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ACTIONS OF GROUPS ON LATTICES

Abstract

The aim of this paper is to study the actions of the groups on lat-
tices and to give some connections between the structure of a group and
the structure of its subgroup lattice. Moreover, we shall introduce the
concept of direct ∨-sum of G-sublattices and we shall present a gener-
alization of a result about finite nilpotent groups.

1 Preliminaries

Let (G, ·, e) be a monoid and L be a G–set (relative to an action ρ of G on L;
for (g, `) ∈ G×L, we denote by g ◦ ` the element ρ(g)(`) ∈ L). If L is a poset
(reltive to a partial ordering relation ”≤”) and, for `, `′ ∈ L, ` ≤ `′ implies
g ◦ ` ≤ g ◦ `′, for any g ∈ G, then L is called a G–poset. Moreover, if (L,≤) is
a lattice and, for `, `′ ∈ L, we have:

g ◦ (` ∧ `′) = (g ◦ `) ∧ (g ◦ `′),
g ◦ (` ∨ `′) = (g ◦ `) ∨ (g ◦ `′),

for any g ∈ G, then L is called a G–lattice.
A G–sublattice of a G–lattice L is a sublattice L′ of L satisfying the prop-

erty:
G ◦ L′ = {g ◦ `′ | g ∈ G, `′ ∈ L′} ⊆ L′.

Let L1 and L2 be two G–posets (respectively two G–lattices). A mono-
tone map (respectively a lattice homomorphism) f : L1 −→ L2 is called a
G–poset homomorphism (respectively a G–lattice homomorphism) if
f(g ◦ `1) = g ◦ f(`1), for any (g, `1) ∈ G × L1. Moreover, if f is one-to-one
and onto, then it is called a G–poset isomorphism (respectively a G–lattice
isomorphism).

A G–congruence on a G–lattice L is a congruence relation ”∼” on L which
has the property that ` ∼ `′ (`, `′ ∈ L) implies g ◦ ` ∼ g ◦ `′, for any g ∈ G.

Let L be a G–lattice and ”∼” be a G–congruence on L. Then the quotient
lattice L/∼ = {[`] | ` ∈ L} of L modulo ”∼” is a G–lattice, where g◦[`] = [g◦`],
for any (g, `) ∈ G× L.
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If f : L1 −→ L2 is a G–lattice homomorphism, then the sublattice Im f =
{f(`1) | `1 ∈ L1} of L2 is a G–lattice and there exists a G–congruence ”∼” on
L1 such that the G–lattices L1/ ∼ and Im f are isomorphic.

Let L be a lattice having the initial element 0. On L is well defined the
height function: for ` ∈ L, let hL(`) denote the length of a longest maximal
chain in [0, `] if there is a finite longest maximal chain; otherwise put hL(`) =
∞. If L is of finite length, then the following conditions are equivalent:

i) L is modular.

ii) The height function hL on L satisfies the property:
hL(`) + hL(`′) = hL(` ∧ `′) + hL(` ∨ `′), for any `, `′ ∈ L.

2 Main results

2.1 Finite G–lattice

Let (G, ·, e) be a monoid.

Proposition 1. Let (L,≤) be a complete lattice such that L is a G–poset.
Then we have:

G =
⋃

`∈L

StabG(`).

Proof. Let g ∈ G and Lg = {` ∈ L | g ◦ ` ≥ `}. We have Lg 6= ∅ (Lg contains
the initial element of L). Since L is complete, there exists ¯̀= ∨Lg. We have
` ≤ g ◦ ` ≤ g ◦ ¯̀, for any ` ∈ Lg, therefore:

¯̀≤ g ◦ ¯̀. (1)

Using the relation (1), we obtain that g ◦ ¯̀≤ g ◦ (g ◦ ¯̀), thus g ◦ ¯̀∈ Lg. Since
¯̀= ∨Lg, it results:

g ◦ ¯̀≤ ¯̀. (2)

The relations (1) and (2) give us g ◦ ¯̀ = ¯̀, so that g ∈ StabG(¯̀). Thus
G =

⋃

`∈L

StabG(`).

Corollary. (The Fixed–Point Theorem of complete lattice)
Any monotone map of a complete lattice L into itself has a fixed point.

