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Quasipolar Subrings of 3 x 3 Matrix Rings
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Abstract

An element a of a ring R is called quasipolar provided that there
exists an idempotent p € R such that p € comm?(a), a + p € U(R)
and ap € R™". A ring R is quasipolar in case every element in R is
quasipolar. In this paper, we determine conditions under which subrings
of 3 x 3 matrix rings over local rings are quasipolar. Namely, if R is
a bleached local ring, then we prove that J3(R) is quasipolar if and
only if R is uniquely bleached. Furthermore, it is shown that T, (R) is
quasipolar if and only if T, (R[[x]]) is quasipolar for any positive integer
n.

1 Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. Following Koliha and Patricio [11], the commutant and double com-
mutant of an element a € R are defined by comm(a) = {x € R | za = az},
comm?(a) = {x € R | zy = yz forall y € comm(a)}, respectively. If
R™! = {g € R|1+ar € U(R) for every z € comm(a)} and a € R
then a is said to be quasinilpotent [10]. An element a € R is called quasipolar
provided that there exists an idempotent p € R such that p € comm?(a),
a+p € U(R) and ap € R1™. A ring R is quasipolar in case every element
in R is quasipolar. Properties of quasipolar rings were studied in [6, 7, 14].

ail 0 0
For a ring R, let T5(R) = as1 Q22 a3 | a11, a1, a2z, a23,a33 € R
0 0 ass
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Then T3(R) is a ring under the usual addition and multiplication, and so
T3(R) is a subring of M3(R). Motivated by results in [3] and [5], we study
quasipolar subrings of 3 x 3 matrix rings over local rings. We prove that

Zey 0 0
L3y Ty Zey | is quasipolar but the full matrix ring Ms(Z)) is not
0 0 Zg
quasipolar.

In this paper, M, (R) and T,(R) denote the ring of all n x n matrices
and the ring of all n x n upper triangular matrices over R, respectively. We
write R[[z]], U(R) and J(R) for the power series ring over a ring R, the set
of all invertible elements and the Jacobson radical of R, respectively. For
A € M, (R), x(A) stands for the characteristic polynomial det(tl,, — A).

2 Quasipolar Elements

In [12], Nicholson gives several equivalent characterizations of strongly clean
rings through the endomorphism ring of a module. Analogously, we present
similar results for quasipolar rings. For convenience, we use left modules and
write endomorphisms on the right. For a module g M, we write E = Endgr(M)
for the ring of endomorphisms of pM.

Lemma 2.1. [12, Lemma 2] Let 3,72 = 7 € Endr(M). Then both M and
M(1 — 7) are B-invariant if and only if 78 = S.

Similar to [4, Theorem 2.1] we have the following results for quasipolar
endomorphisms of a module.

Theorem 2.2. Let o € E = Endr(M). The following are equivalent.

(1) « is quasipolar in E.

(2) There exists 72 = 7 € E such that m € comm?%(a), ar is a unit in 1E7

and a1l — 7) is a quasinilpotent in (1 — 7)E(1 — 7).

(3) M = P®(Q, where P and @ are (-invariant for every 8 € commg(«),
alp is a unit in End(P) and «|g is a quasinilpotent in End(Q).

(4) M=P,®Py®---® P, for some n > 1, where P, is S-invariant for every
B € commpg(a), alp, is quasipolar in End(P;) for each i.

Proof. (1) = (2) Since « is quasipolar in E, there exists an idempotent 7 € R
such that 7 € comm2(a), a+7=n€ U(E) and ar € B Let 7 =1 — 1.
Clearly, 72 = m € comm2(a). Note that a,m,n and 7 all commute. Now,
multiplying o + 7 = 7 by 7 yields ar = nr = 7 € nEw. Since n~'rw € rEx
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this gives (ar)(n~'7) = (7n)(n~im) = m. Similarly, (p~'7)(an) = 7 so an

is a unit in 7E7. Let (1 —7)y(1 — ) € comm_n)pa—r)(a(l —7)). Then
(1 —=m)v(1 —7) € commg(a(l — w)). The remaining proof is to show that
(1—7)+a(l —7)y(1—7) is a unit in (1 —7)E(1—7). Since a(1 — ) € B9,
1+ a(l—m)y(l —7) is a unit in E and so (1 —7) + (1 —7)y(1 — 7) is a unit
(1-mE(l —m).

