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Functional Model of Dissipative Fourth Order
Differential Operators

Hüseyin TUNA

Abstract

In this paper, maximal dissipative fourth order operators with equal
deficiency indices are investigated. We construct a self adjoint dilation
of such operators. We also construct a functional model of the maximal
dissipative operator which based on the method of Pavlov and define
its characteristic function. We prove theorems on the completeness of
the system of eigenvalues and eigenvectors of the maximal dissipative
fourth order operators.

1 Introduction

The spectral analysis of non-selfadjoint operators is based on ideas of the func-
tional model and dilation theory rather than on traditional resolvent analysis
and Riesz integrals. Using a functional model of a non-selfadjoint operator as a
principal tool, spectral properties of such operators are investigated. The func-
tional model of non-selfadjoint dissipative operators plays an important role
within both the abstract operator theory and its more specialized applications
in other disciplines. The construction of functional models for dissipative op-
erators, natural analogues of spectral decompositions for selfadjoint operators
is based on Sz. Nagy-Foias dilation theory [19] and Lax-Phillips scattering the-
ory [18]. Pavlov’s approach ([21-23]) to the model construction of dissipative
extensions of symmetric operators was followed by Allahverdiev in his works
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238 Hüseyin TUNA

[1-5] and some others, and by the group of authors [6-8], where the theory
of the dissipative Schrödinger operator on a finite interval was applied to the
problems arising in the semiconductor physics. In [9-12], Pavlov’s functional
model was extended to (general) dissipative operators which are finite dimen-
sional extensions of a symmetric operator, and the corresponding dissipative
and Lax-Phillips scattering problems were investigated in some detail.

The organization of this document is as follows: In Section 2, we construct
a space of boundary values of the minimal operator and describe all maximal
dissipative, maximal accretive, selfadjoint and other extensions of dissipative
fourth order differential operators in terms of boundary conditions. Further-
more, we construct a selfadjoint dilation of the dissipative fourth order differ-
ential operator. In Section 3, we present its incoming and outgoing spectral
representations which makes it possible to determine the scattering matrix of
the dilation according to the Lax and Phillips scheme [17,18]. Later, a func-
tional model of the dissipative fourth order differential operator is constructed
by methods of Pavlov [21-23] and define its characteristic functions. Finally, in
Section 4, we proved a theorem on completeness of the system of eigenvectors
and associated vectors of dissipative operators under consideration. In the
present paper, we extend the results of [1-5] to the more general eigenvalue
problem for fourth order differential operators.

2 Selfadjoint Dilation of Dissipative Fourth Order Dif-
ferential Operators

We will consider the differential expression

l (y) = y(4) + q (x) y, 0 ≤ x < +∞ (2.1)

where q (x) is a real continuous function in [0,∞).
Let L0 denote the closure of the minimal operator generated by (2.1) and

by D0 its domain. Besides, we denote by the set of all functions y (x) from
L2 (0,∞) whose first three derivatives are locally absolutely continuous in
[0,∞) and l (y) ∈ L2 (0,∞) ; D is the domain of the maximal operator L.
Furthermore L = L∗0 [20].

Suppose that q (x) be a function such that the operator L0 has defect
index (4, 4) . Let v1 (x) , v2 (x) , v3 (x) and v4 (x) be four linearly independent
solutions of the equation l (y) = 0 satisfying the conditions at x = 0:

v1 (0) = 1, v′1 (0) = 0, v′′1 (0) = 0, v′′′1 (0) = 0,

v2 (0) = 0, v′2 (0) = 1, v′′2 (0) = 0, v′′′2 (0) = 0,

v3 (0) = 0, v′3 (0) = 0, v′′3 (0) = 1, v′′′3 (0) = 0,

v4 (0) = 0, v′4 (0) = 0, v′′4 (0) = 0, v′′′4 (0) = 1,
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and their Wronskian equals to one. Since L0 has defect index (4, 4), then
v1, v2, v3, v4 ∈ L2 (0,∞) .

