E =

 1 0 0
0 1 e23
0 0 0

. Then

E2 = E, A − E ∈ U
(
T3(R)

)
and AE ∈ J

(
T3(R)

)
⊆ T3(R)qnil. We show

that E ∈ comm2(A). Let X =

 x11 0 0
x21 x22 x23
0 0 x33

 ∈ comm(A). Then XA =

AX. Since a22e23 − e23a33 = a23, a22[x22e23 − e23x33 − x23] − [x22e23 −
e23x33 − x23]a33 = 0 by (i) and (iii). By (1), la22 − ra33 is injective and so
x22e23 − e23x33 = x23. That is, XE = EX. Hence E ∈ comm2(A).

Case 6. a11 ∈ J(R), a22, a33 ∈ U(R). There exists a unique element

e21 ∈ R such that a22e21 − e21a11 = −a21. Let E =

 1 0 0
e21 0 0
0 0 0

. Then

E2 = E, A−E ∈ U
(
T3(R)

)
and AE ∈ J

(
T3(R)

)
⊆ T3(R)qnil. We prove that

E ∈ comm2(A). Let X =

 x11 0 0
x21 x22 x23
0 0 x33

 ∈ comm(A). Then XA = AX.

Since a22e21−e21a11 = −a21, a22[−x22e21+e21x11−x21]− [−x22e21+e21x11−
x21]a11 = 0 by (i) and (ii). By (1), la22−ra11 is injective and so x22e21 +x21 =
e21x11. That is, XE = EX. Hence E ∈ comm2(A).

Case 7. a11 ∈ U(R), a22 ∈ J(R), a33 ∈ U(R). There exist unique elements
e21, e23 ∈ R such that a22e21−e21a11 = a21 and a22e23−e23a33 = a23. Let E = 0 0 0
e21 1 e23
0 0 0

. Then E2 = E, A − E ∈ U
(
T3(R)

)
and AE ∈ J

(
T3(R)

)
⊆

T3(R)qnil. To show E ∈ comm2(A) let X =

 x11 0 0
x21 x22 x23
0 0 x33

 ∈ comm(A).

Then XA = AX. Since a22e21 − e21a11 = a21, a22[x22e21 − e21x11 − x21] −
[x22e21−e21x11−x21]a11 = 0 by (i) and (ii). By (1), la22−ra11 is injective and
so x22e21 − e21x11 = x21. Since a22e23 − e23a33 = a23, a22[x22e23 − e23x33 −
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x23]−[x22e23−e23x33−x23]a33 = 0 by (i) and (iii). By (1), la22−ra33 is injective
and so x22e23 − e23x33 = x23. That is, XE = EX. Hence E ∈ comm2(A).

Case 8. a11, a22 ∈ U(R), a33 ∈ J(R). There exists a unique element e23 ∈

R such that a22e23 − e23a33 = −a23. Let E =

 0 0 0
0 0 e23
0 0 1

. Then E2 = E,

A − E ∈ U
(
T3(R)

)
and AE ∈ J

(
T3(R)

)
⊆ T3(R)qnil. The remaining proof

is to show that E ∈ comm2(A). Let X =

 x11 0 0
x21 x22 x23
0 0 x33

 ∈ comm(A).

Then XA = AX. Since a22e23− e23a33 = −a23, a22[−x22e23 + e23x33−x23]−
[−x22e23 + e23x33 − x23]a33 = 0 by (i) and (iii). By (1), la22 − ra33 is injective
and so x22e23 + x23 = e23x33. That is, XE = EX. Hence E ∈ comm2(A).

(2) ⇒ (3) Assume that T3(R) is quasipolar. Let E =

 1 0 0
0 1 0
0 0 0

 ∈
T3(R). Then T2(R) ∼= ET3(R)E. Thus T2(R) is quasipolar by [14, Proposition
3.6].

(3)⇒ (1) It follows from [7, Proposition 2.9].

An element a ∈ R is strongly rad clean provided that there exists an idem-
potent e ∈ R such that ae = ea and a− e ∈ U(R) and ea ∈ J(eRe). A ring R
is strongly rad clean in case every element in R is strongly rad clean (cf. [8]).

Due to the proof of Theorem 3.1, we have the following.

Corollary 3.2. Let R be a local ring. The following are equivalent.

(1) T3(R) is strongly rad clean.

(2) R is bleached.

For a ring R, let L3(R) =


 a11 0 0

0 a22 0
a31 0 a33

 | a11, a31, a22, a33 ∈ R
.

Then L3(R) is a ring under the usual addition and multiplication, and so
L3(R) is a subring of M3(R). Our next endeavor is to find conditions under
which L3(R) is quasipolar.