(2) = (3) Given 7 as in (2), let P = M7 and Q@ = M(1 — 7). Then
M = P& Q. For any 8 € commp(a), the hypothesis m € comm%(«) implies
that 73 = f7. By Lemma 2.1, both P and @ are S-invariant. As in the proof
[12, Theorem 3], am = a|p is a unit in End(P). Let v € commgna(q)(alg). We
show that 1 +algy is a unit in End(Q). Clearly, v € comm_r)ga—x)(a(l—
m)). Since a(1 — ) is a quasinilpotent in (1 —m)E(1 —7), (1 —7m) +a(l —7)y
isaunitin (1-7)E(1—m). Let [(1—-m)+a(l-7m)y]t=01-m)r(1—7) =
70 €End(Q) and let ¢ € Q. Then (¢)[1g + a|g7]0 = (¢ + ¢(1 — T)ay)p =
(q(1 — ) + ga(l — T)7)m0 = g[(1 — 7) + a(l — W)l = (g)lq. Hence (1 +
algy)To = 1g. Similarly, 70(1g + a|g7) = 1g. Thus «|g is a quasinilpotent
in End(Q).

(3) = (4) Suppose M = P® @ as in (3). Since a|p is a unit in End(P),
a|p is a quasipolar in End(P) by [6, Example 2.1]. As «|q is a quasinilpotent
in End(Q), 1¢ + ol is a unit in End(Q). Further, 13, = 1 and 1 €
comm%nd(Q)(ab) 80 aq is quasipolar in End(Q).

(4) = (1) Let A\; €End(P;). Given the situation in (4), extend maps A; in

End(P;) to A; in End(M) by defining (> pj)A; = (pi)A; for any p; € P;. Then
j=1

):)TJ = 0ifi # j while \; i3 = A\ and X\ + 755 = A + p; for all p; €End(P;).

By hypothesis, there exists 75 = m; € comm%nd(Pj)(odpj), o; € U(End(F)))

) n
such that alp, + 7; = o; and a|p,7; €End(P;)™". If 7 = Y 7; and
=1
n n !
o= > o then 7> = Y. 72 = 7 €End(M) and o is a unit in E because
j=1 =1

J
n n

o7t=3Y5; ' Sincea= 3 a|p, = 3 (=7; + 0;) = —7 + o, we show that
j=1 j=1 j=1
7 € comm%(a) and ar € B, Since for each 8 € commpg(a), P and Q are
B-invariant. Hence, 73 = 7 by Lemma 2.1 and so 7 € comm?%(a). For any
B € commpg(ar), we only need to show that 15 + Sam is an isomorphism in
E. Note that 3|p, € commgnacp,)(alp;) and 1p, + B|p,alp, = (7 + Ba)|p;.
Since alp,m; € End(P;)™", 1p, + Blp,a|p,m; = (7 + Bra)|p, is a unit in
End(P;). Let v; €End(P;) be such that (1p, + B|p,alpm;)y; = 1p, =

vj(1p, + Blp;alp,mj) and let m = 37 p; with p; € P;. So (3 pj)(lg +
j=1 =1
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n

gar)y = (£ ps + (X p)Bar)y = (£ 0)le, + (£ 0)[Blralnml)y =

)y

n
J=1

j=1 Jj=1 J

n
n

(> (p)Lp,+Blp,alpm])y = ( i:l(m) 1p,+8|p,alpmilv;) =

j=1

(pj)[Lp,]=m

-

where v = 3 7. Similarly, we have (> p;)v(1g +Bar) = > (p;)[1p,] = m.
j=1 j=1 j=1

Therefore ar € E9, the proof is completed. O

The following result is a direct consequence of Theorem 2.2.
Corollary 2.3. Let R be a ring. The following are equivalent for a € R.
(1) a € R is quasipolar.