Proof. The set G′ of all monotone maps of L into itself is a monoid.
Moreover, L is a G′-poset, where f ◦ ` = f(`), for any (f, `) ∈ G′ × L. From
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Proposition 1, we obtain G′ =
⋃

`∈L

StabG′(`), therefore, for any f ∈ G′, there

exists ` ∈ L such that f ∈ StabG′(`), i.e. f(`) = f ◦ ` = `.

In the followings we suppose that (G, ·, e) is a group and we denote by
L(G) (respectively by L0(G)) the lattice of subgroups of G (respectively the
lattice of normal subgroups of G).

Proposition 2. Let L be a complete G–lattice such that StabG(`) = {e}, for
any ` ∈ L. Then the group G is abelian.

Proof. Let g1, g2 be two elements of G and fg1,g2 : L −→ L be the map defined
by fg1,g2 = [g1, g2] ◦ `, for any ` ∈ L (where [g1, g2] is the commutator of g1

and g2). We have fg1,g2(`∧`′) = [g1, g2]◦(`∧`′) = ([g1, g2]◦`)∧([g1, g2]◦`′) =
fg1,g2(`)∧fg1,g2(`

′), for any `, `′ ∈ L, thus fg1,g2 is a monotone map. From the
above corollary, we obtain that there exists `0 ∈ L such that fg1,g2(`0) = `0.
It results [g1, g2] ∈ StabG(`0), i.e. [g1, g2] = e.

Since any ordered latticeal group G is a G–lattice, from Proposition 2 we
obtain the following result:

Corollary. Any ordered latticeal group complete as lattice is abelian.

Let L be a finite G–lattice, 0 be the initial element of L and 1 be the final
element of L.

Remark. If L = {`1 = 0, `2, ..., `m = 1} and Hi = StabG(`i), i = 1,m,

then from Proposition 1, we have G =
m⋃

i=1

Hi. Let I be a maximal subset of

{1, 2, ...,m} with the property:




G =
⋃

i∈I

Hi

Hj 6 ⊆
⋃

i∈I\{j}
Hi, for any j ∈ I.

Then, for any g ∈ G, there exists ng ∈ IN∗ such that gng ∈
⋂

i∈I

Hi. Since, for

any `, `′ ∈ L, StabG(`)∩StabG(`′) ⊆ StabG(`∧ `′), we obtain that there exists
`0 ∈ L such that every element of G has a natural power in StabG(`0).

We suppose that G is a finite group, StabG(0) = StabG(1) = G and let
fL : L −→ L be the map defined by fL(`) =

∧

g∈G

g ◦ `, for any ` ∈ L.
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Proposition 3. The map fL is a G-poset homomorphism which has the
following properties:

a) fL(`) ≤ `, for any ` ∈ L.

b) Im fL = FixG(L), where FixG(L) = {` ∈ L | g ◦ ` = `, for any g ∈ G}.
c) f2

L = fL.

Proof. a) Since e ◦ ` = `, we obtain fL(`) = ` ∧

 ∧

g∈G\{e}
g ◦ `


 ≤ `, for any

` ∈ L.
b) Let `′ ∈ Im fL. Then there exists ` ∈ L such that `′ = fL(`). For any

g′ ∈ G′, we have:

g′◦`′ = g′◦fL(`) = g′◦

 ∧

g∈G

g ◦ `


 =

∧

g∈G

g′◦(g◦`) =
∧

g∈G

(g′g)◦` = fL(`) = `′,

therefore `′ ∈ FixG(L).
Conversely, let `′ ∈ FixG(L). Then g ◦ `′ = `′, for any g ∈ G. It results

fL(`′) =
∧

g∈G

g ◦ `′ =
∧

g∈G

`′ = `′, thus ` ∈ Im fL.

c) We have f2
L(`) = fL(fL(`)) =

∧

g∈G

g ◦ fL(`) =
∧

g∈G

fL(`) = fL(`), for any

` ∈ L. Thus f2
L = fL.

Now, the fact that fL is a G-poset homomorphism is obvious.

Remark. If L is a fully ordered G–lattice, then fL is a G–lattice homo-
morphism. Moreover, the binary relation”∼” on L defined by ` ∼ `′ if and
only if fL(`) = fL(`′) is a G-congruence. Therefore, we obtain the G–latice
isomorphism:

L/∼ ∼= FixG(L).

