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ACTIONS OF GROUPS ON LATTICES

Abstract
The aim of this paper is to study the actions of the groups on lat-
tices and to give some connections between the structure of a group and
the structure of its subgroup lattice. Moreover, we shall introduce the
concept of direct V-sum of G-sublattices and we shall present a gener-
alization of a result about finite nilpotent groups.

1 Preliminaries

Let (G, -, e) be a monoid and L be a G-set (relative to an action p of G on L;
for (g,£) € G x L, we denote by g o £ the element p(g)(¢) € L). If L is a poset
(reltive to a partial ordering relation ”<”) and, for £,/ € L, ¢ < ¢’ implies
gol < gol forany g € G, then L is called a G—poset. Moreover, if (L, <) is
a lattice and, for ¢, ¢ € L, we have:

go(UNl)=(gol)A(gol),
go(tve)=(gol)V(gol),

for any g € G, then L is called a G-lattice.
A G-sublattice of a G-lattice L is a sublattice L’ of L satisfying the prop-
erty:
GoL ={gol'|geG, V' e’} C L.

Let Ly and Ly be two G—posets (respectively two G-lattices). A mono-
tone map (respectively a lattice homomorphism) f : Ly — Lo is called a
G—poset  homomorphism (respectively a G-lattice homomorphism) if
flgoty) = go f(£1), for any (g,¢1) € G x Ly. Moreover, if f is one-to-one
and onto, then it is called a G—poset isomorphism (respectively a G—lattice
isomorphism).

A G—congruence on a G-lattice L is a congruence relation ”~” on L which
has the property that £ ~ ¢ (¢,¢' € L) implies go £ ~ go ¢, for any g € G.

Let L be a G-lattice and ”~” be a G—congruence on L. Then the quotient
lattice L/~ = {[¢] | ¢ € L} of L modulo”~" is a G-lattice, where go[¢] = [go/],
for any (g,¢) € G x L.
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136 M. TARNAUCEANU

If f: L — Lo is a G-lattice homomorphism, then the sublattice Im f =
{f(€1) | 1 € L1} of Ly is a G-lattice and there exists a G—congruence ”~” on
Ly such that the G-lattices L1/ ~ and Im f are isomorphic.

Let L be a lattice having the initial element 0. On L is well defined the
height function: for ¢ € L, let hy(¢) denote the length of a longest maximal
chain in [0, £] if there is a finite longest maximal chain; otherwise put hy(¢) =
oo. If L is of finite length, then the following conditions are equivalent:

i) L is modular.

ii) The height function hy, on L satisfies the property:
hL(g) + hL(gl) = hL(Ag A E/) + hL(£ V 6/), for any /, ¢ e L.

2 Main results

2.1 Finite G-lattice
Let (G, -, e) be a monoid.

Proposition 1. Let (L,<) be a complete lattice such that L is a G—poset.
Then we have:

G = | J Stabg(0).

leL

Proof. Let g€ G and Ly, ={f € L | gol>(}. We have L, # () (L, contains
the initial element of L). Since L is complete, there exists £ = VL,. We have
< gol<gol, for any £ € L, therefore:

(<gol. (1)

Using the relation (1), we obtain that go/ < go(gof), thus go/ € Ly. Since
£ = VL, it results:

gol </ (2)
The relations (1) and (2) give us g o £ = £, so that g € Stabg(f). Thus
G = | J Stabg(0).

LeL

Corollary. (The Fixed—Point Theorem of complete lattice)
Any monotone map of a complete lattice L into itself has a fized point.

Proof. The set G’ of all monotone maps of L into itself is a monoid.
Moreover, L is a G'-poset, where f ol = f({), for any (f,¢) € G’ x L. From
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Proposition 1, we obtain G’ = U Stabg (£), therefore, for any f € G’, there
LeL
exists ¢ € L such that f € Stabg (£), i.e. f({) = fol ="
In the followings we suppose that (G,-,e) is a group and we denote by
L(G) (respectively by Lo(G)) the lattice of subgroups of G (respectively the
lattice of normal subgroups of G).

Proposition 2. Let L be a complete G-lattice such that Stabg () = {e}, for
any ¢ € L. Then the group G is abelian.