(2) There exists e = e € R such that e € comm%(a), ae € U(eRe) and
a(l —e) e (1 —e)R(1 —e)mi,

3 The Rings T5(R)

For aring R, let a € R, l, : R - R and r, : R — R denote, respectively,
the abelian group endomorphisms given by l,(r) = ar and r,(r) = ra for all
r € R. Thus, for a, b € R, l,, 7 is an abelian group endomorphism such that
(lo —7p)(r) = ar —rb for any r € R. A local ring R is called bleached [1] if, for
any a € J(R) and any b € U(R), the abelian group endomorphisms I, —r, and
lo — 7 of R are both surjective. A local ring R is called uniquely bleached if, for
any a € J(R) and any b € U(R), the abelian group endomorphisms I, —r, and
lo — rp of R are isomorphic. According to [8, Example 2.1.11], commutative
local rings, division rings, local rings with nil Jacobson radicals, local rings
for which some power of each element of their Jacobson radicals is central are
uniquely bleached. Clearly uniquely bleached local rings are bleached. But so
far it is unknown whether a bleach local ring is uniquely bleached. Obviously,

all O 0
as1 Q9o Qo3 | € U(‘Tg,(R)) if and only if a11,a99,a33 € U(R). Further,

0 0 ass

a1 0 0
J(Tg(R)) = a91 Q22 Q923 ‘ ajl,a92,a033 € J(R),agl, as3 € R 3. Note
0 0 ass

that if, for every A € T3(R), there exists E? = E € comm?(A) such that
A—E € U(T3(R)) and EA € J(T3(R)) C T3(R)?™", then —A is quasipolar
and so T3(R) is quasipolar. We use this fact in the proof of Theorem 3.1
without mention.
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By [13, Example 1] and [9, Remark 3.2.11], M5(R) is not quasipolar in
general. Our next aim is to determine to find conditions under which T3(R)
is quasipolar. In this direction we can give the following theorem.

Theorem 3.1. Let R be a bleached local ring. The following are equivalent.
(1) R is uniquely bleached.
(2) T3(R) is quasipolar.

(3) T»(R) is quasipolar.

ail 0 0
Proof. (1) = (2)Let A= | ag1 a2 a3 | € T3(R). Consider the following
0 0 ass

cases.

Case 1. ai1,a92,033 € J(R) Then A+ I3 € U(‘Tg(R)) and AlI3 = A €
J(T53(R)) € T3(R)?™". So A is quasipolar.

Case 2. aj1,a22,a33 € U(R). Then A+ 0 € U(T5(R)) and A0 = 0 €
T3(R)™™!. So A is quasipolar.

Case 3. a11 € U(R),a92,a33 € J(R). There exists a unique element

0 0 O
ea1 € R such that agses; — es1a11 = aoy. Let B = es7 1 0 |. Then
0 0 1
E?’=E, A—-F¢ U(‘J’g(R)) and AF € J(‘J’g(R)) - ‘J'g(R)q”“. We show that
T11 0 0
E € comm?(A). Let X = | @21 w22 23 | € comm(A). Then XA = AX
0 0 33
and so
11711 = T11Q11, G22T22 = T22022, G33T33 = T33033 (1)
T21G11 + T22021 = A21T11 + G22%21 (ii)
T92G23 + T23033 = A22T23 + A23T33 (iii)
Since agaes; — €21a11 = aszi, a22[$22€21 — €21711 — $21] - [3322621 — €21T11 —

z21]a1n = 0 by (i) and (ii). By (1), lay, — Tay, I8 injective and so xoges; —
e21711 = T21. That is, XE = EX. Hence E € comm?(A).
Case 4. a1 € J(R),a22 € U(R),ass € J(R). There exist unique ele-

ments €91, €93 € R such that a92€21 — €21a11 — —Aa21 and a92€23 — €23011 —
1 0 0

—as3. Let E = es7 0 eg3 |. Then E? = E, A—F € U(‘Tg(R))
0 0 1

and AE € J(T3(R)) C T3(R)™". We prove E € comm?(A). Let X =
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11 0 O
ZTo1 Tog Taz | € comm(A). Then XA = AX. Since asses; — ea1a11 =
0 0 I33