Let’s define by Γ1, Γ2 the linear maps from D to C4 by the formula

Γ1f =


f (0)
f ′ (0)

[f, v2]∞
[f, v1]∞

 , Γ2f =


f ′′′ (0)
f ′′ (0)

[f, v4]∞
[f, v3]∞

 (2.2)

where

[y, z]x = [y′′′ (x) z (x)−y (x) z′′′ (x)]− [y′′ (x) z′ (x)−y′ (x) z′′ (x)], (0 ≤ x <∞)

Lemma 1. For arbitrary y, z ∈ D

(Ly, z)L2 − (y, Lz)L2 = (Γ1y,Γ2z)C4 − (Γ2y,Γ1z)C4 .

Proof. We know that every f, g ∈ D

[f, g] (x) =

∣∣∣∣ [v2, g]x [g, v4]x
[v2, f ]x [f, v4]x

∣∣∣∣+

∣∣∣∣ [v1, g]x [g, v3]x
[v1, f ]x [f, v3]x

∣∣∣∣ (2.3)

(see [13]). For every y, z ∈ D, we have Green’s formula

(Ly, z)L2 − (y, Lz)L2 = [y, z]∞ − [y, z]0.

Then

(Γ1y,Γ2z)C4 − (Γ2y,Γ1z)C4 = y (0) z′′′ (0)− z (0) y′′′ (0)

+y′′ (0) z′ (0)− z′′ (0) y′ (0)

+[y, v2]∞[z, v4]∞ − [z, v2]∞[y, v4]∞

+[y, v1]∞[z, v3]∞ − [z, v1]∞[y, v3]∞.

From the conditions (2.3), we have

(Γ1y,Γ2z)C4 − (Γ2y,Γ1z)C4 = [y, z]∞ − [y, z]0.

Hence
(Ly, z)L2 − (y, Lz)L2 = (Γ1y,Γ2z)C4 − (Γ2y,Γ1z)C4 .

Lemma 2. For any complex numbers α0, α1, α2, α3, β0, β1, β2 and β3,
there is a function y ∈ D satisfying

y (0) = α0, y
′ (0) = α1, y

′′ (0) = α2, y
′′′ (0) = α3, (2.4)

[y, v1]∞ = β0, [y, v2]∞ = β1, [y, v3]∞ = β2, [y, v4]∞ = β3.
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Proof. Let f be an arbitrary element of L2 (0,∞) satisfying followings:

(f, v1)L2 = β0 − α3, (f, v3)L2 = β2 − α1, (2.5)

(f, v2)L2 = β1 + α2, (f, v4)L2 = β3 + α0 .

There is such a f, even among the linear combinations of v1, v2, v3 and v4.
If we set f = c1v1 + c2v2 + c3v3 + c4v4 then conditions (2.5) are a system
of equations in the constants c1, c2, c3, c4 whose determinant is the Gram
determinant of the linearly independent functions v1, v2, v3, v4 and is there-
fore nonzero. Let y (x) denote the solution of l (y) = f satisfying the initial
conditions y (0) = α0, y

′ (0) = α1, y
′′ (0) = α2, y

′′′ (0) = α3. We suppose that
y (x) is the desired element. Applying Green’ formula to y (x) and vj , we get

(f, vj)L2 = (l (y) , vj)L2 = [y, vj ]∞ − [y, vj ]0, j = 1, 2, 3, 4.

But l (vj) = 0 (j = 1, 2, 3, 4) . Since y (0) = α0, y
′ (0) = α1, y

′′ (0) =
α2, y

′′′ (0) = α3, we have

[y, vj ]0 =


α3, for j = 1
−α2, for j = 2
α1, for j = 3
−α0, for j = 4

 .

Hence

(f, v1)L2 = [y, v1]∞ − α3, (f, v2)L2 = [y, v2]∞ + α2

(f, v3)L2 = [y, v3]∞ − α1, (f, v4)L2 = [y, v4]∞ + α0.

According to (2.5), we have

[y, v1]∞ = β0, [y, v2]∞ = β1, [y, v3]∞ = β2, [y, v4]∞ = β3.

