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F—multipliers and the localization of
LM,,—algebras

C. Gallardo, C. Sanza and A. Ziliani

Abstract

In this note, we introduce the notion of n x m-ideal on n x m-
valued Lukasiewicz-Moisil algebras (or LM, xm—algebras) which allows
us to consider a topology on them. Besides, we define the concept of
F-multiplier, where ¥ is a topology on an LM, xm—algebra L, which is
used to construct the localization LM, xm—algebra Lg. Furthermore,
we prove that the LM, xm—algebra of fractions Lgs associated with an
N—closed subset S of L is an LM, xm,—algebra of localization. Finally, in
the finite case we prove that Lg is isomorphic to a special subalgebra of
L. Since n-valued Lukasiewicz-Moisil algebras are a particular case of
LM, xm—algebras, all these results generalize those obtained in [4] (see
also [3]).

1 Introduction

A remarkable construction in ring theory is the localization ring Ag associated
with a Gabriel topology & on a ring A ([10, 15]). Using the notion of F-
multiplier, G. Georgescu ([8]) associated with every topology F on a lattice
L, a lattice Ly having the same role for lattices as the localization ring in
ring theory. Furthermore, if Fg is the topology corresponding to an A—closed
subset S of L, Ly is the lattice of fractions of Lg ([2]). In 2005, D. Bugneag
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and F. Chirtes ([4, 3]) obtained, among others, similar results for n—valued
Lukasiewicz-Moisil algebras.

On the other hand, in 1975 W. Suchon ([16]) defined matrix Lukasiewicz
algebras so generalizing n—valued Lukasiewicz algebras without negation ([9]).
In 2000, A. V. Figallo and C. Sanza ([6]) introduced n x m—valued Lukasiewicz
algebras with negation which are both a particular case of matrix Lukasiewicz
algebras and a generalization of n—valued Lukasiewicz—Moisil algebras ([1]).
It is worth noting that unlike what happens in n—valued Lukasiewicz-Moisil
algebras, generally the De Morgan reducts of n x m—valued Lukasiewicz alge-
bras with negation are not Kleene algebras. Furthermore, in [13] an important
example which legitimated the study of this new class of algebras is provided.
Following the terminology established in [1], these algebras were called n x m—
valued Lukasiewicz-Moisil algebras (or LM, «,—algebras for short).

The aim of this paper is to generalize some of the results established in [4],
using the model of bounded distributive lattices from [8] to LM, x.,—algebras.
To this end, we introduce the notion of n x m—ideal on LM,, «,,—algebras, dual
to that of Stone filter (see [13]), which allows us to consider a topology on
them. Besides, we define the concept of F—multiplier, where F is a topology
on an LM, «,—algebra L, which is used to construct the localization LM, x,—
algebra Lg. Furthermore, we prove that the LM, x,,,—algebra of fractions Lg
associated with an A—closed subset S of L is an LM, «,,—algebra of localization.
In the last part of this paper we give an explicit description of the LM, xmm—
algebras Ly and Lg in the finite case.

2 Preliminaries

In [13], n x m-valued Lukasiewicz-Moisil algebras (or LM, xm—algebras), in
which n and m are integers, n > 2, m > 2, were defined as algebras (L, A, V, ~,
{04} (5,5)e(nxm),0,1) where (n x m) is the cartesian product {1,...,n —1} x
{1,...,m — 1}, the reduct (L, A, V,~,0,1) is a De Morgan algebra and {o;;
}i.j)e(nxm) is a family of unary operations on L verifying these conditions for
all (4,7) € (n x m) and z,y € L:

Cl) oii(zVy) =0,z V 045y,

C2

TijT < O(i41)57,

C4

0ijO0rst = Ors,

(C1)
(C2)
(C3) oijr < oi(j41),
(C4)
(C5)

C5) oi5x = 045y for all (4, j) € (n x m) imply = =y,
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(C6) gijzV ~ oz =1,
(C7) 0ij ~ & =~ 0(ni)(m—j)T-

These algebras were extensively investigated in [12, 14, 7, 13]. Let us
observe that by identifying the set {1,...,n — 1} x {1} with {1,...,n — 1}
we infer that every LM, xo—algebra is isomorphic to an n—valued Lukasiewicz-

Moisil algebra. In what follows we will indicate with LMy, xp, the variety of
LM, xm—algebras ([13]) and we will denote them by L.

In Lemma 2.1 we summarize some properties of these algebras necessary
in what follows. It is worth mentioning that (C16) will play an important role
in the development of this paper.