Let n = |FixG(L)| and C1, C2, ..., Cn be the equivalence classes modulo
”∼”. If (`′i)i=1,n is a set of representatives for the equivalence classes (Ci)i=1,n

then Ci = {` ∈ L | fL(`) = fL(`′i)} 6= ∅, i = 1, n, Ci ∩ Cj = ∅, for i 6= j and

L =
n⋃

i=1

Ci. Moreover, for any i ∈ {1, 2, ..., n}, we have:

G ◦ `′i = {g ◦ `′i | g ∈ G} ⊆ Ci.
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It results that:

|G ◦ `′i| =
|G|

|StabG(`′i)|
≤ |Ci|, i = 1, n.

This implies the following inequality:

(∗) |G|
n∑

i=1

1
|StabG(`′i)|

≤
n∑

i=1

|Ci| = |L|.

Let Ci1 , Ci2 , ..., Cir be the classes having an unique element (i.e. cij =
{`′ij

}, j = 1, r, where r ≤ n, ir = n and `′n = 1). Then, for each s ∈
{1, 2, ..., n} \ {i1, i2, ..., ir}, we can suppose that `′s /∈ FixG(L). We obtain
|G ◦ `′s| 6= 1, therefore

|G|
|StabG(`′s)|

≥ p,

where p is the smallest prime divisor of |G|. Using the inequality (∗), it results
that:

|L| ≥ pn− (p− 1)r.

Taking the particular case L = L(G), it obtains the following results:

Corollary 1. If G is a finite group and r is the number of equivalence classes
modulo ”∼” having a unique element, then:

|L(G)| ≥ p|L0(G)| − (p− 1)r,

where p is the smallest prime divisor of |G|.

Corollary 2. If G is a nonabelian simple finite group, then:

|L(G)| ≥ p + 1,

where p is the smallest prime divisor of |G|.

Remark. Let Min(L) be the set of all minimal elements of L and Ker fL =
{` ∈ L | fL(`) = 0}. Then the following relations hold:

(∗∗) Min(L) ⊆ Ker fL ∪ FixG(L).

Indeed, if `∈Min(L) and fL(`) 6= 0, then, from the inequalities 0≤fL(`)≤`, we
obtain fL(`) = `, i.e. ` ∈ FixG(L).

Let k be the length of the finite G-lattice L.

Definition 1. We say that L is regular if it satisfies the following conditions:
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(i) All maximal chains of L have the same length.

(ii) For any ` ∈ L \ (Ker fL ∪ {1}) with hL(`) = p, the equivalence class
modulo ”∼” of ` has at most k − p elements.

Definition 2. A family U = (ui)i=1,k of elements of L is called a k-indepen-
dent minimal system if it has the properties:

(i) U ⊆ Min(L), U ∩ FixG(L) 6= ∅.
(ii) For any distinct numbers i1, i2, ..., ik ∈ {1, 2, ..., k}, we have:

|{ui1 ∨ uj | j 6= i1}| = k − 1,

|{ui1 ∨ ui2 ∨ uj | j /∈ {i1, i2}}| = k − 2,
...
|{ui1 ∨ ui2 ∨ · · · ∨ uik−2 ∨ uj | j /∈ {i1, i2, ..., ik−2}}| = 2.

(iii) For any distinct numbers i1, i2, ..., ik ∈ {1, 2, ..., k} (where p ∈ IN∗, p ≤
k), if {ui1 , ui2 , ..., uip} ∩ FixG(L) 6= ∅, then hL(ui1 ∨ ui2 ∨ · · · ∨ uip) = p.

Proposition 4. Let L be a finite G–lattice of length k. If L is regular and
it has a k-independent minimal system, then there exists a maximal chain
of L:

0 = a0 < a1 < · · · < ak = 1,

with ai ∈ FixG(L), for any i = 0, k.

Proof. We prove the statement by induction on k. If k ≤ 1, the statement is
trivial. Let us assume the statement to hold for k−1 and let U = (ui)i=1,k be
a k-independent minimal system of L. Since U ∩FixG(L) 6= ∅, we can suppose
that uk ∈ FixG(L). Let L′ = [uk, 1] = {` ∈ L | uk ≤ ` ≤ 1}. L′ is a finite
G-lattice of length k − 1. For any ` ∈ L′ \ (Ker fL′ ∪ {1}) with hL′(`) = p,
we have hL(`) = p + 1, therefore the equivalence class modulo ”∼” of ` has at
most k − 1− p elements. It results that L′ is regular.

Now we prove that V = (vi)i=1,k−1, where vi = ui∨uk for any i = 1, k − 1,
is a (k − 1)-independent minimal system of L′.