We recall that a triple (H,Γ1,Γ2) is called a space of boundary values of
a closed symmetric operator A on a Hilbert space H if Γ1,Γ2 are linear maps
from D (A∗) to H with equal deficiency numbers such that:

i) Green’s formula is valid

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H , f, g ∈ D (A∗) .

ii) For any F1, F2 ∈ H, there is a vector f ∈ D (A∗) such that Γ1f =
F1, Γ2f = F2 ([14], [15]).
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Theorem 1. The triple
(
C4,Γ1,Γ2

)
defined by (2.2) is a boundary spaces of

the operator L0.

Proof. First condition of the definition of a space of boundary value follows
from Lemma 1 and second condition follows from Lemma 2.

Corollary 1. For any contraction K in C4 the restriction of the operator L
to the set of functions y ∈ D satisfying either

(K − I) Γ1y + i (K + I) Γ2y = 0 (2.6)

or
(K − I) Γ1y − i (K + I) Γ2y = 0 (2.7)

is respectively the maximal dissipative and accretive extension of the operator
L0. Conversely, every maximal dissipative (accretive) extension of the operator
L0 is the restriction of L to the set of functions y ∈ D satisfying (2.6) ( (2.7)
), and the extension uniquely determines the contraction K. Conditions (2.6)
( (2.7) ), in which K is an isometry describe the maximal symmetric exten-
sions of L0 in L2 (0,∞). If K is unitary, these conditions define selfadjoint
extensions.

In particular, the boundary conditions

y′′′ (0) + h1y (0) = 0, (2.8)

y′ (0) + h2 y
′′ (0) = 0, (2.9)

[y, v2]∞ − h3[y, v4]∞ = 0, (2.10)

[y, v1]∞ − h4[y, v3]∞ = 0 (2.11)

with Imh1 ≥ 0 or h1 = ∞, Imh2 ≥ 0 or h2 = ∞, Imh3 ≥ 0 or h3 = ∞ and
Imh4 ≥ 0 or h4 =∞ (Imh1 = 0 or h1 =∞, Imh2 = 0 or h2 =∞, Imh3 = 0
or h3 = ∞ and Imh4 = 0 or h4 = ∞) describe the maximal dissipative
(selfadjoint) extensions of L0 with separated boundary conditions.

Now, we study the maximal dissipative operator LK , where K is the strict
contraction in C4 generated by the expression l (y) and boundary condition
(2.6).

Let us define the “incoming” and “outgoing” subspaces D− = L2 (−∞, 0)
and D+ = L2 (0,∞). The orthogonal sum H=D− ⊕ H ⊕ D+ is called main
Hilbert space of the dilation.

In the space H, we consider the operator LG on the setD (LG) , its elements
consisting of vectors w = 〈ϕ−, y, ϕ+〉, generated by the expression

LG〈ϕ−, ŷ, ϕ+〉 = 〈i
dϕ−
dξ

, l (y) , i
dϕ+

dξ
〉 (2.12)
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satisfying the conditions: ϕ− ∈W 1
2 (−∞, 0) , ϕ+ ∈W 1

2 (0,∞) , y ∈ H, y′′′ (0)+
h1y (0) = 0, y′ (0) + h2 y′′ (0) = 0, [y, v2]∞ − h3[y, v4]∞ = 0, [y, v1]∞ −
G[y, v3]∞ = Cϕ− (0) , [y, v1]∞ −G[y, v3]∞ = Cϕ+ (0) , where W 1

2 are Sobolev
spaces and C2 := 2 ImG, C > 0.

Theorem 2. The operator LG is selfadjoint in H and it is a selfadjoint dila-
tion of the operator L̃G (= LK) .

Proof. Let f, g ∈ D (LG) , f = 〈ϕ−, y, ϕ+ 〉 and g = 〈ψ−, z, ψ+〉. Then we
have

(LGf, g)H − (f,LGg)
H

=
(
LG〈ϕ−, y, ϕ+〉, 〈ψ−, z, ψ+〉

)
−
(
〈ϕ−, y, ϕ+〉,LG〈ψ−, z, ψ+〉

)

=

0∫
−∞

iϕ´
−ψ−dξ + (l (y) , z)H +

∞∫
0

iϕ
′

+ψ+dξ

−
0∫
−∞

iψ´
−ϕ−dξ − (y, l (z))H −

∞∫
0

iψ
′

+ϕ+dξ

=

0∫
−∞

iϕ´
−ψ−dξ + [y, z]∞ +

∞∫
0

iϕ
′

+ψ+dξ

−
0∫
−∞

iψ´
−ϕ−dξ − [y, z]0 −

∞∫
0

iψ
′

+ϕ+dξ

= iψ− (0)ϕ− (0)− iϕ+ (0)ψ+ (0) + [y, z]∞ − [y, z]0.