—a21, G22[—T22€21 + €21211 — T21] — [—Ta2e21 + €21211 — T21]ar1 = 0 by (i) and
(ii). By (1), lapy —Tay, is injective and so xasea1 + 221 = 91211 Since asgess —
€23a11 = —023, Go2[—T22€23 + €23733 — T3] — [—T22e23 + €23733 — To3lary = 0

by (i) and (iii). By (1), lay, — Tay, i injective and so xasea3 + a3 = ea333.
That is, XFE = EX. Hence E € comm?(A).
Case 5. aj1,a22 € J(R),a33 € U(R). There exists a unique element

10 0
eg3 € R such that agoess — es3a33 = as3. Let E = 0 1 ez3 |. Then
00 O
E? = E, A— E € U(T3(R)) and AE € J(T5(R)) C T3(R)™". We show
11 0 0
that £ € comm?(A). Let X = | 221 %22 23 | € comm(A). Then XA =
0 0 I33
AX. Since agsess — €23a33 = 23, G22[Ta2€23 — €23T33 — Tag] — [Tazeas —

€23%33 — Ta3lags = 0 by (i) and (iii). By (1), layy — Tass i injective and so
Too€o3 — €93T33 = Xo3. That is, XF = FX. Hence FE € comm2(A).
Case 6. ay; € J(R),a22,a33 € U(R). There exists a unique element

1 00
es1 € R such that agses; — €91a17 = —asg;. Let B = ea1 0 0O |. Then
0 00
E*=FE, A—E € U(T5(R)) and AE € J(T3(R)) C T3(R)". We prove that
11 0 0
E € comm?(A). Let X = | z21 x22 23 | € comm(A). Then XA = AX.
0 0 33
Since agzseg1 —e€21a11 = —a21, G22[—T22€21 +€21T11 — T21] — [—T22€21 +€21211 —

xo1]arr = 0 by (i) and (ii). By (1), lay, — Ty, 1S injective and so zages) +x91 =
ea1711. That is, XE = EX. Hence E € comm?(A).
Case 7. a;1 € U(R), a2 € J(R),ass € U(R). There exist unique elements
€91, €93 € R such that a922€21 —€21011 = Q21 and a992€23 —€23033 — UA23. Let £ =
0O 0 O
ez1 1 ey |. Then E? = E, A— E € U(T3(R)) and AE € J(T3(R)) C
0 0 O

T11 0 0
T3(R)™!. To show E € comm?(A) let X = | 291 w22 23 | € comm(A).
0 0 T33

Then XA = AX. Since a22€21 — €21011 = G21, CLQQ[I’QQGQl — €921T11 — Igl] —
[x22€21 —€21211 —x21]a1; = 0 by (i) and (ii). By (1), la,, —Ta,, 1S injective and
SO T22€21 — €21T11 = X21- Since a22€23 — €23033 = A23, a22[$22623 — €23733 —
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Toz|—[Taoeaz—e23233—2a3]azs = 0 by (i) and (iii). By (1), lg,y —Tas, 1S injective
and so Ta2€93 — €23733 = Ta3. That is, XE = EX. Hence E € comm?(A).
Case 8. a11, a2 € U(R),az3 € J(R). There exists a unique element eg3 €

00 O
R such that aggeqs — e93a33 = —ag3. Let E=| 0 0 eg3 |. Then E? = E,
0 0 1
A—E € U(T3(R)) and AE € J(T3(R)) C T3(R)?". The remaining proof
Tr11 0 0
is to show that E € comm?(A). Let X = | ma1 22 x23 | € comm(A).
0 0 33
Then XA = AX. Since a929€23 — €230433 = —A23, a22[7I22623 + €23%33 — 1‘23] —

[—Ta2e2s + €23233 — Ta3lags = 0 by (i) and (iii). By (1), lay, — Tass 18 injective
and so Ta9€93 + T3 = ea3733. That is, XE = EX. Hence E € comm?(A).

1 0 0
(2) = (3) Assume that T3(R) is quasipolar. Let E = | 0 1 0 | €
0 0 0

T3(R). Then To(R) = ET3(R)E. Thus Tz(R) is quasipolar by [14, Proposition
3.6].
(3) = (1) It follows from [7, Proposition 2.9]. O

An element a € R is strongly rad clean provided that there exists an idem-
potent e € R such that ae = ea and a — e € U(R) and ea € J(eRe). A ring R
is strongly rad clean in case every element in R is strongly rad clean (cf. [8]).

