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On the (De)homogenization of Sagbi Bases

Junaid Alam Khan

Abstract

In this paper we study the relation between nonhomogeneous and
homogeneous Sagbi bases. As a consequence, we present a general prin-
ciple of computing Sagbi bases of a subalgebra and its homogenized
subalgebra, which is based on passing over to homogenized generators.

1 Introduction

Our interest in the subject of this paper is inspired by [3, 6, 7], where they ad-
dress the problem of behavior of Gröbner bases ([1, 2]) under homogenization
and dehomogenization.

Let R = K[x1, . . . , xn], denote the polynomial ring over the field K and
R[t] be the polynomial ring in the variable “t” over R. The concept of Gröbner
bases for ideals of a polynomial ring over a field K can be adapted in a natural
way to K-subalgebras of a polynomial ring. In [11] Sagbi (Subalgebra Analog
to Gröbner Basis for Ideals) basis for the K-subalgebra of R are defined,
this concept was independently developed in [5]. It is shown in [5, 11] that
Sagbi bases play the same computational role for subalgebras as Gröbner bases
play for ideals. Miller extended Sagbi basis theory to polynomial rings over
a commutative Noetherian domain in [8]. Since many of the basic concepts
of Gröbner basis apply to the subalgebra case, it is natural to ask about
the behavior of Sagbi basis under homogenization and dehomogenization. In
this paper, we employ the homogenization and dehomogenization technique to
study in detail the relation of Sagbi bases in R and homogenous Sagbi bases
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in the polynomial ring R[t]. Other notable works in related themes of study
include [9].

The work presented herein is contained in two main sections. In Section 2,
we give some basic notations and definitions related to Sagbi bases. Then in
Section 3, we show that the application of homogenizing and dehomogenizing
properties of polynomials to subalgebras provide good properties for homog-
enizing subalgebras (Theorem 3.3). After that, we examine the behavior of
Sagbi bases of subalgebras under homogenization and dehomogenization and
show that Sagbi bases homogenize and dehomogenize in a very natural way
(Theorem 3.5 and 3.6). Finally, we discuss the behavior of s-reduced Sagbi
bases under homogenization and dehomogenization.

2 Notation and definition

In this section, we will review some basic terminology and results of Sagbi
basis theory that will be used in the subsequent section. The reader who is
familiar with the theory is still encouraged to skim through this section in
order to get familiar with the notational convention.

By a monomial in R, we mean an element of the form xα1
1 . . . xαn

n with
α1, . . . , αn ∈ N = {0, 1, 2, ...}, we denote the set of all monomials by Mon(R).
Note that 1 = x01 . . . x

0
n ∈Mon(R).

Let Rj be the K-vector space spanned by all homogeneous polynomials
of degree j. The vector space Rj is finite-dimensional, and the monomials u
with deg(u) = j form a K-basis of this vector space. Moreover, R =

⊕
j Rj .

Therefore, each polynomial f ∈ R can be uniquely written as f =
∑
j fj with

fj ∈ Rj . The summands fj are called the homogeneous components of f . If
i = deg(f), then fi is called the leading homogenous polynomial of f , and is
denoted by LH(f).

If G is a subset of R (not necessarily finite), then the subalgebra of R
generated by G is usually denoted by K[G]. This is natural notation since the
elements of K[G] are precisely the polynomials in the set of formal variables
G, viewed as elements of K[G].