Since uk ∈ FixG(L), we have hL(vi) = 2, i = 1, k − 1, thus hL′(vi) = 1,
i = 1, k − 1, i.e. V ⊆ Min(L′). If we suppose V ∩FixG(L′) = ∅, then, using the
remark (∗∗), we obtain that V is containing in the equivalence class modulo
”∼” of uk. It results that the equivalence class modulo ”∼” of uk has at least
k elements (uk and vi, i = 1, k − 1). This contradicts the assumption that L
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is regular. The fact that V satisfies the property (ii) of Definition 2 is obvious.
For the property (iii), let the distinct numbers i1, i2, ..., ip ∈ {1, 2, ..., k − 1}
(where p ∈ IN∗, p ≤ k− 1). We have hL′(vi1 ∨ vi2 ∨ · · · ∨ vip

) = hL′(uk ∨ ui1 ∨
ui2 ∨ · · · ∨ uip) = hL(uk ∨ ui1 ∨ ui2 ∨ · · · ∨ uip)− 1 = (p + 1)− 1 = p.

From inductive hypothesis, it results that there exists a maximal chain of
L′:

uk = a1 < a2 < · · · < ak = 1,

with ai ∈ FixG(L′), i = 1, k. Thus

0 = a0 < a1 < · · · < ak = 1

is a maximal chain of L, with ai ∈ FixG(L), i = 0, k.

Corollary. The symmetric group of degree 3 Σ3 and the dihedral group of
order 8 D8 have principal series of subgroups.

Proof. We have Σ3 = {e, σ1, σ2, σ3, τ , τ2} (where σ1 = (2 3), σ2 = (1 3),
σ3 = (1 2) and τ = (2 3 1)) and D8 = {1, ρ, ρ2, ρ3, ε, ρε, ρ2ε, ρ3ε} (where ρ4 =
ε2 = 1 and ερ = ρ3ε). We obtain L(Σ3) = {H0 = {e}, H1 = {e, σ1}, H2 =
{e, σ2}, H3 = {e, σ3}, H4 = {e, τ , τ2}, H5 = Σ3} and L(D8) = {H ′

0 = {1},
H ′

1 = {1, ε}, H ′
2 = {1, ρ2ε}, H ′

3 = {1, ρ2}, H ′
4 = {1, ρε}, H ′

5 = {1, ρ3ε}, H ′
6 =

{1, ρ3, ρε, ρ3ε}, H ′
7 = {1, ρ, ρ2, ρ3}, H ′

8 = {1, ρ2, ρε, ρ3ε}, H ′
9 = D8}. It is a

simple exercise to verify that the Σ3–lattice L(Σ3) (respectively the D8–lattice
L(D8)) is regular and that U = {H3,H4} (respectively U ′ = {H ′

2,H
′
3,H

′
4})

is a 2-independent minimal system of L(Σ3) (respectively a 3-independent
minimal system of L(D8)). Now the statement results from Proposition 4.

2.2 On a property of finite nilpotent groups

Let (G, ·, e) be a group.

Definition 1. Let L be a G–lattice having the initial element 0 and (Li)i∈I

be a finite family of G–sublattices of L. We say that L is the direct ∨–sum

of the family (Li)i∈I (and we denote this by L =
∨⊕

i∈I

Li) if the following two

equalities hold:

i) L =
∨

i∈I

Li.

ii) Lj ∧




∨
i∈I

i6=j

Li


 = {0}, for any j ∈ I.
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Examples. 1) Let n = pα1
1 pα2

2 ...pαk

k , be the decomposition of the natural
number n as a product of prime factors. If, for any m ∈ IN∗, we denote by
Lm the lattice of all natural divisors of m and we consider the set G = {σ ∈
Aut(Ln) | σ(Lp

αi
i

) = Lp
αi
i

, i = 1, k}, then G is a group, Ln is a G–lattice
(where σ ◦d = σ(d), for any (σ, d) ∈ G×Ln) and Lp

αi
i

is a G–sublattice of Ln,
i = 1, k. It is easy to see that Ln is the direct ∨–sum of the family (Lp

αi
i

)i=1,k.