Proof. Let g1, g2 be two elements of G and fg, 4, : L — L be the map defined
by foi.go = [91,92) 0 ¢, for any ¢ € L (where [g1, g2] is the commutator of g
and g2). We have fg, 4,((AL) = [g1,92] 0 (UAL) = ([g1, 92) o) A([91, g2]0l') =
For.9s(O) A fg1,9.(£"), for any €,¢ € L, thus fg, 4, is a monotone map. From the
above corollary, we obtain that there exists o € L such that f,, 4,(¢o) = o.
It results [g1, g2] € Stabg(lo), i-e. [g1,92] = e.

Since any ordered latticeal group G is a G-lattice, from Proposition 2 we
obtain the following result:
Corollary. Any ordered latticeal group complete as lattice is abelian.

Let L be a finite G-lattice, 0 be the initial element of L and 1 be the final
element of L.

Remark. If L = {{; = 0,45,...,4,, = 1} and H; = Stabg(¢;), i = 1,m,

then from Proposition 1, we have G = U H;. Let I be a maximal subset of
i=1
{1,2,...,m} with the property:

G=|JH,
iel
H; L U H;, forany j € I.
ieI\{j}

Then, for any g € G, there exists ny, € IN* such that g™ € ﬂ H;. Since, for
iel

any ¢, ¢’ € L, Stabg(¢) NStabg(¢') C Stabg (¢ A L"), we obtain that there exists

£y € L such that every element of G has a natural power in Stabg(£p).

We suppose that G is a finite group, Stabg(0) = Stabg(1l) = G and let

fr : L — L be the map defined by f1,(¢) = /\ gol, for any £ € L.
geG
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Proposition 3. The map fr is a G-poset homomorphism which has the
following properties:

a) fr(l) <, for any £ € L.
b) Im f; = Fixg(L), where Fixg(L) ={{ € L | go t = £, for any g € G}.
) fi = fr.

Proof. a) Since e o ¢ = ¢, we obtain f1,({) = ¢ A /\ got | </, for any

9€G\{e}
{e L.

b) Let ¢/ € Im fr. Then there exists £ € L such that ¢ = f7(¢). For any
g € G', we have:

got =gofi(t)=go| N\ got| = golgot) = N\ (dg)ol = fr(t) =1,

geG geG geG

therefore ¢’ € Fixg(L).
Conversely, let ¢/ € Fixg(L). Then go ¢/ = ¢, for any g € G. It results
fo@)y= N\ got'= N\ ¢ =20, thus ¢ €Tm fp.
geG geG

c¢) We have f7(¢) = fr(fr(¢ /\gOfL /\fL ), for any

geG geG
¢ € L. Thus f% = fr.

Now, the fact that f; is a G-poset homomorphism is obvious.

Remark. If L is a fully ordered G-lattice, then fr is a G-lattice homo-
morphism. Moreover, the binary relation”~” on L defined by ¢ ~ ¢ if and
only if fr(¢) = fr(¢') is a G-congruence. Therefore, we obtain the G-latice
isomorphism:

L/~ = Fixg(L).

Let n = |Fixg(L)| and Cy,Cy,...,C, be the equivalence classes modulo
P I (6) 1 s aset of representatlves for the equivalence classes (C;);,_17

thenCi—{€€L|fL()—fL(é’i)};é(Z),Z—l,n, CinC; =0, for i # j and

L= U C;. Moreover, for any i € {1,2,...,n}, we have:
i=1

Gol;={goli|geG}CCi
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It results that:

G|
Gol] :‘7< Ci|, i =1,n.
G0 b= Srabay =10 1=
This implies the following inequality:

n 1 n
(+) 613 fsiaberay < 210 = 1

Let Cy,,Ci,, ..., C;, be the classes having an unique element (ie. c¢; =
{,}, j = Lir, where r < n, i, = n and £, = 1). Then, for each s €
{1,2,...,n} \ {i1,i2,...,%r}, we can suppose that ¢, ¢ Fixg(L). We obtain
|G o £ # 1, therefore

<] | 2> Ds

|Stabe (€4)

where p is the smallest prime divisor of |G|. Using the inequality (x), it results
that:

\L| = pn—(p—1)r.
Taking the particular case L = L(G), it obtains the following results:

Corollary 1. If G is a finite group and r is the number of equivalence classes
modulo "~7 having a unique element, then:

IL(G)| = plLo(G)| = (p = D)r,
where p is the smallest prime divisor of |G|.
Corollary 2. If G is a nonabelian simple finite group, then:
IL(G) Zp+1,
where p is the smallest prime divisor of |G].