In this paper, we always assume that monomial orderings are global mono-
mial orderings, i.e., well orderings. Let > be a monomial ordering on Mon(R)
(see for e.g. [3]). We can associate to every non-zero polynomial f ∈ R its
leading monomial, denoted by LM>(f)(∈Mon(R)). We call the coefficient of
LM>(f) the leading coefficient of f denoted by LC>(f), LC>(f)LM>(f) is
called the leading term and denoted by LT>(f). We also define, for a subset
G ⊂ R,LM>(G) = {LM>(f) | f ∈ G}. For f ∈ R, support(f) is the set of all
monomials contained in f .
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Note that R[t] =
⊕

pRp[t] is an N-graded algebra with the degree-p ho-
mogenous part

R[t]p =

 ∑
i+j=p

Fit
j |Fi ∈ Ri, j ≥ 0

 , p ∈ N

A monomial ordering > is said to be a degree ordering if deg(u) > deg(v)
for u, v ∈Mon(R), implies u > v. For a degree ordering > we define a natural
extension >t to R[t] as follows:

xatc >t x
btd if and only if xa > xb, or xa = xb and c > d

From now on we assume that all monomial orderings considered are degree
orderings. Here we gather some definitions concerning Sagbi bases that we
will need. For a more complete exposition we refer to [11].

Definition 2.1. Let G be a subset of R or R[t] and P = K[y1, . . . , ym]. For
m = yα1

1 . . . yαr
r ∈ Mon(P ), a G-monomial is a finite power product of the

form m(G) = gα1
1 . . . gαr

r where gi ∈ G for i = 1, . . . , r, and α1, . . . , αr ∈ N.
We denote the set of all G-monomials by Mon(G).

Definition 2.2. A (possibly infinite) subset S of K[G] is called Sagbi basis
of K[G] with respect to > if

K[LM>(K[G])] = K[LM>(S)]

In other words for any f ∈ K[G] there exist an m(S) ∈ Mon(S) such that
LM>(f) = LM>(m(S)).

Definition 2.3. Let G be a Sagbi basis of the subalgebra A with respect to
>. We say that G is the s-reduced Sagbi basis of A if the following conditions
are satisfied:
(1) For all g ∈ G, LC>(g) = 1 and LM>(g) /∈ K[LM>(G\{g})].
(2) For all g ∈ G, we have support(g − LM>(g)) ∩K[LM>(G)] = ∅.

3 (De)homogenized Sagbi basis

Let f ∈ R we denote by f∗ the homogenization of f with respect to t in R[t].
For F ∈ R[t], let F∗ = Ft=1 be the dehomogenization of F with respect to t.
For G ⊂ R, G∗ = {f∗ | f ∈ R}.
Considering the onto ring homomorphism φ : R[t] → R defined by φ(t) = 1,
then for each f ∈ R[t], there exist f∗ ∈ R[t] satisfying φ(f∗) = f . On the
other hand for F ∈ R[t], we write φ(F ) = F∗.
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Definition 3.1. Let A be a subalgebra in R and B be a subalgebra in R[t].
(a) The subalgebra A∗ = K[{f∗ | f ∈ A}] in R is called the homogenization of
A with respect to the variable t.
(b) The set B∗ = {f∗ | f ∈ A} in R is called the dehomogenization. The set
B∗ is a subalgebra of R.

Let G be a nonempty subset of R and A = K[G] the subalgebra generated
by G. Next example shows that, in general K[G∗] ⊂ A∗.

Example 3.2. Let G = {f1, f2} ⊂ K[x, y, z] where f1 = x3+y and f2 = x3−z.
Let A = K[G] = K[f1, f2]. Then K[G∗] = K[f∗1 , f

∗
2 ] ⊂ A∗ ⊂ K[x, y, z, t],

since (f1 − f2)∗ = (y + z) is contained in A∗, but not in the subalgebra
K[f∗1 , f

∗
2 ] = K[x3 + yt2, x3 − zt2] which does not contain any homogenous

polynomial of degree 1.

Theorem 3.3. Let A be a subalgebra in R and B be a homogenous subalgebra
in R[t].
(a) (A∗)∗ = A.
(b) For a homogenous polynomial F ∈ R[t]. If F ∈ A∗ then F = tαf∗ for
f ∈ A and α ∈ N.
(c) If B is a homogenous algebra in R[t], then for each h ∈ B∗, there is some
homogenous element F ∈ B such that F∗ = h.