Lemma 2.1. ([12]) Let L € LMunxm. Then the following properties are
satisfied:

(C8) gij(x Ny) = g4z A 045y,
(C

C10) z <y iff o550 < 045y for all (i,5) € (n x m),

i\ ~ o2 =0,

(

( T < O(n-1)(m-1)7;
(C12
(C13
(C14) 2N ~ o(—1)m-1)T =0,
(C15

(

9)
)
)
)
)
)
) aV ~ o =1,
C16) 2 A [e,y] = y A ly.a] where [a,8] = N\ ((~ oV ogb) A (~
oijbV oija)). (i,4)E(nxm)

Remark 2.1. Let L € LM, xpm. We will denote by B(L) the set of all Boolean
or complemented elements of L. In [13], it was proved that B(L) = {x € L :
oijx = x for each (i,7) € (n x m)}. These elements will play an important
role in what follows.

Definition 2.1. Let L, L' € LMpuxm. A function f: L — L' is an LMy, xm—
homomorphism if it verifies the following conditions, for all x,y € L:

(i) flzAy) = f@) A fy),
(i) flzVy) = flz) Vv f(y),



288 C. GALLARDO, C. SANZA AND A. ZILIANI

(iii) f(0) =0, f(1) =1,
(iv) f(oijx) = 0i;f(x), for every (i,j) € (n x m),
(V) fl~x) =~ f(z).

Remark 2.2. Let us observe that condition (v) in Definition 2.1 is a direct
consequence of (C5), (C7) and the conditions (i) to (iv).

Definition 2.2. Let L € LMyxm. A non-empty subset I of L is an n X m—
ideal of L, if I is an ideal of the lattice L which verifies this condition: x € 1
implies o(—1)(m—-1)T € 1.

It is worth noting that {0} and L are n x m-ideals of L. We will denote
by J,xm (L) the set of all n x m—ideals of L.

Remark 2.3. If I € J,,xm(L) and x € I, then from (C2) and (C3) we infer
that o;;x € I, for every (i,j) € (n x m).

If X is a non-empty subset of L, we will denote by (X) the n x m—ideal
generated by X. In particular, if X = {a} we will write (a) instead of ({a}).
We have that .

(X) ={y € L: there are x1, ...,z € Xsuch thaty < o(,_1)(m—-1)(V )}
i=1
Moreover, if a € L then (a) = {2 € L : v < 0p—1)(m—1)a} and so, if
a € B(L) we infer that (a) = {x € L: z < a}.

Let I € Jpxm(L) andx € L. Wewilldenote by (I : ) = {y € L: xAy € I}.

Lemma 2.2. Let I € J,xm(L) and x € L. The set (I : x) is an n x m—ideal
of L.

Proof. Tt is a direct consequence of Definition 2.2, (C8) and (C11). O

The notion of congruence in LM, x.,—algebras is defined as usual. However,
compatibility with ~ follows from the other conditions as it is shown in Lemma
2.3.

Lemma 2.3. Let L € LMyuxm and let R be an equivalence relation on L.
Then the following conditions are equivalent:

(i) R is a congruence on L,

(ii) R is compatible with A, V and o;; for all (i,j) € (n x m).
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Proof. We only prove (ii)= (i). Suppose that zRy. Then o;;xRo;;y for all
(1,7) € (nxm) and so, from Remark 2.1, 1R ~ o;;2Vo,;y and 1R ~ o,;yVo;;x.
Therefore, 1R(~ ;2 V 04;y) A (~ iy V 0;;x) which allows us to infer that
~ 0 xR ~ 0z ~ 05y and ~ 0;yR ~ g;2A ~ 045y for all (i,7) € (n x m).
From these statements we have that o;; ~ zRo;; ~ y for all (4, j) € (n x m).
Hence, 1R ~ 0; ~ xVo;; ~yand 1R ~ 0;; ~ yVo,; ~ x forall (i, j) € (nxm)
and so, 1R[~z,~y]. Then ~ xR~z A[~z,~y] and ~ yR ~ yA[~y,~ z].
By (C16) we conclude that ~ xR ~ y. This completes the proof. O

3 LM, «n—algebra of fractions relative to an A—closed
subset

Definition 3.1. A non-empty subset S of an LMy xm—algebra L is an N-
closed subset of L, if it satisfies the following conditions:

(S1) 1€ S,
(S2) z,y € S impliesxz ANy € S.
We will denote by S(L) the set of all A—closed subsets of L.

Lemma 3.1. Let S be an A—closed subset of an LM, x,—algebra L. Then,
the binary relation 6s defined by

(x,y) € 0s < thereis s € SN B(L) such that t ANs=yAs
is a congruence on L.