Remark. Let Min(L) be the set of all minimal elements of L and Ker f;, =
{¢ € L| fr(¢) =0}. Then the following relations hold:

(k) Min(L) C Ker fr, UFixg(L).

Indeed, if /eMin(L) and f7(¢) # 0, then, from the inequalities 0< f1,(£)<¢, we
obtain fr(¢) =, i.e. { € Fixg(L).

Let & be the length of the finite G-lattice L.

Definition 1. We say that L is regular if it satisfies the following conditions:
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(i) All maximal chains of L have the same length.

(ii) For any ¢ € L\ (Ker fr, U {1}) with hp(¢) = p, the equivalence class
modulo ”~” of ¢ has at most k — p elements.

Definition 2. A family U = (u;),_73 of elements of L is called a k-indepen-
dent minimal system if it has the properties:

(i) U € Min(L), U N Fixg(L) # 0.

(ii) For any distinct numbers iy, s, ..., ix € {1,2,...,k}, we have:

Huiy, Vuj | j#i}| =k—1,
iy Vi, Vg | § & {in,ie}} =k -2,

\{uil \/Ui2 \VARE \/Uik_Q \/Uj ‘j ¢ {il,ig, ...,ik,Q}}| =2.

(iii) For any distinct numbers 41, s, ...,ix € {1,2,...,k} (where p € IN*, p <
k), if {wi,, iy, oo wi, } NFixg(L) # 0, then hy (ui, Vg, Voo Vug,) = p.

Proposition 4. Let L be a finite G-lattice of length k. If L is reqular and
it has a k-independent minimal system, then there exists a maximal chain
of L:

O=ay<a1 < --<ap=1,

with a; € Fixg(L), for any i =0, k.

Proof. We prove the statement by induction on k. If £ < 1, the statement is
trivial. Let us assume the statement to hold for k —1 and let U = (u;) i—TF be
a k-independent minimal system of L. Since U NFixg (L) # (), we can suppose
that uy € Fixg(L). Let L' = [ug,1] = {€ € L | up, < £ < 1}. L' is a finite
G-lattice of length £ — 1. For any ¢ € L'\ (Ker fr- U {1}) with hp/ (¢) = p,
we have hr(¢) = p+ 1, therefore the equivalence class modulo ”~” of £ has at
most k — 1 — p elements. It results that L’ is regular.

Now we prove that V = (vi)i:m, where v; = u;Vuy forany i = 1,k — 1,
is a (k — 1)-independent minimal system of L’.

Since uy € Fixg(L), we have hp(v;) = 2,4 = 1,k — 1, thus hp/(v;) = 1,
i=1,k—1,ie. V CMin(L'). If we suppose VNFixg(L') = (), then, using the
remark (#*), we obtain that V is containing in the equivalence class modulo
7 A ” of uy has at least

~7 of ug. It results that the equivalence class modulo 7~
k elements (u and v;, ¢ = 1,k — 1). This contradicts the assumption that L




ACTIONS OF GROUPS ON LATTICES 141

is regular. The fact that V satisfies the property (ii) of Definition 2 is obvious.
For the property (iii), let the distinct numbers i1, 42, ...,4, € {1,2,....,k — 1}
(where p € IN*, p < k —1). We have hp(vi, Vvi, V- Vuy,) = hp(up Vg, V
Uiy Voo V) = hp(ug Vg, Vugy, Voro-Vau, ) —1=(p+1)—1=p.

From inductive hypothesis, it results that there exists a maximal chain of
L

U =a1 < ag < --- < ap =1,

with a; € FiXG(L/), 1= 1,7/{ Thus

O=agy<a1 < ---<arp=1

is a maximal chain of L, with a; € Fixg(L), i =0, k.

Corollary. The symmetric group of degree 3 X3 and the dihedral group of
order 8 Dg have principal series of subgroups.