Proof. (a) Obviously , we have A ⊂ (A∗)∗. Now let f ∈ (A∗)∗, by definition
the polynomial is of the form f = (

∑r
i=1 cimi(A

∗))∗ where mi(A) ∈Mon(A)
and ci ∈ K. It follows that f =

∑r
i=1 cimi(A) which implies that f ∈ A.

(b) If F ∈ A∗, we have F∗ ∈ (A∗)∗ = A . Given F ∈ R[t] and F∗ ∈ A. We
obtain F = tαf∗ for f = F∗ ∈ A and α ∈ N.
(c) We know B∗ is the homomorphic image of B. There exist a polynomial
F ∈ B such that F∗ = f . By multiplying the homogenous component by a
monomial in ”t”, we may assume that F is a homogenous polynomial in B
which satisfies F∗ = f .

The next lemma describes the behavior of the leading monomials under
homogenization and dehomogenization.

Lemma 3.4. The following statements hold:
(a) If f ∈ R, then LM>(f) = LM>(LH(f)).
(b) If f ∈ R, then LM>t(f

∗) = LM>(f).
(c) If F is a nonzero homogenous element of R[t], then LM>(F∗) =
LM>t

(F )∗.

For proofs see [3, 7].
The next two theorems examine the behavior of Sagbi basis of subalgebras

under homogenization and dehomogenization.
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Theorem 3.5. Let A = K[G] be the subalgebra of R generated by a subset G
and A∗, the homogenization of the subalgebra A in R[t] with respect to t. The
following two statements are equivalent
(i) G is a Sagbi basis for A in R[t] with respect to monomial ordering >.
(ii) G∗ = {g∗ | g ∈ G} is a Sagbi basis for A∗ in R[t] with respect to >t.

Proof. (i)⇒ (ii) We have to prove that K[LM>t
(G∗)] = K[LM>t

(A∗)] in
order to see that G∗ is a Sagbi basis for A∗. For this purpose, it suffices to
show that for F ∈ A∗ there exist m(G∗) ∈ Mon(G∗) such that LM>t

(F ) =
LM>t

(m(G∗)). Since LM>t
(F ) = LM>t

(LH(F )) (Lemma 3.4(a)), we may
assume (without loss of generality) that F is a homogenous polynomial. Also,

F can be written as tαF̃ such that F̃ ∈ A∗ and tα does not divide F̃ . Since
F∗ = F̃∗, we may assume that F is not divisible by tα for any α ∈ N\{0}.
By Theorem 3.3(a), F∗ = (A∗)∗ = A and G is a Sagbi basis of A, therefore
LM>(F∗) = LM>(m(G)) for some m(G) ∈ Mon(G). By Lemma 3.4(b),
LM>(F∗) = LM>t((F∗)∗) and LM>(m(G)) = LM>t((m(G∗)). Since (F∗)∗ =
F , we obtain LM>t

(F ) = LM>t
(m(G∗)).

(ii)⇒ (i) Suppose G∗ is a Sagbi basis for the homogenization algebra A∗ of A
in R[t]. Let f ∈ A, then f∗ ∈ A∗. Therefore LM>t

(f∗) = LM>t
((m(G∗)) for

some m(G∗) ∈ Mon(G∗). Since LM>(f) = LM>t(f
∗) and LM>(m(G)) =

LM>t((m(G∗)), it follows that

LM>(f) = LM>(m(G)) ∈ K[LM>(G)]

This shows that K[LM>(A)] = K[LM>(G)], i.e G is a Sagbi basis for A in R.

Theorem 3.6. Let B be a homogenous subalgebra of R[t]. If G is a homoge-
nous Sagbi basis of B with respect to >t, then G∗ = {F∗ |F ∈ G} is a Sagbi
basis for the subalgebra B∗ with respect to >.