Proof. We will only prove that 0g is compatible with A, V and o;; for all
(1,7) € (n x m). Let (z,y) € Os. Then, there exists s € SN B(L) such that
xAs=yAs. Therefore, (xAz)As=(yAz)Asand (xV2)As=(yVz)As
for all z € L. Hence, (z Az,yAz) € 0g and (zV 2,y V z) € g for all z € L.
Besides, from (C8), 0;;& Aoyjs = 0,;y Aoyjs for all (4, j) € (n x m) and so, by
Remark 2.1 we infer that (0,5, 045y) € 0s for all (¢,7) € (n x m). O

Remark 3.1. Let S be an A—closed subset of an LM, xm—algebra L. Then,
from the definition of 05 it is easy to see that s = Osnp(1)-

Let L € LMpxm and = € L. Then [z]g and L[S] denote the congruence
class of = relative to g and the quotient algebra L/fg, respectively. Besides,
gs : L — L[S] is the canonical homomorphism.

Remark 3.2. Since for every s € SN B(L), s\ s = s A1, we deduce that
[s]s = [1]s, hence qs(S N B(L)) = {[1]s}-
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Theorem 3.1. If L € LMyuxm and f: L — L' is an LMy, xmm—homomorphism
such that f(SN B(L)) = {1}, then there is a unique LMy, xm—homomorphism
f' 2 L[S] — L' such that f' oqs = f.

Proof. Tt follows from [11, Theorem 4.1] and Remark 3.1. O

Theorem 3.1 allows us to call L[S] the LM,, x.,, —algebra of fractions relative
to the A—closed subset S of L.

Remark 3.3. From Theorem 3.1 we have that

(i) If SN B(L) = {1}, then s coincides with the identity congruence on L
and so, L|S] ~ L.

(ii) If S is an NA—closed subset of L such that 0 € S (for example S = L or
S =B(L)), then 0g = L x L. Hence, L[S] = {[0]s}.
4 JF—multipliers and the localization of LM,,,,—algebras

Taking into account the notion of topology for bounded distributive lattices in-
troduced in [8], we will consider this concept in the particular case of LM, xm—
algebras.

Definition 4.1. Let L € LMyuxm and F a non-empty set of n x m—ideals of
L. F will be called a topology on L, if the following conditions hold:

(T1) If TeF and x € L, then (I : x) € F,
(T2) If 1, I € Dy (L), b € F and (I : ) € F for all x € Iz, then I € F.
Lemma 4.1. ([8]) Let F be a topology on an LM, xm—algebra L.

(i) If h € F and I € Iy xm(L) is such that Iy C I, then Iy € F,

(i) If I, [, € F, then [, N I, € F.

Any intersection of topologies on L is a topology. Hence, the set of the
topologies on L is a complete lattice with respect to inclusion. Next, we will
show that each A—closed subset of L determines a topology on L.

Proposition 4.1. Let L € LMuyxm and S € S(L). Then Fg = {I €
Inxm(L) : INSNB(L) # 0} is a topology on L.
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Proof. f I € Fg and = € L, then from Lemma 2.2 and the fact that I C (I : x),
it follows that (I : ) € Fs. So, (T1) holds. In order to prove (T2), let
I, I € Jxm(L) be such that Ir € Fg and (I : ) € Fg for every z € Is.
Let o € I, NS N B(L). Hence, from (T1), (I; : xo) € Fs and so, there is
Yo € (I1 : o) N SN B(L). Therefore, 9 Ayo € Iy NS N B(L) which allows us
to conclude that I; € Fg. O

The topology Fg will be called the topology associated with the NA—closed
subset S of L.

The notion of multiplier was introduced by W. Cornish in [5]. Using the
concept of F—multiplier we will associate with every topology F on an LM, xm—
algebra L an algebra Ly which plays the same role for these algebras as the
localization ring in ring theory.

Let F be a topology on an LM, x,—algebra L. Let us consider the binary
relation 04 on L as follows:

(x,y) € 05 < there is I € F such that e Az =eAy foralle e I.
Lemma 4.2. 65 is a congruence on L.

Proof. 1t is simple to verify that reflexive and symmetric laws hold. The
transitive law follows from (ii) in Lemma 4.1. On the other hand, let (z,y) €
f5. Then, there exist I € F such that e Ax = e Ay for all e € I. Then, for all
z € L we havethat e A (z Az) =eA(yAz)and eA(zVz)=eA(yVz) for
all e € I. Therefore, 05 is compatible with A and V. Besides, from Remark
2.3 we infer that o;;e Az = 0;5e Ay, for all (4, j) € (n x m). Hence, from (C4)
and (C8) we infer that for all (¢, j), (r,s) € (n X m), gije A orsT = 056 A Orsy
and so, o;;(e A orsx) = 045(e A orsy) for all (i,5) € (n x m). From this last
assertion and (C5) we obtain e A o5& = e Ao,y for all e € I, which allows us
to conclude that (0,5, orsy) € 07, for all (r,s) € (n x m). O

Proposition 4.2. Let L € LMuyxm and a € L. Then [alg, € B(L/05) iff
oija € [alo, for all (i,7) € (n x m).