Proposition 3.3. Let R be a bleached local ring. The following are equiva-
lent.

(1) R is uniquely bleached.

(2) L3(R) is quasipolar.
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Proof. Let ϕ : L3(R)→ T2(R)⊕R given by a11 0 0
0 a22 0
a31 0 a33

 7→ ([
a33 a31
0 a11

]
, a22

)
.

Then ϕ is an isomorphism (see [3, Proposition 2.2]). Since R is local, it is
quasipolar. Hence L3(R) is quasipolar if and only if T2(R) is quasipolar.
Therefore it follows from Theorem 3.1.

Corollary 3.4. Let R be a bleached local ring. The following are equivalent.

(1) R is uniquely bleached.

(2) The ring


 a11 0 0

0 a22 0
a31 a32 a33

 | a11, a31, a32, a22, a33 ∈ R
 is quasipo-

lar.

(3) The ring


 a11 0 a13

0 a22 a23
0 0 a33

 | a11, a13, a23, a22, a33 ∈ R
 is quasipo-

lar.

Proof. (1)⇔ (2) Let

ϕ : T3(R)→


 a11 0 0

0 a22 0
a31 a32 a33

 | a11, a31, a32, a22, a33 ∈ R


given by A =

 a11 0 0
a21 a22 a23
0 0 a33

 7→
 a11 0 0

0 a33 0
a21 a23 a22

 for any A ∈ T3(R).

Then ϕ is an isomorphism (see [2, Corollary 3.4]). In view of Theorem 3.1,
T3(R) is quasipolar if and only if

 a11 0 0
0 a22 0
a31 a32 a33

 | a11, a31, a32, a22, a33 ∈ R


is quasipolar, as asserted.
(1)⇔ (3) is symmetric.

Corollary 3.5. Let R be a bleached local ring. The following are equivalent.

(1) R is uniquely bleached.
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(2) The ring S1 =


 a11 0 a13

0 a22 0
0 0 a33

 | a11, a13, a22, a33 ∈ R
 is quasipo-

lar.

(3) The ring S2 =


 a11 0 0

0 a22 0
0 a32 a33

 | a11, a31, a22, a33 ∈ R
 is quasipo-

lar.

Proof. (1)⇔ (2) As in the proof of Proposition 3.3, R is uniquely bleached if
and only if S1 is quasipolar, as asserted.

(2)⇔ (3) Let ϕ : S1 → S2 given by

A =

 a11 0 a13
0 a22 0
0 0 a33

 7→
 a22 0 0

0 a33 0
0 a13 a11


for any A ∈ S1. Then ϕ is an isomorphism. Hence S1 is quasipolar if and only
if S2 is quasipolar.

Let R be a commutative local ring. By Theorem 3.1, Proposition 3.3,
Corollary 3.4 and Corollary 3.5, the rings R 0 0

0 R 0
R 0 R

 ,
 R 0 0
R R R
0 0 R

 ,
 R 0 R

0 R 0
0 0 R

 ,
 R 0 0

0 R 0
R R R


are all quasipolar.

Remark 3.6. Let Z(2) = {mn | m,n ∈ Z, 2 - n}. By [13, Example 1] and
[9, Remark 3.2.11], M3(Z(2)) is not strongly clean and so it is not quasipolar.
However, by Theorem 3.1, Proposition 3.3, Corollary 3.4 and Corollary 3.5,

the rings

 Z(2) 0 0
0 Z(2) 0

Z(2) 0 Z(2)

,
 Z(2) 0 0

Z(2) Z(2) Z(2)

0 0 Z(2)

,
 Z(2) 0 Z(2)

0 Z(2) 0
0 0 Z(2)

, Z(2) 0 0
0 Z(2) 0

Z(2) Z(2) Z(2)

 are all quasipolar.

4 Matrices Over Power Series Rings

In this section, we characterize quasipolar matrices over the power series ring
of a local ring. In order to prove Theorem 4.2, we need the following lemma.
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Lemma 4.1. Let R be a commutative local ring and A(x) ∈M2

(
R[[x]]

)
. The

following are equivalent.

(1) χ
(
A(0)

)
has a root in J(R) and a root in U(R).

(2) χ
(
A(x)

)
has a root in J

(
R[[x]]

)
and a root in U

(
R[[x]]

)
.

Proof. (1)⇒ (2) Assume that χ
(
A(0)

)
= y2−µy−λ has a root α ∈ J(R) and

a root β ∈ U(R). Let y =
∞∑
i=0

bix
i. Then y2 =

∞∑
i=0

cix
i where ci =

i∑
k=0

bkbi−k.