Proof. If G is a Sagbi basis of B, then G generates B and hence G∗ = φ(G)
generates B∗ = φ(B). By Theorem 3.3(c), for a non-zero f ∈ B∗ there exist a
homogenous element H ∈ B such that H∗ = f . It follows from Lemma 3.4(b)
that

LM>(f) = LM>t
(f∗) = LM>t

((H∗)∗) (3.1)

On the other hand, there exist m(G) ∈Mon(G) such that

LM>t
(H) = LM>t

(m(G)) (3.2)

We also have tα(H∗)∗ = H for α ∈ N and hence

LM>t(H) = LM>t(t
α(H∗)∗) = tαLM>t((H∗)∗) (3.3)
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So (3.1), (3.2) and (3.3) yields

LM>t
(m(G)) = LM>t

(H) = tαLM>t
((H∗)∗) = tαLM>(f).

Taking the dehomogenization for the above equality and using Lemma 3.4(c)
we obtain

LM>(m(G∗)) = LM>t
(m(G))∗ = LM>(f)

This shows that, G∗ is a Sagbi basis for A∗.

Corollary 3.7. Let A be a subalgebra of R. If G is homogenous Sagbi basis
of A∗ in R[t] with respect to >t then G∗ is Sagbi basis for A in R with respect
to >.

Proof. Put B = A∗. Since B∗ = A, it follows from Theorem 3.6 if G is a
homogenous Sagbi basis of B then G∗ is a homogenous Sagbi basis for A.

Let A = K[G] be the subalgebra of R generated by a subset G, we know
that K[G∗] ⊂ A∗ (Example 3.2). By computing homogenous Sagbi basis of
K[G∗], we can obtain a Sagbi basis for the subalgebra A = K[G] (Theorem
3.6) and consequently a homogeneous Sagbi basis for A∗ (Theorem 3.5).

The next theorem shows, how s-reduced Sagbi basis behave under homog-
enization.

Theorem 3.8. Let A be a subalgebra in R. If G is the s-reduced Sagbi basis
of A with respect to > then G∗ is the s-reduced Sagbi basis of A∗ with respect
to >t.

Proof. As G is a Sagbi basis of A, it follows from Theorem 3.5, that G∗ is
a Sagbi basis of A∗. Now we have to show that G∗ is s-reduced. For all
g ∈ G, LC>(g) = 1 therefore LC>t

(g∗) = 1. If there exists g∗ ∈ G∗ such
that LM>t(g

∗) ∈ K[LM>t(G
∗\{g∗})] i.e LM>t(g

∗) = m(LM>t(G
∗\{g∗}))

for some m ∈Mon(P ), from here we get LM>(g) = LM>(m(G\{g}) (Lemma
3.4(b)), which is a contradiction as G is the s-reduced Sagbi basis.

If for some g∗ ∈ G∗, support(g∗ − LM>t
(g∗)) ∩K[LM>t

(G∗)] 6= ∅, it im-
plies that there exists v ∈ support(g∗ − LM>t

(g∗)) such that
v = m(LM>t

(G∗)), for some m ∈Mon(P ). Now v ∈ support(g∗−LM>t
(g∗))

if and only if v = tαu for u ∈ support(gi − LM>(gi)) and α ∈ N. There-
fore, tαu = m(LM>t(G

∗)). Taking dehomogenizing, we will obtain u =
m(LM>(G)) which is a contradiction as G is the s-reduced Sagbi basis.

The next example shows that for homogenous subalgebra B ⊂ R[t], the
demogenization of the s-reduced Sagbi basis of B is not necessarily the s-
reduced Sagbi basis of B∗.
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Example 3.9. Let B = K[H] ⊂ K[x, y, t] where H = {xyt, xy + yt+ xt, x+
y+ t}. The set H is the homogenous s-reduced Sagbi basis of the homogenous
subalgebra B with respect to the degree lexicographical ordering. The set H∗ =
{xy, xy + y + x, x + y + 1} is a Sagbi basis of B∗ with respect to the degree
lexicographical ordering but H∗ is not the s-reduced Sagbi basis of B∗.
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