Proof. [alg, € B(L/05) < oijlale, = [ale,, for all (4,5) € (n xm) <«
[oijalg, = [ale,, for all (z,7) € (n x m). O

Definition 4.2. Let F be a topology on L and I € F. An F-multiplier on L
is a map f: I — L/0s, which verifies the following condition:

flenz) =elos N f(x), for each e € L and x € I.
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Lemma 4.3. For each F-multiplier f : I — L/05 the following properties
hold:

(i) f(z) <z]oy, forallz €1,
(i) flzAy) = Fflz) A fy),
(ii}) [zos A f(y) = [Wlos A f(2).
The maps 0,1 : L — L/05 defined by 0(x) = [0]p, and 1(z) = [z]e,
for all x € L are F-multipliers. Furthermore, for a € L and I € &, the

map f, : I — L/05 defined by f,(z) = [a)o, A [z]e, for every x € I, is an
F-multiplier on L called principal.

We will denote by M(I,L/05) the set of the F-multipliers having the
domain I € J and by

M(L/05) = | M(I,L/0s).
IeF

If I,J € F and I C J, we have a canonical map o7y : M(J,L/b5) —
M (I, L/05) defined by 67 s(f) = f |1 for every f € M(J,L/05).

Let us consider the direct system of sets

({M(I,L/05)}reg,{0s1})

and denote by Lg the inductive limit (in the category of sets):

Lgr = lim M(I, L/agr)
Ies

—

For each F—multiplier f : I — L/05 we will denote by (I, f) the congruence
class of f in Lg.

Remark 4.1. If f; : I; — L/05, i = 1,2 are F-multipliers, then (ﬁ) =
(I2, f2) iff there exists K € F, K C I1 NIy such that f1 |k= fa2 |Kk-
Let f; € M(1;,L/65),i=1,2. Let us consider the maps

fiNn fa, fl\/f2:11ﬂ12—>L/95r
defined by
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(fr A f2)(@) = fr(z) A fa(z),
(frV f2)(@) = fi(z) V fa(z),
forallz € I; N I.
Lemma 4.4. fi A fo, iV fo € M(I1 N I, L)63).

Proof. 1t is straightforward.

We define on Ly the following operations:

(T, ) A (T, f2) = (1IN Ty fi A o),
T )V (To fo) = (LN To, fi V fo).

We denote (L, 0) and (L, 1) by 0 and 1, respectively.
For each f € M(I,L/05), let us consider the map
ff:I— L/0s

defined by

fr(@) = [zlos A ~ f(o(n-1)(m-1)T)
for all x € I.
Lemma 4.5. f* e M(I,L/0g).

Proof. It is a direct consequence of (C8) and (C14).

We define on Lg the following operation:

—k —

(Lf) :(Lf*)

Remark 4.2. For all x € L, we have that 0*(z) = [z]g, A ~ [0]p, =

o, = [z]o,, that is to say, 0* = 1. Similarly, 1* = 0.

['r]eff A

Let f € M(I,L/05). For each (i,7) € (n x m) let us consider the map

5”M(I,L/03‘) —>M(I,L/93‘)

defined by
0ij f(x) = [2]os A 0ij(fO(n-1)(m-1)T))
for all x € 1.
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Lemma 4.6. ¢;;f € M(I,L/65) for all (i,j) € (n x m).

Proof. Tt follows from (C8), (C4) and (C11). O

For each (7,7) € (n x m), we define on Ly the following operation:

oI (1L f) = (155 ]).

Lemma 4.7. For each I € F, (M(I, L/Gg),/\,\/,*,{ag}(iyj)e(nxm),O,D is
an LM, xm—algebra.

Proof. Tt is easy to verify that (M (I,L/05),A,V,0,1)is a bounded distribu-
tive lattice. To prove that it is a De Morgan algebra, we have for all fi, fo, f €
M(I,L/05) and x € I,

(five)(z) = [zlosA~ (fi V) Om-1)m1)T)

= [2]g; A~ (fi(@m-1)m-1)%) V f2(0(n-1)(m-1)T))
= [@los A~ frlo@m-1)m-1)T)A ~ f2(0(n—1)(m—1)T))
= ([zJosA ~ fi(Om-1)(m-1)%)) A ([Tlos A ~ f2(0(n—1)(m—1)T))
= fil@) A fi(2)

Hence, (f1V fo)* = fif N f3.
Furthermore, bearing in mind (C4), (C11), (C14) and Lemma 4.3 we have

(f ) (@) = [zlosA ~ f(O(n—1)(m-1)T)
= [zos ~ ([0-1)em-1)2]os N ~ F(0(n-1)(m-1)(0(n-1)(m-1)7)))
= [z]oy AN (~ [o(-1)(m-1)%los V [(O(n-1)(m-1)T))
= ([losA ~ [om-1)(m-1)7)o5) V ([2]os A F(0(0-1)(m-1)7))
[0lo, V ([zlos A flO(n—1)(m—1)T))
= [z]os A F(O(n—1)(m-1)T)
[0 (n—1)(m-1)%]0s N f(2)
= Om-1)m-1)[zlos A f(z) = f(2).