Proof. We have X3 = {e,01,09,03,7,7%} (where o1 = (2 3), 0o = (1 3),
o3 =(12)and 7 = (23 1)) and Dg = {1, p, p?, p, ¢, pe, p*c, p>c} (where p* =
g2 =1 and ep = p3¢). We obtain L(X3) = {Hy = {e}, H1 = {e,01}, Hy =
{e,02}, H3 = {e,03}, Hy = {e, 7,7}, Hs = Y3} and L(Dg) = {H] = {1},
Hy ={l,e}, Hy = {17/725}’ Hj = {1,P2}, Hy = {1,pe}, Hy = {1>p35}a Hg =
{1,0% pe, pe}, Hy = {1,p,0°,p°}, Hy = {1,p% pe.p’e}, Hy = Ds}. It is a
simple exercise to verify that the Y3—lattice L(X3) (respectively the Dg—lattice
L(Dg)) is regular and that U = {Hj, Hy} (vespectively U’ = {H}, H;, H}})
is a 2-independent minimal system of L(X3) (respectively a 3-independent
minimal system of L(Dsg)). Now the statement results from Proposition 4.

2.2 On a property of finite nilpotent groups
Let (G, -, €) be a group.

Definition 1. Let L be a G-lattice having the initial element 0 and (L;);c;s
be a finite family of G—sublattices of L. We say that L is the direct V-sum
v

of the family (L;);er (and we denote this by L = @ L;) if the following two
il
equalities hold:

i) L=\/Li.

el

ii) Lj A \/Li = {0}, for any j € I.
i€l

i#]
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Examples. 1) Let n = p{'p3*..pp*, be the decomposition of the natural
number n as a product of prime factors. If, for any m € IN*, we denote by
L,, the lattice of all natural divisors of m and we consider the set G = {o €
Aut(Ly) | o(Lyei) = Lyos, i = 1,k}, then G is a group, Ly is a G-lattice
(where 0 od = o(d), for any (0,d) € G x L,) and Ly is a G-sublattice of Ly,
i =1, k. It is easy to see that L, is the direct V-sum of the family (L), 15

2) Let m > 2, n > 2 be two natural numbers, f : Z,, — Aut(Z,) be a
group homomorphism and ko = f (1)(1) We denote by S the semidirect prod-
uct of Z,, and Z,, with respect to the homomorphism f and by G, respectively
H the images of Z,,, respectively Z, through the group homomorphisms:

o1: By — S, 01(Z) = (z,0), for any T € Zy,,
respectively
09 Uy — S, o2() = (0,9), for any § € Z,.

If L(S), L(G) and L(H) are the subgroup lattices of S, G, respectively H, then
we have L(S) = L(G) é L(H) if and only if (m,n) = 1 and ko = 1(modn)
(see [10], Proposition 3).

Proposition 1. If L is a distributive G-lattice having the initial element 0 and

(Ls)icr is a finite family of G—sublattices of L such that L; A \/ L; | ={0},
i€l
i

for any j € I, then the following two conditions are equivalent:

V
i) L=@PLi
iel
i) Every element £ € L can be written uniquely as \/ l;, where ¢; € L;, for

icl
any i € 1.

v
Proof. i)=ii) Since L = EB L;, we have L = \/ L;, therefore every element

iel icl
¢ € L can be written as \/E,—, where ¢; € L;, i € 1. If { = \/Ei = \/f; with
iel i€l iel

iyl € Li, i € I, then, for any j € I, we have £ = (i Nl = 0 A (\/&) =
i€l
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GAGY NG| =W@ag) v g na [\ ]| =0 nt, thus £ < ¢;. In
i i)

the same way, we obtain ¢; < ¢/, therefore £, = £;, j € I.
ii)==1) Obvious.
Next aim is to establish connections between the direct product of

G-lattices and the direct V-sum of G-sublattices.

Proposition 2. If (L;)icr is a finite family of G-lattices having initial ele-
ments (denoted all by 0), 0 € Fixg(L;), i € I, and L is the direct product
of the family (L;);cr, then there exists a family (L})ier of G—sublattices of L
which satisfies the following properties:

\%
i) L=EL.
iel
ii) L} = L; (isomorphism of G-lattices), for any i € I.
Proof. It is easy to see that the sets L) = {(a;)jer € L | a; = 0, for any
\%

j € I\{i}}, ¢ € I, are G-sublattices of L and L = @ L. Moreover, the maps
iel

fl(gl) = (aj)jgl, where a; = év and a; = O7 for ] # ’L'7

are isomorphism of G-lattices, i € I.