By direct computation, we obtain

iψ− (0)ϕ− (0)− iϕ+ (0)ψ+ (0) + [y, z]∞ − [y, z]0 = 0.

Thus, LG is a symmetric operator. If we show that LG ⊆ L∗G, we prove
that LG is selfadjoint. Take g = 〈ψ−, z, ψ+〉 ∈ D (L∗G) . Let L∗Gg = g∗ =
〈ψ∗−, z∗, ψ

∗
+〉 ∈ H, so that

(LGf, g)H = (f,L∗Gg)H = (f, g∗)H . (2.13)

It is easy to show that ψ− ∈ W 1
2 (−∞, 0) , ψ+ ∈ W 1

2 (0,∞) , g ∈ D (LG) and
g∗ = LGg, by choosing elements with suitable components as the f ∈ D (LG)
in (2.13). Then we have

(LGf, g)H = (f,LGg)H
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for all f ∈ D (L∗G) . Furthermore, g ∈ D (L∗G) satisfies the conditions

[y, v1]∞ −G[y, v3]∞ = Cϕ− (0) ,

[y, v1]∞ −G[y, v3]∞ = Cϕ+ (0) .

Hence, D (L∗G) ⊆ D (LG) , i.e., LG = L∗G.
The selfadjoint operator LG generates on H a unitary group

Ut = exp (iLGt) (t ∈ R+ = (0,∞)). Let denote by P : H → H and
P1 : H → H the mapping acting according to the formulae P : 〈ϕ−, y, ϕ+〉 → ŷ
and P1 : y → 〈0, y, 0〉. Let Zt := PUtP1, t ≥ 0, by using Ut. The family
{Zt} (t ≥ 0) of operators is a strongly continuous semigroup of completely
nonunitary contraction on H. Let us denote by BG the generator of this
semigroup: BG y = lim

t→+0
(it)
−1

(Zty − y) . The domain of BG consists of all

the vectors for which the limit exists. The operator BG is dissipative. The
operator LG is called the selfadjoint dilation of BG (see [5, 16, 19]). We show

that BG = L̃G, hence LG is selfadjoint dilation of BG. To show this, it is
sufficient to verify the equality

P (LG − λI)
−1
P1y =

(
L̃G − λI

)−1

y, y ∈ H, Imh < 0. (2.14)

For this purpose, we set (LG − λI)
−1
P1y = g = 〈ψ−, z, ψ+〉 implies that

(LG − λI) g = P1y, and hence l (z) − λz = y, ψ− (ξ) = ψ− (0) e−iλξ and
ψ+ (ξ) = ψ+ (0) e−iλξ. Since g ∈ D (LG) , then ψ− ∈ W 1

2 (−∞, 0) , it follows
that ψ− (0) = 0, and consequently z satisfies the boundary condition [y, v1]∞−
G[y, v3]∞ = 0. Therefore z ∈ D

(
L̃G

)
, and since point λ with Imλ < 0 cannot

be an eigenvalue of dissipative operator, then z =
(
L̃G − λI

)−1

y. Thus

(LG − λI)
−1
P1y = 〈0,

(
L̃G − λI

)−1

y, C−1
(
[y, v1]∞ −G[y, v3]∞

)
e−iλξ〉

for y and Imλ < 0. On applying the mapping P, we obtain (2.14) , and

(
L̃G − λI

)−1

= P (LG − λI)
−1
P1 = −iP

∞∫
0

Ute
−iλtdtP1

= −i
∞∫
0

Zte
−iλtdt = (BG − λI)

−1
, Imλ < 0,

so this clearly shows that L̃G = BG.
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3 Functional Model of Dissipative Fourth Order Opera-
tor