2) Let m ≥ 2, n ≥ 2 be two natural numbers, f : ZZ m −→ Aut( ZZ n) be a
group homomorphism and k̂0 = f(1̄)(1̂). We denote by S the semidirect prod-
uct of ZZ m and ZZ n with respect to the homomorphism f and by G, respectively
H the images of ZZ m, respectively ZZ n through the group homomorphisms:

σ1 : ZZ m −→ S, σ1(x̄) = (x̄, 0̂), for any x̄ ∈ ZZ m,

respectively

σ2 : ZZ n −→ S, σ2(ŷ) = (0̄, ŷ), for any ŷ ∈ ZZ n.

If L(S), L(G) and L(H) are the subgroup lattices of S,G, respectively H, then

we have L(S) = L(G)
∨⊕ L(H) if and only if (m,n) = 1 and k0 ≡ 1(mod n)

(see [10], Proposition 3).

Proposition 1. If L is a distributive G–lattice having the initial element 0 and

(Li)i∈I is a finite family of G–sublattices of L such that Lj ∧




∨
i∈I
i 6=j

Li


 = {0},

for any j ∈ I, then the following two conditions are equivalent:

i) L =

W
⊕

i∈I

Li.

ii) Every element ` ∈ L can be written uniquely as
∨

i∈I

`i, where `i ∈ Li, for

any i ∈ I.

Proof. i)=⇒ii) Since L =

W
⊕

i∈I

Li, we have L =
∨

i∈I

Li, therefore every element

` ∈ L can be written as
∨

i∈I

`i, where `i ∈ Li, i ∈ I. If ` =
∨

i∈I

`i =
∨

i∈I

`′i with

`i, `
′
i ∈ Li, i ∈ I, then, for any j ∈ I, we have `′j = `′j ∧ ` = `′j ∧

(∨

i∈I

`i

)
=
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`′j ∧


`j ∨




∨
i∈I

i 6=j

`i





 = (`′j ∧ `j) ∨


`′j ∧




∨
i∈I

i 6=j

`i





 = `′j ∧ `j , thus `′j ≤ `j . In

the same way, we obtain `j ≤ `′j , therefore `′j = `j , j ∈ I.

ii)=⇒i) Obvious.

Next aim is to establish connections between the direct product of
G–lattices and the direct ∨-sum of G-sublattices.

Proposition 2. If (Li)i∈I is a finite family of G–lattices having initial ele-
ments (denoted all by 0), 0 ∈ FixG(Li), i ∈ I, and L is the direct product
of the family (Li)i∈I , then there exists a family (L′i)i∈I of G–sublattices of L
which satisfies the following properties:

i) L =
∨⊕

i∈I

L′i.

ii) L′i ∼= Li (isomorphism of G–lattices), for any i ∈ I.

Proof. It is easy to see that the sets L′i = {(aj)j∈I ∈ L | aj = 0, for any

j ∈ I \ {i}}, i ∈ I, are G-sublattices of L and L =
∨⊕

i∈I

L′i. Moreover, the maps

fi : Li −→ L′i
fi(`i) = (aj)j∈I , where ai = `i and aj = 0, for j 6= i,

are isomorphism of G–lattices, i ∈ I.

Let L be a finite G–lattice with the initial element denoted by 0 such that
0 ∈ FixG(L) = {` ∈ L | g ◦ ` = `, for any g ∈ G}. If (`i)i=1,k is a family of
elements of L, then we make the following notations:

Li = [0, `i] = {` ∈ L | 0 ≤ ` ≤ `i},
G ◦ Li = {g ◦ ` | g ∈ G, ` ∈ Li},

where i ∈ {1, 2, ..., k}.

Definition 2. The family (`i)i=1,k is called a maximal system of L if it satisfies
the properties:

i) L =
k∨

i=1

G ◦ Li.
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ii) G ◦ Lj ∧




k∨
i=I

i6=j

G ◦ Li


 = {0}, for any j = 1, k.

Remark. If (`i)i=1,k is a maximal system of L, then, for i ∈ {1, 2, ..., k}, the
sublattice Li of L is not necessarily a G–sublattice. A sufficient condition for
this fact holds is `i ∈ FixG(L). In the case when (`i)i=1,k ⊆ FixG(L), we have

G ◦ Li = Li for any i = 1, k and L =
∨⊕

i=1,k

Li.

Definition 3. Let U, V ∈ L(G).

(i) We say that U and V form a permutable pair if [U ∪ V ] = UV = V U
(where [U ∪ V ] denotes the subgroup of G generated by U ∪ V ).