Let L be a finite G-lattice with the initial element denoted by 0 such that
0 € Fixg(L) ={f € L|gol =1/ forany g € G}. If (¢;),_1% is a family of
elements of L, then we make the following notations:

Li=1[0,0]={¢cL|0<t<4;),
GoL;={gol|geqG, Le L},

where i € {1,2,...,k}.

Definition 2. The family (¢;),_17 is called a mazimal system of L if it satisfies
the properties:

k
i) L= \/GoLi.
=1
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k
i) GoL; A \/GOLZ- = {0}, for any j = 1, k.

i=I
i#£]

Remark. If (Ei)i:ﬁ is a maximal system of L, then, for ¢ € {1,2,...,k}, the
sublattice L; of L is not necessarily a G—sublattice. A sufficient condition for
this fact holds is ¢; € Fixg(L). In the case when (¢;),_17 C Fixg(L), we have

: =
GoL;=L;foranyi=1,kand L = @ L;.

i=1k
Definition 3. Let U,V € L(G).

(i) We say that U and V form a permutable pair if [UUV] = UV = VU
(where [U U V] denotes the subgroup of G generated by U U V).
(ii) We say that U and V form a modular pair if
WnUUV]=[UUWnV)] forany W € L(G) with U CW
and
WnUUuV]=[VUWnU)| for any W € L(G) with V C W.
Remarks. 1) Any permutable pair of subgroups is a modular pair (see [7],
Theorem 5, page 5).

2) If the group G is finite and it satisfies the property tht any two sub-
groups U,V € L(G) with (JU],|V]) = 1 form a permutable pair, then, for any
Hiy,Hy,...,Hy, € L(G) with (|H,|, |H,|) =1, i # j, we have:

k
H\Hs..H), = [U H] € L(G)

and

k
|HyHy..Hy| = ][ |Hil.
i=1

Proposition 3. For a finite group G which satisfies the property that any
two subgroups U,V € L(G) with (|U|,|V]) = 1 form a permutable pair, the
G-lattice L(G) has a mazimal system.

Proof. Let n = |G|. If n = p{"'p52...pp*, is the decomposition of n as a
product of prime factors, then, for any i = 1, k, let H; be Sylow p;,—subgroup
of G.
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We prove that {Hi, Hs, ..., Hi} is a maximal system for L(G). Let H €
L(G) and m = |H|. Then m/n, therefore there exist the numbers §;, € IN,

B; < ay, i = 1,k, such that m = pllpzz...pfk. For any i = 1,k, let U; be a
Sylow p;—subgroup of H and, using the Theorems of Sylow, let z; € G such
-1

that U; < H}', i.e. U € [{e}, H;] (where e is the identity of G). From

_IN T N T Z1\ Tk
Remark 2), we obtain H = UU...Uy = (Uf') ' (v57) (i)
thus:

k
L(G) = \/ Go[{e}, Hi].

i=1

k
Let j € {1,2,...,k} and K € G o [{e}, H;] A \/ Go[{e},H;] | . Then K =
2
k

ij A \/ V¥ | (where Vy < Hy and z, € G, for any s = 1,k).

2
k
Since | [V;7], \/ V¥ | =1, it follows that K = {e}, thus:

i=1

i#]

k
Gol{e}, HIn [ \/ Gol{e}, Hi] | = {e}.
iZi
Remark. Let G be a finite group of order n, n = pi" p5?...pp* be the decom-

position of n as a product of prime factors and H; be a Sylow p;,—subgroup of
G,i=1,k. If (H;),_1% is a maximal system of L(G), then, for any z; € G,

i =1,k, (H"),_17 is a maximal system of L(G).

Let L be a modular finite G-lattice with the initial element denoted by 0
and (¢;),_73 be a maximal system of L.