The unitary group {Ut} has an important property which makes it possible
to apply it to the Lax-Phillips [18]. It has orthogonal incoming and outgo-
ing subspaces D− = 〈L2 (−∞, 0) , 0, 0〉 and D+ = 〈0, 0, L2 (0,∞)〉 having the
following properties:

(1) UtD− ⊂ D−, t ≤ 0 and UtD+ ⊂ D+, t ≥ 0;
(2) ∩

t≤0
UtD− = ∩

t≥0
UtD+ = {0} ;

(3) ∪
t≥0

UtD− = ∪
t≤0

UtD+ = H;

(4) D− ⊥ D+.
Property (4) is clear. To be able to prove property (1) for D+ (the proof

for D− is similar), we set Rλ = (LG − λI)
−1
. For all λ, with Imλ < 0 and

for any f = 〈0, 0, ϕ+〉 ∈ D+, we have

Rλf = 〈0, 0,−ie−iλξ
ξ∫
0

eiλsϕ+ (s) ds〉.

As Rλf ∈ D+. Therefore, if g ⊥ D+, then

0 = (Rλf, g)H = −i
∞∫
0

e−iλt (Utf, g)H dt, Imλ < 0.

which implies that (Utf, g)H = 0 for all t ≥ 0. Hence, for t ≥ 0, UtD+ ⊂ D+,
and property (1) has been proved.

In order to prove property (2), we define the mappings P+ : H→ L2 (0,∞)
and P+

1 : L2 (0,∞) → D+ as follows P+ : 〈ϕ−, ŷ, ϕ+〉 → ϕ+ and P+
1 : ϕ →

〈0, 0, ϕ〉, respectively. We take into consider that the semigroup of isome-
tries U+

t := P+UtP
+
1 (t ≥ 0) is a one-sided shift in L2 (0,∞) . Indeed, the

generator of the semigroup of the one-sided shift Vt in L2 (0,∞) is the differ-

ential operator i
(
d
dξ

)
with the boundary condition ϕ (0) = 0. On the other

hand, the generator S of the semigroup of isometries U+
t (t ≥ 0) is the oper-

ator Sϕ = P+LGP
+
1 ϕ = P+LG〈0, 0, ϕ〉 = P+〈0, 0, i( ddξ )ϕ〉 = i( ddξ )ϕ, where

ϕ ∈W 1
2 (0,∞) and ϕ (0) = 0. Since a semigroup is uniquely determined by its

generator, it follows that U+
t = Vt, and, hence,

∩
t≥0

UtD+ = 〈0, 0, ∩
t≤0

VtL
2 (0,∞)〉 = {0} ,

so the proof is completed.
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Definition 1. The linear operator A with domain D (A) acting in the Hilbert
space H is called completely nonselfadjoint (or simple) if there is no invari-
ant subspace M ⊆ D (A) (M 6= {0}) of the operator A on which the restriction
A to M is selfadjoint.

To prove property (3) of the incoming and outgoing subspaces, let us prove
following lemma.

Lemma 3. The operator L̃G is completely noselfadjoint (simple).

Proof. Let H´⊂ H be a nontrivial subspace in which L̃G induces a selfadjoint

operator L̃´
G with domain D

(
L̃´
G

)
= H´∩ D

(
L̃G

)
. If f ∈ D

(
L̃´
G

)
,then

f ∈ D
(
L̃∗G

)
and

0 =
d

dt
‖eiL̃

´
Gtf‖2H =

d

dt

(
eiL̃

´
Gtf, eiL̃

´
Gtf
)
H

= −C2
(

[eiL̃
´
Gtf, v3]

)
.

Consequently, we have [eiL̃
´
Gtf, v3] = 0. Using this result with boundary con-

dition [y, v1]∞ − G[y, v3]∞ = 0, we have [y, v1]∞ = 0, i.e., y (λ) = 0. Since
all solutions of l (y) = λy belong to L2 (0,∞) , from this it can be concluded

that the resolvent Rλ

(
L̃G

)
is a compact operator, and the spectrum of L̃G is

purely discrete. Consequently, by the theorem on expansion in the eigenvec-
tors of the selfadjoint operator L̃´

G, we obtain H´ = {0} . Hence the operator

L̃G is simple. The proof is completed.