Therefore, (f*)* = f.

To complete the proof it remains to verify
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(Cl): For allz € I and (4, j) € (n x m),

aij(fiVv f2)(@) = [zloy Aoij(fi(o(m-1)m—1)T) V f2(C(n-1)(m-1)T))
los A (045 (fr(o(n—1)(m—1)2)) V 0ij (f2(0(n—1)(m-1))))
([zloy A oij(filom-1)(m-1)7))) V ([Z]os A
0ij(f2(0(n—1)(m-1)Z)))
= Gi(fi(z)) v Gi(f2(2))
= (Giif1V Gijf2)(z).

[z

HGHCG, &ij(fl \Y f2) = &ijfl \Y &ijf2-
(C2): For all x € I and (4, j) € (n x m),
Gijf(x) Aoy f(m) = [zlog A oij(f(Om-1)(m—1)T)) A T(it1);

(f(o(n—1)(m-1)T))
= [#]os Aoij(f(Om-1)(m-1)Z)) = Gij f(x).

Hence, G55 f(x) A G(i41);f(x) = 645 f(x) for all (4, 5) € (n x m).
(C3): It is analogous to (C2).
(C4): For all x € I and (4, 5), (r, ) € (n x m),

Gijors(f)(x) = [2]os A 0ij(Grs(F)On-1)(m-1)T))

= [zlos Noijlom-1)(m-1)Zlos A Tij(ors(f(O(n—1)(m-1)
(O(n-1)(m-1)7))))

[loy A 030 (n-1)(m-1)T]os A 0ij(0rs f(O(n—1)(m—1)T))
]y A [0(n—1)(m-1)Tlos N Ors(f(O(n—1)(m-1)T))

[z]o, A ors(f (U(nfl)(mfl)x)) = ars(f) ().

Therefore, 6;;(5rsf) = Grsf-

(C5): Let 645 f1 = 645 f> for all (4,5) € (n x m). Then, for all x € I we have
that the following statements hold:

L. 6i;(f1)(x) = 7i5(f2)(x),

2. [z]oy N oij(fi(om-1)(m-1)T) = [Tlos A Tij(f2(0(n—1)(m—1)T),
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3. [0y m=1)T]os ATii ([1(O(n=1)(m-1) (T (n=1)(m=1)T))) = [O(n—-1)(m—1)T]os
N 0ii(f2(0(n=1)(m=1)(C(n=1)(m-1)T))),

4. oii([0m-1)m-1)Z)os N f1(0m-1)m-1)T)) = Ti; ([O(n—1)(m-1)T]05
A f2(0(n-1)(m-1)T),

5. 0ij([1(0(n-1)(m-1)2)) = 0ij(f2(T(n-1)(m-1))) for all (i, ) € (n x m),
6. f1(0mn—1)m-1)T) = f2(O(n—1)(m-1)T)-

From this last equality we conclude that for all x € I

filz) = fA(@Aom-1)m-1))
= [#los A fr(O@m-1)(m-1)T)
= [z]os A fo(O(n-1)(m-1)T)
= fa(@ Aon-1)(m-1)T)
= fa(m).

Therefore, fi = fo.

(C6): For all z € I and (4, j) € (n x m),

(G35 (f) vV (0i;(f)) @) = Gi;(f)(x) vV (G:;(f)" (@)

= ([zlos Noii(flom-1)(m-1)2))) V ([2]05 A
~ i ([)(Om-1)(m-1)T))

= [z]os A (05 (f(Om=1)(m-1)Z))V ~ ([0(n=1)(m-1)T]05
Aij(f(0(n-1)(m=1) (O (n=1) (m-1)%))))

= [z]os A (03 (f(O(n=1)(m=1)2)) V [~ O(n—1)(m-1)T]04
VvV~ 05(fom—1)(m-1)%))))

= [z]os A Loy = [7]o,-

Therefore, 6;;(f) V (64;(f))* =1 for all (¢, j) € (n x m).
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(C7): For all x € I and (4, j) € (n x m),

~ G (n—i)(m—5) f(O(n-1)(m-1)T)

~ ([o(n=1)(m-1)Zlo5 A T(n—i)(m—y)

(OCn—iym-pf)(x) = [z

= [z

Jos A
Jos A
(f(@m-1)(m=1)T(n-1) (m-1)T)))
= ([z]osA ~ [0(-1)m-1)7]os) V ([Zlog A ~ O (n—i)(m—j)
(f(om-1)(m-1)2)))
[T]os N ~ T(n—i)(m—i)([(O(n-1)(m=-1)T))
= [zloy ANoij(~ f(Om—1)(m-1)T))
Jos N oij([0(n-1)m-1)2lo5) A 0ij(~ f(O(n-1)(m-1)T))
log N oij([0m-—1)m=-1)T]os A ~ [(T(n—1)(m—1)
(Otn-1)(m-1)T)))

= [z]os Aoii(f (On-1)m-1)x)) = 0355 (f*) ().