Let µ(x) =
∞∑
i=0

µix
i, λ(x) =

∞∑
i=0

λix
i ∈ R[[x]] where µ0 = µ and λ0 = λ. Then,

y2 − µ(x)y − λ(x) = 0 holds in R[[x]] if the following equations are satisfied:

b20 − b0µ0 − λ0 = 0;
(b0b1 + b1b0)− (b0µ1 + b1µ0)− λ1 = 0;

(b0b2 + b21 + b2b0)− (b0µ2 + b1µ1 + b2µ0)− λ2 = 0;
...

Obviously, µ0 = trA(0) = α+ β ∈ U(R). Let b0 = α. Since R is commutative
local, there exists some b1 ∈ R such that

b0b1 + b1(b0 − µ0) = λ1 + b0µ1.

Further, there exists some b2 ∈ R such that

b0b2 + b2(b0 − µ0) = λ2 − b21 + b0µ2 + b1µ1.

By iteration of this process, we get b3, b4, · · · . Then y2−µ(x)y−λ(x) = 0 has a
root α(x) ∈ J

(
R[[x]]

)
. If b0 = β, analogously, we show that y2−µ(x)y−λ(x) =

0 has a root β(x) ∈ U
(
R[[x]]

)
.

(2) ⇒ (1) Suppose that χ
(
A(x)

)
= y2 − µ(x)y − λ(x) has a root α(x) ∈

J
(
R[[x]]

)
and a root β(x) ∈ U

(
R[[x]]

)
. Then µ(x) = trA(x) and −λ(x) =

detA(x). Hence µ(0) = trA(0) and −λ(0) = detA(0). Thus, χ
(
A(0)

)
=

y2−µ(0)y−λ(0). Since α(x)2−µ(x)α(x)−λ(x) = 0 and β(x)2−µ(x)β(x)−
λ(x) = 0, α(0)2 − µ(0)α(0) − λ(0) = 0 and β(0)2 − µ(0)β(0) − λ(0) = 0.
Then χ

(
A(0)

)
= y2 − µ(0)y − λ(0) has a root α(0) ∈ J(R) and a root β(0) ∈

U(R).

Theorem 4.2. Let R be a commutative local ring. The following are equiv-
alent.

(1) A(0) ∈M2(R) is quasipolar.
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(2) A(x) ∈M2

(
R[[x]]

)
is quasipolar.

Proof. (1) ⇒ (2) It is known that R[[x]] is local. To complete the proof we
consider the following cases:

(i) A(0) ∈ GL2(R),

(ii) detA(0), trA(0) ∈ J(R),

(iii) detA(0) ∈ J(R), trA(0) ∈ U(R) and χ
(
A(0)

)
is solvable in R.

If A(0) ∈ GL2(R), then A(x) ∈ GL2

(
R[[x]]

)
and so A(x) ∈ M2

(
R[[x]]

)
is quasipolar by [6, Example 2.1]. If detA(0), trA(0) ∈ J(R), then trA(x),
detA(x) ∈ J

(
R[[x]]

)
and so A(x) is quasipolar by [6, Theorem 2.6]. Now

suppose that detA(0) ∈ J(R), trA(0) ∈ U(R) and χ
(
A(0)

)
has two roots α, β ∈

R. Then detA(x) ∈ J
(
R[[x]]

)
and trA(x) ∈ U

(
R[[x]]

)
. Since detA(0) ∈ J(R)

and trA(0) ∈ U(R), either α ∈ J(R) or β ∈ J(R). Without loss of generality,
we assume that α ∈ J(R) and β ∈ U(R). According to Lemma 4.1, χ

(
A(x)

)
has a root in J

(
R[[x]]

)
and a root in U

(
R[[x]]

)
. Hence A(x) is quasipolar in

M2

(
R[[x]]

)
by [6, Proposition 2.8].

(2)⇒ (1) is similar to the proof of (1)⇒ (2).

Example 4.3. Let R = Z4[[x]], and let

A(x) =

 0 −
∞∑
n=1

(1 + 3
n
)xn

1 3−
∞∑
n=1

(1 + 3
n
)xn

 ∈M2(R).

Obviously, Z4 is a commutative local ring. Since A(0) =

[
0 0
1 3

]
,

χ
(
A(0)

)
= t2 − trA(0)t + detA(0) = t2 − 3t = t(t − 3) is solvable in Z4.

By [6, Proposition 2.8], A(0) ∈M2(Z4) is quasipolar. In view of Theorem 4.2,
A(x) ∈M2(R) is quasipolar.