Due to the proof of Theorem 3.1, we have the following.

Corollary 3.2. Let R be a local ring. The following are equivalent.
(1) T3(R) is strongly rad clean.
(2) R is bleached.

ail 0 0
For a ring R, let Lg(R) = 0 a99 0 | a11,031,022,033 € R
az1 0 as3
Then L3(R) is a ring under the usual addition and multiplication, and so
L3(R) is a subring of M3(R). Our next endeavor is to find conditions under
which £3(R) is quasipolar.

Proposition 3.3. Let R be a bleached local ring. The following are equiva-
lent.

(1) R is uniquely bleached.

(2) L3(R) is quasipolar.
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Proof. Let ¢ : L3(R) — T2(R) @ R given by
aiq 0 0 a a
0 a2 0 — ( |: 83 a?)l :| ,a22>.
azi 0 ag3 "

Then ¢ is an isomorphism (see [3, Proposition 2.2]). Since R is local, it is
quasipolar. Hence L3(R) is quasipolar if and only if T5(R) is quasipolar.
Therefore it follows from Theorem 3.1. O

Corollary 3.4. Let R be a bleached local ring. The following are equivalent.

(1) R is uniquely bleached.

aii 0 0
(2) The ring 0 a9 0 | aii, asi, @32,022,0a33 € R} is quasipo—
| as1 az2 ass |
lar.
(a1 0 a3 |
(3) The ring 0 a929 A23 aii, @13, @23,022,033 € R is quasipo-
L 0 0 ass i
lar.
Proof. (1) < (2) Let
a1 0 0
0 :T3(R) — 0 ax O | a11,a31, a3z, az2,a33 € R

azi1 asz ass

ail 0 0 aiy 0 0
given by A= 21 Q22 (23 — 0 ass 0 for any Ae 73(R)
0 0 oas G91 G23 Q22

Then ¢ is an isomorphism (see [2, Corollary 3.4]). In view of Theorem 3.1,
T3(R) is quasipolar if and only if

a1 0 0
0 ax O | ai1,a31,as2,a22,a33 € R
as; as2 ass

is quasipolar, as asserted.
(1) & (3) is symmetric. O

Corollary 3.5. Let R be a bleached local ring. The following are equivalent.

(1) R is uniquely bleached.
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ai; 0 a3
(2) The ring S| = 0 a99 0 ‘ a11,013,022,033 € R} is quasipo—
L 0 0 ass 1
lar.
[ ail 0 0 i
(3) The ring Sy = 0 ao9o 0 ‘ a11,031,022,033 € R} is quasipo—
| 0 a3z ass |
lar.

Proof. (1) & (2) As in the proof of Proposition 3.3, R is uniquely bleached if
and only if S7 is quasipolar, as asserted.
(2) & (3) Let ¢ : S1 — Sa given by

a1 0 a3 aze 0 0
A= 0 ago 0 — 0 ass 0
0 0 ass 0 a1z ai

for any A € S;. Then ¢ is an isomorphism. Hence S; is quasipolar if and only
if Ss is quasipolar. O

Let R be a commutative local ring. By Theorem 3.1, Proposition 3.3,
Corollary 3.4 and Corollary 3.5, the rings

R 0 0
0 R 0|,
R 0 R

SR~y

0
R
0

TN e

R 0
1 0 R
0 O

T o=
T o=
sV~ S

0
0
R

are all quasipolar.

Remark 3.6. Let Zy = {% | m,n € Z,2 { n}. By [13, Example 1] and
[9, Remark 3.2.11], M3(Z3)) is not strongly clean and so it is not quasipolar.
However, by Theorem 3.1, Proposition 3.3, Corollary 3.4 and Corollary 3.5,

Z(g) 0 0 Z(Q) 0 0 Z9) 0 Z(Q)
the rings 0 Z(g) 0 R Z(g) Z(g) Z(g) R 0 Z(g) 0 R
Zz) 0 Zg 0 0  Zg 0 0 Zg
Z(g) 0 0

0 Zg 0 are all quasipolar.
L) L) L

4 Matrices Over Power Series Rings

In this section, we characterize quasipolar matrices over the power series ring
of a local ring. In order to prove Theorem 4.2, we need the following lemma.
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Lemma 4.1. Let R be a commutative local ring and A(z) € M (R|[[z]]). The
following are equivalent.