(ii) We say that U and V form a modular pair if

W ∩ [U ∪ V ] = [U ∪ (W ∩ V )] for any W ∈ L(G) with U ⊆ W

and

W ∩ [U ∪ V ] = [V ∪ (W ∩ U)] for any W ∈ L(G) with V ⊆ W .

Remarks. 1) Any permutable pair of subgroups is a modular pair (see [7],
Theorem 5, page 5).

2) If the group G is finite and it satisfies the property tht any two sub-
groups U, V ∈ L(G) with (|U |, |V |) = 1 form a permutable pair, then, for any
H1,H2, ...,Hk ∈ L(G) with (|Hi|, |Hj |) = 1, i 6= j, we have:

H1H2...Hk =

[
k⋃

i=1

Hi

]
∈ L(G)

and

|H1H2...Hk| =
k∏

i=1

|Hi|.

Proposition 3. For a finite group G which satisfies the property that any
two subgroups U, V ∈ L(G) with (|U |, |V |) = 1 form a permutable pair, the
G–lattice L(G) has a maximal system.

Proof. Let n = |G|. If n = pα1
1 pα2

2 ...pαk

k , is the decomposition of n as a
product of prime factors, then, for any i = 1, k, let Hi be Sylow pi–subgroup
of G.
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We prove that {H1, H2, ..., Hk} is a maximal system for L(G). Let H ∈
L(G) and m = |H|. Then m/n, therefore there exist the numbers βi ∈ IN,
βi ≤ αi, i = 1, k, such that m = p

β1
1 p

β2
2 ...p

βk

k . For any i = 1, k, let Ui be a
Sylow pi–subgroup of H and, using the Theorems of Sylow, let xi ∈ G such

that Ui ≤ Hxi
i , i.e. U

x−1
i

i ∈ [{e}, Hi] (where e is the identity of G). From

Remark 2), we obtain H = U1U2...Uk =
(
U

x−1
1

1

)x1 (
U

x−1
2

2

)x2

...
(
U

x−1
k

k

)xk

,

thus:

L(G) =
k∨

i=1

G ◦ [{e},Hi].

Let j ∈ {1, 2, ..., k} and K ∈ G ◦ [{e},Hj ] ∧




k∨
i=1
i 6=j

G ◦ [{e}, Hi]


 . Then K =

V
xj

j ∧




k∨
i=1
i 6=j

V xi
i


 (where Vs ≤ Hs and xs ∈ G, for any s = 1, k).

Since


|V xj

j |,

∣∣∣∣∣∣∣

k∨
i=1
i 6=j

V xi
i

∣∣∣∣∣∣∣


 = 1, it follows that K = {e}, thus:

G ◦ [{e},Hj ] ∧




k∨
i=1
i 6=j

G ◦ [{e},Hi]


 = {e}.

Remark. Let G be a finite group of order n, n = pα1
1 pα2

2 ...pαk

k be the decom-
position of n as a product of prime factors and Hi be a Sylow pi–subgroup of
G, i = 1, k. If (Hi)i=1,k is a maximal system of L(G), then, for any xi ∈ G,
i = 1, k, (Hxi

i )i=1,k is a maximal system of L(G).

Let L be a modular finite G–lattice with the initial element denoted by 0
and (`i)i=1,k be a maximal system of L.

Lemma. The following equality holds:

hL

(
k∨

i=1

`i

)
=

k∑

i=1

hL(`i).
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Proof. We prove the above equality by induction on k. For k = 2, we have
hL(`1∨`2) = hL(`1)+hL(`2)−hL(`1∧`2) = hL(`1)+hL(`2)−hL(0) = hL(`1)+

hL(`2). Let us assume the equality to hold for k = 1. We obtain hL

(
k∨

i=1

`i

)
=

hL

((
k−1∨

i=1

`k

)
∨ `j

)
= hL

(
k−1∨

i=1

`i

)
+ hL(`k)− hL

((
k−1∨

i=1

`i

)
∧ `k

)
=

=
k−1∑

i=1

hL(`i) + hL(`k)− hL(0) =
h∑

i=1

hL(`i).

For any i=1, k, let αi = hL(G ◦ Li), (i.e. αi = max{hL(g ◦ `) | g ∈ G,
` ∈ Li}), INαi

={0, 1, ..., αi} and hi : G ◦ Li → INαi
be the restriction of the

height function hL on the set G ◦ Li. We suppose that is well defined the
function:

h′ : L −→
k×

i=1
INαi ,

h′
(

k∨

i=1

gi ◦ `ii

)
= (h1(`11), h2(`22), ..., hk(`kk)),

where gi ∈ G, `ii ∈ Li, for any i = 1, k (it is easy to see that a sufficient
condition for this fact holds is ”L = distributive lattice”).