Lemma. The following equality holds:

k k
hi, (\/ el) => hr(l).
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Proof. We prove the above equality by induction on k. For k = 2, we have
hL(ﬁl\/gg) = hL(fl)-l—hL(KQ)—hL(fl/\gg) = hL(El)-f—hL(fg)—hL(O) = hL(€1)+
k

hr(€2). Let us assume the equality to hold for k¥ = 1. We obtain hr, \/ 4;

L<(]:yllek>wj>_m(\/z>+m ) — ((\/e)wc):l
=§hL(€)+hL(€k ZhL

For any i=1,k, let o; = hL(Go L;), (i.e. oy = max{hp(go¥) | g€ G,
e L;}), No,={0,1,...,0;} and h; : G o L; — IN,, be the restriction of the
height function hy on the set G o L;. We suppose that is well defined the

function:
k

h:L— ><]Nai,

=1

(\/ giogn> (h1(f11), ha(£22), . i (Lri)),

where g; € G, l;; € Ly, for any i = 1,k (it is easy to see that a sufficient
condition for this fact holds is 7L = distributive lattice”).

Proposition 4. The function b’ is onto. Moreover, for any (81, Ba; -, B)) €
k

>< IN,,, we have:

k
(A) (B, By ey Br) N {e €L|hy(t)= Zﬁ’} £ 0.

Proof. For each i € {1,2,...,k}, the function h; is onto.
k

Let (81,085, 0%) € ><]Na1. and ¢;; € G o L; such that h;(¢;) = 5,
i=1

i=1,k. Using the above lemma, it is a simple exercise to verify that

k
\/En6 h/ ﬂlaﬁQaaﬂk)m{geLhL(g)Z/Bl}
i=1

Proposition 5. Let n = pi"'p5?..pp* be the decomposition of the natural
number n as a product of prime factors, Ly, be the lattice of all natural divisors
of n and G be a finite group of order n which satisfies the following properties:
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(i) L(G) is a modular lattice.

(i) There exists a mazimal system (H;),_1% of L(G) such that H; is a Sylow
pi—subgroup of G, i =1, k.

k k
(iii) For any H € L(G), |H| = pr implies hrqy(H) > in.
i=1

i=1

Then the function ord : L(G) — Ly, ord(H) = |H|, for any H € L(Q), is
onto.

Proof. If m € L,, then m = pfpoQ...pf’“, where 8, € IN, 8, < oy, 1 = 1, k.
For each i € {1,2,....,k}, let U; C H; be a subgroup of G having order pfi.

k
Since (H;),_77 is a maximal system of L(G), it results that hq) <\/ U,;) =

=1
hra (

k

Ju

i=1

k
) = ZhL(G)(Ui) = Zﬁi‘ This fact implies the equality
i=1

i=1

k k k
ord ( U U; ) = prl = m. Indeed, if we suppose that ord ( U U; ) #+
i=1 i=1 i=1
k k
m, then 0rd< UUi ) = szi, where 3, < v, < «;, for any ¢« = 1,k
=1 :

i=1
and there exists i9 € {1,2,...,k} such that 3, <, (this fact holds because
k k
e o
i=1
k
q # ¢'). From property (iii), we obtain hr,q) ( lU Ui] > > Z%‘ > Zﬂi+1;

i=1
contradiction.

U, < (so that |U,|/ ) for any ¢ = 1,k and (|U,], |Uy|=1 for

Corollary 1. For any finite group G of order n which satisfies the property
that any two subgroups U,V € L(G) with (JU],|V]) = 1 form a permutable
pair, the function ord : L(G) — Ly, is onto.

Proof. The statement results from Proposition 3 and Proposition 5 or, di-
rectly, making the next reasoning.

Let n = p"p52...pp* be the decomposition of n as a product of prime
factors and m € L,,. Then m/n, therefore m = pflp’gz...pf’“, where 3, € N,
B; < aj, i =1,k For each i € {1,2,...,k}, let U; be a subgroup of G having
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k
the order pf From hypothesis, it results tht the subgroup U U;| € L(G)

i=1
has the order m.

Corollary 2. For any finite nilpotent group G of order n, the function ord :
L(G) — L, is onto.

Proof. The statement results from Corollary 1, using the fact that, for a finite
nilpotent group, any two subgroups of relative prime orders form a permutable
pair.

Corollary 3. For any finite abelian group G of order n, the function ord :
L(G) — L, is onto.

Proof. Since any abelian group is nilpotent, the statement results from Corol-
lary 2.
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