(1) x(A(0)) has a root in J(R) and a root in U(R).
(2) x(A(z)) has a root in J(R[[z]]) and a root in U (R[[z]]).
Proof. (1) = (2) Assume that x(A(0)) = y® — py — X has a root o € J(R) and

aroot § € U(R). Let y = Z bixt. Then y? = 3 c;z* where ¢; = > bibi_p.
=0 k=0

Let p(z) = E wirt, A(z) = Z \iz' € R|[z]] where g = p and A9 = A. Then,

y? — p(x)y — )\( )=20 holds in RJ[z]] if the following equations are satisfied:

b% — bopo — Ao = 0;
(boby + b1bo) — (boptr + brjio) — Ay = 0;
(boba + b3 + babg) — (bopz + b1 + bapg) — A2 = 0;

Obviously, po = trA(0) = a+ p € U(R). Let by = «. Since R is commutative
local, there exists some b; € R such that

boby + b1(bo — f10) = A1 + bojur.
Further, there exists some by € R such that
boba + ba(bo — o) = Aa — b} + bopa + biji1.

By iteration of this process, we get b3, by, - - -. Then y?—u(z)y—A(x) = 0 has a
root a(z) € J(R[[z]]). If by = B, analogously, we show that y* —pu(z)y—A(z) =
0 has a root 3(z) € U(R[[z]]).

(2) = (1) Suppose that X( (z)) = y* — w(x)y — A(z) has a root a(z) €
J(R[[z]]) and a root B(z) € U(R[[z]]). Then p(z) = trA(z) and —\(z) =
detA(x). Hence u(0) = trA( ) and —A(0) = detA(0). Thus, x(A(0)) =
y® — u(0)y — A(0). Since a(2)? — p(z)a(x ) (33) 0 and S(z)? —u(x)ﬁ(x)—
Az) = 0, a(0)? - #(0)a(0) - (0) d B(0)* = p(0)B(0) — A(0) =
Then x(A(0)) =y — u(0)y — A(0) has a root a( ) € J(R) and a root 5(0 )
U(R). O

Theorem 4.2. Let R be a commutative local ring. The following are equiv-
alent.

(1) A(0) € M2(R) is quasipolar.
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(2) A(z) € Ma(R|[[z]]) is quasipolar.

Proof. (1) = (2) It is known that R[[z]] is local. To complete the proof we
consider the following cases:

(i) A(0) € GL2(R),
(ii) detA(0),trA(0) € J(R),
(iii) detA(0) € J(R),trA(0) € U(R) and x(A(0)) is solvable in R.

If A(0) € GL2(R), then A(z) € GLy(R][[z]]) and so A(z) € My (R[[x]])
is quasipolar by [6, Example 2.1]. If detA(0), trA(0) € J(R), then trA(x),
detA(z) € J(R[[z]]) and so A(z) is quasipolar by [6, Theorem 2.6]. Now
suppose that detA(0) € J(R), trA(0) € U(R) and x(A(0)) has two roots o, 3 €
R. Then detA(z) € J(R[[z]]) and trA(z) € U(R][[z]]). Since detA(0) € J(R)
and trA(0) € U(R), either a € J(R) or 8 € J(R). Without loss of generality,
we assume that « € J(R) and 8 € U(R). According to Lemma 4.1, x(A(z))
has a root in J(R[[z]]) and a root in U(R[[z]]). Hence A(z) is quasipolar in
M;(R][[z]]) by [6, Proposition 2.8].

(2) = (1) is similar to the proof of (1) = (2). O

Example 4.3. Let R = Z4[[z]], and let

o0
0 - X (T+3"
Al)=1| _ _ " € My(R)
1 3=>(1+3)a"
n=1
. . . . . 00
Obviously, Z, is a commutative local ring. Since A(0) = 1 3|

x(A(0)) = t* — trA(0)t + detA(0) = t* — 3t = t(t — 3) is solvable in Zj.
By [6, Proposition 2.8], A(0) € M2(Z,4) is quasipolar. In view of Theorem 4.2,
A(x) € M2(R) is quasipolar.