Let us define H− = ∪
t≥0

UtD−, H+ = ∪
t≤0

UtD+.

Lemma 4. The equality H− +H+ = H holds.

Proof. Considering property (1) of the subspace D+, it is easy to show that
the subspace H´ = H � (H− +H+) is invariant relative to the group {Ut}
and has the form H´ = 〈0, H´, 0〉, where H´ is a subspace in H. Therefore, if
the subspace H´

(
and hence also H

)́
were nontrivial, then the unitary group{

U´
t

}
restricted to this subspace would be a unitary part of the group {Ut},

and hence, the restriction L̃´
G of L̃G to H´ would be a selfadjoint operator in

H´. Since the operator L̃G is simple, it follows that H´ = {0} . The lemma is
proved.
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Assume that ϕ (x, λ) and ψ (x, λ) are solutions of l (y) = λy satisfying the
conditions

ϕ′ (0, λ) = 1, ϕ (0, λ) = 0, ψ′ (0, λ) = 0, ψ (0, λ) = 1,

[ϕ, v4]∞ = − 1√
1 + h2

3

, [ϕ, v2]∞ =
h3√

1 + h2
3

,

[ψ, v4]∞ =
h3√

1 + h2
3

, [ψ, v2]∞ =
1√

1 + h2
3

.

Let us adopt the following notations:

k (λ) := − [ϕ, v1]∞
[ψ, v3]∞

, M (λ) = − [ψ, v3]∞
[ϕ, v3]∞

,

SG (λ) =
M (λ) k (λ)−G
M (λ) k (λ)−G

. (3.1)

M (λ) is a meromorphic function on the complex plane C with a countable
number of poles on the real axis. Further, it is possible to show that the
function M (λ) possesses the following properties: Im M (λ) ≤ 0 for all Imλ 6=
0, and M∗ (λ) = M

(
λ
)

for all λ ∈ C, except the real poles M (λ) .
We set

U−λ (x, ξ, ζ) =

〈e−iλξ, αM (λ) [(M (λ) k (λ)−G) [ψ, v3]∞]
−1
ϕ (x, λ), SG (λ) e−iλζ〉.

We note that the vectors U−λ (x, ξ, ζ) for real λ do not belong to the space H.
However, U−λ (x, ξ, ζ) satisfies the equation LU = λU and the corresponding
boundary conditions for the operator Lh.

By means of vector U−λ (x, ξ, ζ) , we define the transformation F− : f →
∼
f− (λ) by

(F−f) (λ) :=
∼
f− (λ) :=

1√
2π

(f, Uλ)H

on the vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ− (ξ) , ϕ+ (ζ) , y (x) are smooth,
compactly supported functions

Lemma 5. The transformation F− isometrically maps H− onto L2 (R). For
all vectors f, g ∈ H− the Parseval equality and the inversion formulae hold:

(f, g)H =

(
∼
f−,

∼
g−

)
L2

=

∞∫
−∞

∼
f− (λ)

∼
g− (λ)dλ, f =

1√
2π

∞∫
−∞

∼
f− (λ)Uλdλ,

where
∼
f− (λ) = (F−f) (λ) and

∼
g− (λ) = (F−g) (λ) .
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Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ−, 0, 0〉, with Paley-Wiener theo-
rem, we have

∼
f− (λ) =

1√
2π

(f, Uλ)H =
1√
2π

0∫
−∞

ϕ− (ξ) e−iλξdξ ∈ H2
−

and by using usual Parseval equality for Fourier integrals,

(f, g)H =

∞∫
−∞

ϕ− (ξ)ψ− (ξ)dξ =

∞∫
−∞

∼
f− (λ)

∼
g− (λ)dλ = (F−f, F−g)L2 .