Proposition 4. The function h′ is onto. Moreover, for any (β1, β2, ..., βk) ∈
k×

i=1
INαi , we have:

(h′)−1(β1, β2, ..., βk) ∩
{

` ∈ L | hL(`) =
k∑

i=1

βi

}
6= ∅.

Proof. For each i ∈ {1, 2, ..., k}, the function hi is onto.

Let (β1, β2, ..., βk) ∈
k×

i=1
INαi and `ii ∈ G ◦ Li such that hi(`ii) = βi,

i = 1, k. Using the above lemma, it is a simple exercise to verify that
k∨

i=1

`ii ∈ (h′)−1(β1, β2, ..., βk) ∩
{

` ∈ L | hL(`) =
k∑

i=1

βi

}
.

Proposition 5. Let n = pα1
1 pα2

2 ...pαk

k be the decomposition of the natural
number n as a product of prime factors, Ln be the lattice of all natural divisors
of n and G be a finite group of order n which satisfies the following properties:
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(i) L(G) is a modular lattice.

(ii) There exists a maximal system (Hi)i=1,k of L(G) such that Hi is a Sylow
pi–subgroup of G, i = 1, k.

(iii) For any H ∈ L(G), |H| =
k∏

i=1

pxi
i implies hL(G)(H) ≥

k∑

i=1

xi.

Then the function ord : L(G) → Ln, ord(H) = |H|, for any H ∈ L(G), is
onto.

Proof. If m ∈ Ln, then m = p
β1
1 p

β2
2 ...p

βk

k , where βi ∈ IN, βi ≤ αi, i = 1, k.

For each i ∈ {1, 2, ..., k}, let Ui ⊆ Hi be a subgroup of G having order p
βi
i .

Since (Hi)i=1,k is a maximal system of L(G), it results that hL(G)

(
k∨

i=1

Ui

)
=

hL(G)

([
k⋃

i=1

Ui

])
=

k∑

i=1

hL(G)(Ui) =
∑

i=1

βi. This fact implies the equality

ord

([
k⋃

i=1

Ui

])
=

k∏

i=1

p
βi
i = m. Indeed, if we suppose that ord

([
k⋃

i=1

Ui

])
6=

m, then ord

([
k⋃

i=1

Ui

])
=

k∏

i=1

p
γi
i , where βi ≤ γi ≤ αi, for any i = 1, k

and there exists i0 ∈ {1, 2, ..., k} such that βi0 < γi0 (this fact holds because

Uq ≤
[

k⋃

i=1

Ui

]
(so that |Uq|/

∣∣∣∣∣

[
k⋃

i=1

Ui

]∣∣∣∣∣) for any q = 1, k and (|Uq|, |Uq′ |=1 for

q 6= q′). From property (iii), we obtain hL(G)

([
k⋃

i=1

Ui

])
≥

k∑

i=1

γi ≥
k∑

i=1

βi+1;

contradiction.

Corollary 1. For any finite group G of order n which satisfies the property
that any two subgroups U, V ∈ L(G) with (|U |, |V |) = 1 form a permutable
pair, the function ord : L(G) −→ Ln is onto.

Proof. The statement results from Proposition 3 and Proposition 5 or, di-
rectly, making the next reasoning.

Let n = pα1
1 pα2

2 ...pαk

k be the decomposition of n as a product of prime
factors and m ∈ Ln. Then m/n, therefore m = p

β1
1 p

β2
2 ...p

βk

k , where βi ∈ IN,
βi ≤ αi, i = 1, k. For each i ∈ {1, 2, ..., k}, let Ui be a subgroup of G having
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the order p
βi
i . From hypothesis, it results tht the subgroup

[
k⋃

i=1

Ui

]
∈ L(G)

has the order m.

Corollary 2. For any finite nilpotent group G of order n, the function ord :
L(G) −→ Ln is onto.

Proof. The statement results from Corollary 1, using the fact that, for a finite
nilpotent group, any two subgroups of relative prime orders form a permutable
pair.

Corollary 3. For any finite abelian group G of order n, the function ord :
L(G) −→ Ln is onto.

Proof. Since any abelian group is nilpotent, the statement results from Corol-
lary 2.
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