Theorem 4.4. Let R be a commutative local ring and for m > 1
A(z) € My(R[[z]]/(z™)). The following are equivalent.

(1) A(0) € M3(R) is quasipolar.
(2) A(z) € Ma(R[[z]]/(z™)) is quasipolar.

Proof. The proof is similar to that of Theorem 4.2. O
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Example 4.5. Let R = Z4[[ 11/(z?), and let

Alw) = + (%) 2 + 22 + (2?)

2+x+(w ) 2+ 32+ (2?) } € My (R).

Obviously, Z, is a commutative local ring. Since A(0) = [ % ; } , X(A(0)) =

t2 —trA0)t + detA(0) = t2 —t +2 = (t — 3)(t + 2) is solvable in Z,;. By
[6, Proposition 2.8], A(0) € M2(Z,) is quasipolar. In view of Theorem 4.4,
A(z) € M2(R) is quasipolar.

Lemma 4.6. Let R be a local ring. Then R is uniquely bleached if and only
if R[[x]] is uniquely bleached.

Proof. Assume that R is uniquely bleached. Then l, — r; is an isomorphism

for any j € J(R) and u € U(R) and let f(z) = Z a;x' € R[[z]]. Since R is
=1

bleached, by [8, Example 2.1.11(6)], R[[z]] is bleached. If, for j(z) = 3 jix' €
i=1

J(R[[m]}) and u(z) = ioj u;xt € U(R[[J;]]), (@) = Tu@@)) (f(x)) = 0, then

i=1
Joao = agug (i1)

Joai + j1ag = apu1 + aiuop (i2)

Joaz + jia1 + j2ag = apuz + ajuy + asuq (i3)

By assumption, 1, — ry, is an isomorphism and so ag = 0 by (i1). As ag =0,

by (i2), joa1 = ajup and so a; = 0 by assumption. Since ag = 0 = ay,

by (i3), joaz = asup and so az = 0 by assumption. By iteration of this

process, we deduce that f(x) = 0. Hence [;;) — 7y(z) is an isomorphism and

so R[[z]] is uniquely bleached. Conversely, suppose that R[[z]] is uniquely
oo

bleached. Then lj;) — ry(y) is an isomorphism for any j(z) = } jixt €
i=1

J(R[[z]]) and u(z) = ;ule € U(R[[z]]) and let r € R. Let (I; —r,)(r) =0
with j € J(R) and u € U(R). Since j € J(R[[z]]) and u € U(R[[z]]), by

assumption, » = 0 and so l; — 7, is injective. The remaining proof is to show

that I; — r, is surjective. Since [j(;) — 7y () is an isomorphism where j(0) = j
0 .

and u(0) = u, for any r € R, we can find some f(z) = > a;2* € R[[z]] such
i_

=1
that j(z) f(z) — f(z)u(x) = r. Hence jag —apu = r with ap € R and so [; — 1,
is surjective. Thus R is uniquely bleached. O
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Proposition 4.7. Let R be a bleached local ring. The following are equiva-
lent.

(1) T3(R) is quasipolar.
(2) T3(R[[z]]) is quasipolar.

Proof. (1) = (2) Assume that T3(R) is quasipolar. By Theorem 3.1, R is
uniquely bleached. Note that if R is local, then so is R][[z]] because R/J(R) =
R[[z]]/J (R[[z]]). According to Lemma 4.6, R[[z]] is uniquely bleached. Hence
T3(R[[z]]) is quasipolar by Theorem 3.1.

(2) = (1) Suppose that T3(R[[z]]) is quasipolar. Then R[[z]] is uniquely
bleached by Theorem 3.1. In view of Lemma 4.6, R is uniquely bleached.
Hence T5(R) is quasipolar by Theorem 3.1. O

Corollary 4.8. Let R be a bleached local ring. For any positive integer n,
the following are equivalent.

(1) T,(R) is quasipolar.
(2) T, (R[[z]]) is quasipolar.
Proof. By [7, Proposition 2.9] and Lemma 4.6, the proof is completed. O
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