Here, H2
± denote the Hardy classes in L2 (R) consisting of the functions ana-

lytically extendible to the upper and lower half-planes, respectively.
We now extend to the Parseval equality to the whole of H−. We con-

sider in H− the dense set of H´
− of the vectors obtained as follows from the

smooth, compactly supported functions in D− : f ∈ H´
− if f = UT f0,

f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞0 (−∞, 0) , where T = Tf is a nonnegative num-
ber depending on f . If f, g ∈ H´

−, then for T > Tf and T > Tg we have
U−T f, U−T g ∈ D−, moreover, the first components of these vectors belong
to C∞0 (−∞, 0) . Therefore, since the operators Ut (t ∈ R) are unitary, by the
equality

F−Utf =
(
Utf, U

−
λ

)
H

= eiλt
(
f, U−λ

)
H

= eiλtF−f,

we have

(f, g)H = (U−T f, U−T g)H = (F−U−T f, F−U−T g)L2

and

(eiλTF−f, e
iλTF−g)L2 =

(
∼
f ,
∼
g

)
L2

. (3.2)

By taking the closure (3.2) , we obtain the Parseval equality for the space H−.
The inversion formula is obtained from the Parseval equality if all integrals
in it are considered as limits in the of integrals over finite intervals. Finally
F−H− = ∪

t≥0
F−UtD− = ∪

t≥0
eiλtH2

− = L2 (R) , that is F− maps H− onto the

whole of L2 (R). The lemma is proved.

We set

U+
λ (x, ξ, ζ) =

〈SG (λ) e−iλξ, αM (λ)
[(
M (λ) k (λ)−G

)
[ψ, v3]∞

]−1
ϕ (x, λ) , e−iλζ〉.
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We note that the vectors U+
λ (x, ξ, ζ) for real λ do not belong to the space H.

However, U+
λ (x, ξ, ζ) satisfies the equation LU = λU and the corresponding

boundary conditions for the operator Lh. With the help of vector U+
λ (x, ξ, ζ) ,

we define the transformation F+ : f →
∼
f+ (λ) by (F+f) (λ) :=

∼
f+ (λ) :=

1√
2π

(
f, U+

λ

)
H

on the vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ− (ξ) , ϕ+ (ζ) and

y (x) are smooth, compactly supported functions.

Lemma 6. The transformation F+ isometrically maps H+ onto L2 (R). For
all vectors f, g ∈ H+ the Parseval equality and the inversion formula hold:

(f, g)H =

(
∼
f+,

∼
g+

)
L2

=

∞∫
−∞

∼
f+ (λ)

∼
g+ (λ)dλ, f =

1√
2π

∞∫
−∞

∼
f+ (λ)U+

λ dλ,

where
∼
f+ (λ) = (F+f) (λ) and

∼
g+ (λ) = (F+g) (λ) .

Proof. The proof is analogous to the Lemma 5.

It is obvious that the matrix-valued function SG (λ) is meromorphic in C
and all poles are in the lower half-plane. From (3.1), |SG (λ)| ≤ 1 for Imλ > 0;
and SG (λ) is the unitary matrix for all λ ∈ R. Therefore, it explicitly follows
from the formulae for the vectors U−λ and U+

λ that

U+
λ = SG (λ)U−λ . (3.3)

It follows from Lemmas 5 and 6 that H− = H+. Together with Lemma 4, this
shows that H− = H+ = H, therefore property (3) above has been proved for
the incoming and outgoing subspaces.

Thus, the transformation F− isometrically maps H− onto L2 (R) with the
subspace D− mapped onto H2

− and the operators Ut are transformed into the
operators of multiplication by eiλt. This means that F− is the incoming spec-
tral representation for the group {Ut}. Similarly, F+ is the outgoing spectral
representation for the group {Ut} . It follows from (3.3) that the passage from
the F− representation of an element f ∈ H to its F+ representation is accom-

plished as
∼
f+ (λ) = S−1

G (λ)
∼
f− (λ) . Consequently, according to [18], we have

proved the following.

Theorem 3. The function SG (λ) is the scattering matrix of the group {Ut}
(of the selfadjoint operator LG).