Theorem 4.4. Let R be a commutative local ring and for m ≥ 1
A(x) ∈M2

(
R[[x]]/(xm)

)
. The following are equivalent.

(1) A(0) ∈M2(R) is quasipolar.

(2) A(x) ∈M2

(
R[[x]]/(xm)

)
is quasipolar.

Proof. The proof is similar to that of Theorem 4.2.
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Example 4.5. Let R = Z4[[x]]/(x2), and let

A(x) =

[
3 + (x2) 2 + 2x+ (x2)

2 + x+ (x2) 2 + 3x+ (x2)

]
∈M2(R).

Obviously, Z4 is a commutative local ring. Since A(0) =

[
3 2
2 2

]
, χ
(
A(0)

)
=

t2 − trA(0)t + detA(0) = t2 − t + 2 = (t − 3)(t + 2) is solvable in Z4. By
[6, Proposition 2.8], A(0) ∈ M2(Z4) is quasipolar. In view of Theorem 4.4,
A(x) ∈M2(R) is quasipolar.

Lemma 4.6. Let R be a local ring. Then R is uniquely bleached if and only
if R[[x]] is uniquely bleached.

Proof. Assume that R is uniquely bleached. Then lu − rj is an isomorphism

for any j ∈ J(R) and u ∈ U(R) and let f(x) =
∞∑
i=1

aix
i ∈ R[[x]]. Since R is

bleached, by [8, Example 2.1.11(6)], R[[x]] is bleached. If, for j(x) =
∞∑
i=1

jix
i ∈

J
(
R[[x]]

)
and u(x) =

∞∑
i=1

uix
i ∈ U

(
R[[x]]

)
, (lj(x) − ru(x))(f(x)) = 0, then

j0a0 = a0u0

j0a1 + j1a0 = a0u1 + a1u0

j0a2 + j1a1 + j2a0 = a0u2 + a1u1 + a2u0

...

(i1)

(i2)

(i3)

...

By assumption, lj0 − ru0 is an isomorphism and so a0 = 0 by (i1). As a0 = 0,
by (i2), j0a1 = a1u0 and so a1 = 0 by assumption. Since a0 = 0 = a1,
by (i3), j0a2 = a2u0 and so a2 = 0 by assumption. By iteration of this
process, we deduce that f(x) = 0. Hence lj(x) − ru(x) is an isomorphism and
so R[[x]] is uniquely bleached. Conversely, suppose that R[[x]] is uniquely

bleached. Then lj(x) − ru(x) is an isomorphism for any j(x) =
∞∑
i=1

jix
i ∈

J
(
R[[x]]

)
and u(x) =

∞∑
i=1

uix
i ∈ U

(
R[[x]]

)
and let r ∈ R. Let (lj − ru)(r) = 0

with j ∈ J(R) and u ∈ U(R). Since j ∈ J
(
R[[x]]

)
and u ∈ U

(
R[[x]]

)
, by

assumption, r = 0 and so lj − ru is injective. The remaining proof is to show
that lj − ru is surjective. Since lj(x) − ru(x) is an isomorphism where j(0) = j

and u(0) = u, for any r ∈ R, we can find some f(x) =
∞∑
i=1

aix
i ∈ R[[x]] such

that j(x)f(x)−f(x)u(x) = r. Hence ja0−a0u = r with a0 ∈ R and so lj− ru
is surjective. Thus R is uniquely bleached.
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Proposition 4.7. Let R be a bleached local ring. The following are equiva-
lent.

(1) T3(R) is quasipolar.

(2) T3

(
R[[x]]

)
is quasipolar.

Proof. (1) ⇒ (2) Assume that T3(R) is quasipolar. By Theorem 3.1, R is
uniquely bleached. Note that if R is local, then so is R[[x]] because R/J(R) ∼=
R[[x]]/J

(
R[[x]]

)
. According to Lemma 4.6, R[[x]] is uniquely bleached. Hence

T3

(
R[[x]]

)
is quasipolar by Theorem 3.1.

(2) ⇒ (1) Suppose that T3

(
R[[x]]

)
is quasipolar. Then R[[x]] is uniquely

bleached by Theorem 3.1. In view of Lemma 4.6, R is uniquely bleached.
Hence T3(R) is quasipolar by Theorem 3.1.

Corollary 4.8. Let R be a bleached local ring. For any positive integer n,
the following are equivalent.

(1) Tn(R) is quasipolar.

(2) Tn
(
R[[x]]

)
is quasipolar.

Proof. By [7, Proposition 2.9] and Lemma 4.6, the proof is completed.
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