= [2]e

[z

Hence, (6 (n—iy(m—j)f)* = Fi; f*. O
Proposition 4.3. (Lg, AV, *, {ag}(me(nxm),ﬁ,ﬂ is an LM, —algebra.

Proof. Tt follows as a special case of Corollary 2.1 in [11]. Indeed, condition
(ii) in Lemma 4.1 is stronger than the property of being down directed, the
operations V, A, %, 0;;, 0 and 1 of M (I, L/05) obviously satisfy conditions
(2.1) and (2.2) in [11, Section 2.1] and M (I, L/0) is an LM, «.,—algebra by
Lemma 4.7. O

The LM, «m—algebra Ls will be called the localization LM, x.,—algebra of
L with respect to the topology F.

Lemma 4.8. Let Fg be the topology associated with the N—closed subset S.
Then 93‘5 = 95.

Proof. Let (z,y) € 05,. Then there is I € Fg such that s Az = s Ay, for all
s € I. Since there exists sg € I NS N B(L) verifying so A z = so Ay, we infer
that (z,y) € 6s. Conversely, let (z,y) € 85. Then there is s € SN B(L) such
that £ Asg = yAsg. By considering I = (sg) we conclude that (z,y) € 05,. O

It is worth mentioning that Lemma 4.8 is a particular case of Lemma 4.3
in [11] considering S N B(L) instead of S and the fact that Fg = Fgnp(r)-
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Remark 4.3. From Lemma 4.8, we have that L/05, = L[S]. Then an Fg-
multiplier can be consider as a map f : I — L[S] where I € Fg and f(eAx) =
le]s A f(z) for allz € I and e € L.

Lemma 4.9. Let (ﬁ), (m) € Ly be such that (ﬁ) = (m) Then
there exists I C Iy N Iy such that fi1(so) = fa(so) for all so € INSNB(L).

Proof. From the hypothesis and Remark 4.1, we have that there exists I €
Fs, I C I NIy such that f1 [;= fa |1 and so, fi(so) = fa(so) for each
SQGIQSQB(L). [l

Theorem 4.1. Let L € LMyuxm. If Fg is the topology associated with the
N—closed subset S, then Ly, is isomorphic to L[S].

—

Proof. Let o : Ly, — L[S] be defined by «(I, f) = f(s) forall s € INSNB(L).
From Lemma 4.9, we have that « is well-defined. Besides, « is one-to-one.

—

Indeed, suppose that a(I1, f1) = a(lz, f2). Then there exist s; € [;NSNB(L)
and s; € I NS N B(L) such that fi(s1) = fa(s2). Hence, by considering
fi(s1) = [z]s and fa(s2) = [y]s, we have that there is s € SN B(L) verifying
xAs=yAs. Ifs =sAs1 A sg, then we infer that fi(s') = fi(s' As1) =
[S/]S A fl(sl) = [S/]S A fQ(SQ) = fQ(S/). Let I = <S/> SO, Ie 9'5, I Q Il n IQ
and fi [1= f2 |1. Remark 4.1 allows us to infer that (ﬁ) = (m) In
order to prove that « is surjective, let [a]g € L[S] and f, : L — L[S] defined
by fo(z) = [a A x]s for all © € L. It is simple to verify that f, is an Fg-

multiplier. Moreover, from Remark 3.2, a(f,-f\a) = fu(s) = [a A s]ls = [a]s,
being s € SNB(L). It is simple to verify that this map is an homomorphism of
bounded distributive lattices. Furthermore, from Lemma 2.2 it only remains to
prove that a(o}% (I, f)) = oij(a(l, f)). Indeed, a(oy;* (1, f)) = a((I,5i;f)) =

—

0 f(s) = [slos, N oijf(s) = 0ijf(s) = osj(al(L, f)). O

Remark 4.4. Theorem 4.1 is valid under the more general hypothesis of The-
orem 4.2 in [11] namely: the algebra L has a meet-semilattice reduct, S is a
subsemilattice of L, Os is a congruence, the multipliers form a subset of our
multipliers, including the present multiplier with domain L and the isomor-
phism is the same in both theorems.

Finally, in this section in order to establish a relationship between the
localization of a LM, «,—algebra L and the Boolean elements of L[S]| we have
to consider another theory of multipliers (meaning we add a new axiom for
F-multipliers). More precisely,
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Definition 4.3. Let F be a topology on L and I € F. An strong F-multiplier
is an F-multiplier f : I — L/05 which verifies the following condition:

(f) ife € B(L) N1, then f(e) € B(L/0s).