Let S (λ) be an arbitrary nonconstant inner function (see [19]) on the
upper half-plane (the analytic function S (λ) on the upper half-plane C+ is
called inner function on C+ if |Sh (λ)| ≤ 1 for all λ ∈ C+ and |Sh (λ)| = 1 for
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almost all λ ∈ R). Define K = H2
+ �SH2

+. Then K 6= {0} is a subspace of the
Hilbert space H2

+. We consider the semigroup of operators Zt (t ≥ 0) acting
in K according to the formula Ztϕ = P

[
eiλtϕ

]
, ϕ = ϕ (λ) ∈ K, where P is

the orthogonal projection from H2
+ onto K. The generator of the semigroup

{Zt} is denoted by

Tϕ = lim
t→+0

(it)
−1

(Ztϕ− ϕ) ,

which T is a maximal dissipative operator acting in K and with the domain
D(T ) consisting of all functions ϕ ∈ K, such that the limit exists. The operator
T is called a model dissipative operator. Recall that this model dissipative
operator, which is associated with the names of Lax-Phillips [18], is a special
case of a more general model dissipative operator constructed by Nagy and
Foiaş [19]. The basic assertion is that S (λ) is the characteristic function of
the operator T.

Let K = 〈0, H, 0〉, so that H =D− ⊕K ⊕D+. It follows from the explicit
form of the unitary transformation F− under the mapping F−

H → L2 (R) , f →
∼
f− (λ) = (F−f) (λ) , D− → H2

−, D+ → SGH
2
+,

K → H2
+ � SGH

2
+, Ut →

(
F−UtF

−1
−

∼
f−

)
(λ) = eiλt

∼
f− (λ) . (3.4)

The formulas (3.4) show that operator L̃G is a unitarily equivalent to the
model dissipative operator with the characteristic function SG (λ) . We have
thus proved following theorem.

Theorem 4. The characteristic function of the maximal dissipative operator
L̃G coincides with the function SG (λ) defined (3.1) .

4 The spectral properties of dissipative fourth order op-
erators

Using characteristic function, we investigate the spectral properties of the
maximal dissipative operator L̃G (LK). We know that the characteristic func-
tion of a maximal dissipative operator carries information about the spectral
properties of this operator. In order to prove completeness of the system
of eigenvectors and associated vectors of the operator L̃G (LK) in the space
L2 (0,∞) (see [5, 16, 19]), we must show that there exists no singular fac-
tor s (λ) of the characteristic funcion SG (λ) in the factorization detSG (λ) =
s (λ)B (λ) (B (λ) is a Blaschke product) (see [3, 22, 25]).
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The characteristic function SG (λ) of the maximal dissipative operator L̃G
has the form

SG (λ) :=
M (λ) k (λ)−G
M (λ) k (λ)−G

,

where ImG > 0.

Theorem 5. For all the values of G with ImG > 0, except possibly for a single
value G = G0, the characteristic function SG (λ) of the maximal dissipative

operator L̃G is a Blaschke product. The spectrum of L̃G is purely discrete and
belongs to the open upper half-plane. The operator L̃G (G 6= G0)has a count-
able number of isolated eigenvalues with finite multiplicity and limit points at
infinity. The system of all eigenvectors and associated vectors of the operator
L̃G is complete in the space H.

Proof. From (3.1) , it is clear that SG (λ) is an inner function in the upper
half-plane, and it is meromorphic in the whole complex λ-plane. Therefore, it
can be factored in the form

SG (λ) = eiλcBG (λ) , c = c (G) ≥ 0, (4.1)

where BG (λ) is a Blaschke product. It follows from (4.1) that

|SG (λ)| =
∣∣eiλc∣∣ |BG (λ)| ≤ e−c(G) Imλ, Imλ ≥ 0. (4.2)

Further, expressing AG (λ) := M (λ)K (λ) in terms of SG (λ) , we find from
(3.1) that

AG (λ) =
GSG (λ)−G
1− SG (λ)

. (4.3)

For a given value G ( ImG > 0), if c (G) > 0, then (4.2) implies that
lim

t→+∞
SG (it) = 0, and then (4.3) gives us that lim

t→+∞
AG (it) = G0. Since

AG (λ) does not depend on G, this implies that c (G) can be nonzero at not
more than a single point G = G0 (and further G0 = − lim

t→+∞
AG (it)). This

completes the proof.
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