Remark 4.5. If L € LM,xm, the F-multipliers 0,1 : L — L/05 defined
by 0(x) = [0]p, and 1(z) = [z]o, for all x € L are strong F-multipliers.
Furthermore, if f; : I; — L/05, i = 1,2 are strong F-multipliers, then f1 A
f2, f1V fa defined as above are strong F-multipliers. Moreover if f: I — L/05
is a strong multiplier, then taking into account Remark 2.1 and Proposition 4.2
we have that f* : I — L/ and 0;;f : I — L/65 defined by f*(z) = [x]o, A ~
fom=1)ym—1)x) and o4;f(x) = [z]o,; A 0ij(f(O(n-1)(m-1)T)), Tespectively for
all x € I are strong F-multipliers.

Remark 4.6. Analogous as in the case of F-multipliers if we work with strong
F-multipliers we obtain an LM, «y,—subalgebra of Ly denoted by s-Lg which
will be called the strong-localization LM, xm—algebra of L with respect to the
topology F.

Theorem 4.2. Let L € LMuxm. If Fs is the topology associated with a N—
closed subset S of L, then the LM, «,—algebra s-Lg is isomorphic to B(L[S])
(see Example 5.1).

Proof. From Theorem 4.1 there is an isomorphism « : Ly, — L[S] defined by

=

a(l, f) = f(s) for all s € IN SN B(L). Let us consider the restriction of o to
s-Lg4 which we will denote by a,. Since f is a strong F-multiplier it follows

—

immediately that as(I, f) € B(L[S]) for all (/L?) € s — Ly,. Furthermore,
since s-Lgg is an LM,,xm—subalgebra of Ly, we have that a; is an injective
homomorphism. To prove the surjectivity of as, let [a]s € B(L[S]). Hence,
there is eg € SNB(L) such that aAeg € B(L). We consider Iy = (ep) and since
eo € Iy NS N B(L) we infer that Iy € Fg. Let f, : Iy — L[S] be the function
defined by f, = [a A eg]s for all z € Iy. It is simple to verify that f, is an F-
multiplier. Furthermore, f, is strong. Indeed, f,(e) = [a Ae]s = [a]s A e]s €
B(L[S]) for all e € B(L) N I. Moreover, from Remark 3.2 and the fact that

e € S we have that a,(Io, fa) = fa(eo) = [eo]s Alals = 1 A fa]s = [a]s. O

5 Localization and fractions in finite L M,,«,,—algebras

In this section, our attention is focus on considering the above results in the
particular case of finite LM,, «,—algebras. More precisely, we will prove that
for each finite LM, xm—algebra L and S € S(L) the algebra L[S] is isomorphic
to a special subalgebra of L. In order to do this, the following propositions
will be fundamental.
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Proposition 5.1. Let L be a finite LM, xm—algebra and I C L. Then, the
following conditions are equivalent:

(i) I € Inxm(L),
(ii) I = {(a) for some a € B(L).

Proof. (i) = (ii): Since L is finite, from a well-known result of finite lattices
we have that I = (a) for some a € L. Furthermore, from the hypothesis we
have that o(,—1)(m—1)a € (a) and so0, 0(n_1)(m—1)a < a. Hence, by (C11) we
infer that @ = o(;,—1)(m—1)a which implies that a € B(L).

(ii) = (i): Let € I. Then x < a and 50, 0(—1)(m—-1)T < T(n—1)(m—1)a =
a. Therefore, o(,_1)y(m-1)7 € I.

Proposition 5.2. Let L be a finite LM, xm—algebra and S € S(L). Then

Fs={(a):aeB(L), N z<a}.
zeSNB(L)

Proof. Let us consider T = {{(a) : a € B(L), /\ x < a}. Assume that
z€SNB(L)

I € Fs. Then, by Proposition 5.1 we have that I = (a) for some a € B(L).

On the other hand, from Proposition 4.1 there is ¢ € S N (a) N B(L) which

implies that /\ z < ¢ < a. Therefore, I € T. Conversely, suppose that

z€SNB(L)
I € J. Hence, /\ x € INSNB(L). Furthermore, by Proposition 5.1
z€SNB(L)
we have that I € I« (L). From these last assertions and Proposition 4.1 we
conclude that I € Fg. ([

Proposition 5.3. Let L be a finite LM, x,—algebra and S € S(L). Then,
the following conditions are equivalent:

(1) (xay) € 9?5;

(ii) z Ab=y Ab where b= /\ x.
z€SNB(L)

Proof. 1t is routine. O

Proposition 5.4. Let L be a finite LM, xm—algebra and {a) € J,xm(L).
Then, Lo = {{(a), \,V, ~a, {03} (i.j)e(nxm); 0, @) is an LM, xm—algebra, where
~g T =~TNa.
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Proof. Tt is easy to cheek that ({(a), A, V, 0, a) is a bounded distributive lattice.
Furthermore, if =,y € (a), then we have that ~y~, = =~y (aA ~ x) =~
(aN ~z)Na=(~aVz)Aha=0V(xAa) =z and ~, (zAy) =~ (xAy)Aa =
(~ aV ~y) ANa =~g zV ~g y. Moreover, o,z € (a) for all € (a) and
(1,7) € (n x m). Indeed, since x < a we have by (C10) that o;;z < 0;5a = a
for all (i,7) € (n x m). O

Finally, we obtain our desired goal.

Proposition 5.5. Let L be a finite LM, xm—algebra and S € S(L). Then
LI[S] is isomorphic to L, where b = /\ x.
z€SNB(L)

Proof. Let 8: L — L be the function defined by the prescription 8(x) = xAb.
It is easy to check that g is a 0, 1-lattice epimorphism. Furthermore, for
all x € L, B(~ z) =~z Ab = (~2xAD)V (~bDAD) =~ (x AD)ANb =~
6(56)/\() —"~a 6(50) and 6(0’@'56) = Uijx/\b = O'ijZC/\O'ijb = O'ij(.fc/\b) = Uijﬂ(x)
for all (i,5) € (n x m). Therefore, 8 is an LM, «,—epimorphism. Moreover,
x € [l)py © (x,1) € 0g < thereis s € SNB(L) such that tAs=s < xAb=
b< f(zx) =b< x € Ker(). Therefore, taking into account a well-known
result of universal algebra ([1, p. 59]) we conclude that L[S] is isomorphic to

Ly O

Corollary 5.1. Let L be a finite LM,,x.,—algebra and S € S(L). Then, Ly,

is isomorphic to Ly where b = /\ x. More precisely, Ly, = {({b), f.) :
zeSNB(L)

x € (b)}.

Proof. Tt follows as a consequence of Theorem 4.1 and Proposition 5.5 |

Example 5.1. Let us consider the LMsxs—algebra L shows in Figure 1 where
the operations ~ and o;; for all (3,j) € (3 x 3) are defined as follows:

x Ol a | a2 | a3 | ag | a5 | as | a7 | ag | ag | aip | a1
~ T 1| azs | a2q | @21 | a23 | a2z | a0 | a19 | @18 | a17 | aie | ais
0112 0 0 0 0 Q4 as Q4 as as 0 0 0
oiox | 0| ag as as ay as as as as 0 ay as
g21% 0 0 0 0 a4 as aq as as alg alg alg
o220 | 0| ag | a5 | ag | as | a5 | ag | ag | as | ais | az2 | as3




302 C. GALLARDO, C. SANZA AND A. ZILIANI

4 Q12 | 13 | Q14 | A15 | Q16 | Q17 | A18 | A19 | G20 | G21 | Q22
~ T a12 | @14 | 13 | A11 | @10 ag as ar 3] as as

11T 0 Q4 as Q4 as as aig | a18 | aig | aig | @22
o1 | ag | as | as | ag | ag | ag | aig | a2 | a3 | 1 | a2
021 | 18 | G22 | A23 | A22 | G23 1 aig | a18 | aig | aig | a2

o2t | 1 |az | a3 | 1 1 1 |aig | ag | axs | 1 | a2
T a23 | a4 | ags | 1

~T | aa as ar |0

o1T | a3 | ag2 | a3 | 1

0121 a3 1 1 1

01T | a23 | az2 | a3 | 1

0922 a3 1 1 1

Figure 1

Then; B(L) = {07 a4, 0s, ag, 418, A22, 423, 1} If we consider S = {a187 a20,
as1, a23, G4, A2s, 1}, then according to Proposition 5.5 we have that L[S)] is iso-
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=L

L} and taking into account Corollary 5.1 we have that Ly, = {({a1s), fo)

—_ T

(<a18>a fag>a (<a18>a fals)}'
On the other hand, since B(L[S]) = {[0]s, [a1s]s} from Theorem 4.2 we

)

conclude that s-Ly, = {((@0), ({a18), fais)}- This example also shows that
there are F-multipliers which are not strong F-multipliers. Indeed, that is the
case of fay : (a18) — L[S] because azz € B(L) N (a1s) and fo,(az3) = [agls ¢
B(L[S])-

morphic to La,, = {0, a9, a15}. Furthermore, Fs = {{a1s), (aa2), (aszs), (1) =

Concluding remark. Since n—valued Lukasiewicz-Moisil algebras are par-
ticular case of LM, xm—algebras, all the results obtained generalize those es-
tablished in [4] and in [3].

Bearing in mind that LM, «,,—algebras are a particular case of matrix
Lukasiewicz algebras introduced by W. Suchon, a subject for future research
would be to develop the theory of localization for these algebras.

The authors would like to thank the referees for their helpful remarks on
this paper.
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