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On Rad-D12 Modules
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Abstract

Let M be a right R-module. We call M Rad-D12, if for every sub-
module N of M , there exist a direct summand K of M and an epimor-
phism α : K → M/N such that Kerα ⊆ Rad(K). We show that a
direct summand of a Rad-D12 module need not be a Rad-D12 module.
We investigate completely Rad-D12 modules (modules for which every
direct summand is a Rad-D12 module). We also show that a direct sum
of Rad-D12 modules need not be a Rad-D12 module. Then we deal with
some cases of direct sums of Rad-D12 modules.

1 Introduction

Throughout this paper, we assume that all rings are associative with identity
and all modules are unital right modules. Let M be a module. The symbols,
“≤”, “≪” and “Rad(M)” will denote a submodule, a small submodule and
the Jacobson radical of M , respectively. The module M is said to have (D12)
(or is a (D12)-module) if for every submodule N of M , there exist a direct
summand K of M and an epimorphism α : K −→ M/N such that Kerα ≪ K
(see [7]). In this paper we define Rad-D12 modules. The module M is said
to have Rad-D12 (or is a Rad-D12 module) if for every submodule N of M ,
there exist a direct summand K of M and an epimorphism α : K −→ M/N
such that Kerα ⊆ Rad(K). It is easy to see that every radical module M (i.e.
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Rad(M) = M) is a Rad-D12 module. Therefore the Z-module QZ is Rad-D12,
but it is not a (D12)-module.

Let M be a module. A submodule N of M is called a weak Rad-supplement
(Rad-supplement) of a submodule L of M if M = N+L and N ∩L ⊆ Rad(M)
(M = N + L and N ∩ L ⊆ Rad(N)). The module M is called weakly Rad-
supplemented (Rad-supplemented) if every submodule N of M has a weak
Rad-supplement (Rad-supplement). Rad-supplement submodule is defined in
[13]. This new concept is also studied in [12] and [3]. According to [5], M is
called Rad-⊕-supplemented if every submodule of M has a Rad-supplement
that is a direct summand of M .

In Section 2, we investigate some properties of Rad-D12 modules. We
prove that the class of Rad-D12 modules contains strictly the class of Rad-
⊕-supplemented modules. In Section 3, we will be concerned with direct
summands of Rad-D12 modules. We provide a characterization of direct sum-
mands having Rad-D12. Section 4 deals with direct sums of Rad-D12 modules.
We show that a direct sum of Rad-D12 modules is Rad-D12 if the direct sum
is a duo module.

2 Rad-D12 modules

In this section we will show that the class of Rad-D12 modules contains prop-
erly the class of Rad-⊕-supplemented modules.

Proposition 2.1. Let M be a Rad-⊕-supplemented module. Then M is Rad-
D12.

Proof. Let N be a submodule of M . Since M is Rad-⊕-supplemented, then
there exist direct summands K and K ′ of M such that M = N +K = K⊕K ′

and N ∩ K ⊆ Rad(K). Now we have the epimorphism g from K to M/N
which is defined by k 7→ k +N with Kerg = N ∩K ⊆ Rad(K). Hence M is
a Rad-D12 module.

Example 2.2. [7, Examples 4.5 and 4.6] Let R be a local artinian ring with
radical W such that W 2 = 0, Q = R/W is commutative, dim(QW ) = 2
and dim(WQ) = 1. Consider the indecomposable injective right R-module
U = [(R ⊕ R)/D] with W = Ru + Rv and D = {(ur,−vr) | r ∈ R}. By [7,
Example 4.5], U is not Rad-D12. Note that U is Rad-supplemented. Now let
S = R/W , the simple R-module, and M = U ⊕ S. By [7, Example 4.6], M is
Rad-D12, but not Rad-⊕-supplemented.
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Example 2.3. Let M = (Z/pZ)⊕ (Z/pnZ) where p is a prime number and n
is a nonzero positive integer. By [6, Corollary 1.6] and Proposition 2.1, M is
Rad-D12.

A module M is called hereditary, if every submodule of M is projective.
Recall from [13] that a module M is called generalized semiperfect if for every
factor module of M , namely M/N , there exist a projective module P and an
epimorphism f : P −→ M/N such that Kerf ⊆ Rad(P ). In this case f is a
generalized projective cover of M/N .

Theorem 2.4. The following are equivalent for a hereditary module M :
(1) M is generalized semiperfect;
(2) M is Rad-D12;
(3) M is Rad-⊕-supplemented;
(4) M is Rad-supplemented.

Proof. (1) ⇒ (4) By [13, Proposition 2.1].
(4) ⇒ (3) It is by [11, Lemma 2.1].
(3) ⇒ (2) By Proposition 2.1.
(2) ⇒ (1) Clear.

Let M be a module and U ≤ M . Then U is called QSL in M if (A+U)/U
is a direct summand of M/U , then there exists a direct summand P of M
such that P ≤ A and A+ U = P + U (see [1]).

Proposition 2.5. Let M be a weakly Rad-supplemented module with Rad(M)
QSL in M . Then M is Rad-D12.

Proof. LetN ≤ M . SinceM is weakly Rad-supplemented, (N+Rad(M))/Rad(M)
is a direct summand of M/Rad(M). Since Rad(M) is QSL in M , there exists a
decomposition M = K⊕L such that K ≤ N and N+Rad(M) = K+Rad(M).
Now consider the epimorphism α : L → M/N defined by α(l) = l+N (l ∈ L).
It is easy to see that Kerα ⊆ Rad(L). Hence M is Rad-D12.

Let M be a module. We say that M is w-local if M has a unique maximal
submodule. Clearly M is w-local if and only if Rad(M) is maximal in M .

Lemma 2.6. Let M be a Rad-D12 module. If Rad(M) ̸= M , then M has a
nonzero w-local direct summand.
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Proof. Let N be a maximal submodule of M . Then there exist a direct sum-
mand K of M and an epimorphism α : K −→ M/N such that Kerα ⊆
Rad(K). Clearly, K ̸= 0 and Kerα is a maximal submodule of K. Therefore
Kerα = Rad(K) and hence K is a nonzero w-local direct summand of M .

Corollary 2.7. If M is a Rad-D12 module with Rad(M) ≪ M , then M
contains a local direct summand.

Proof. Since Rad(M) ≪ M , M is a (D12)-module. Now apply the proof of
Lemma 2.6.

3 Direct summands of Rad-D12 modules

The following example exhibits a Rad-D12 module that contains a direct sum-
mand which is not a Rad-D12 module.

Example 3.1. Consider the right R-module M = U⊕S in Example 2.2. The
module M is Rad-D12, but the submodule U is not Rad-D12.

Let M be a module. We will say that M is completely Rad-D12 if every
direct summand of M is Rad-D12.

Recall from [2] that a module M is said to have (P ∗) property if for any
submodule N of M there exists a direct summand D of M such that D ⊆ N
andN/D ⊆ Rad(M/D), equivalently, for every submoduleN ofM there exists
a decomposition M = K ⊕K ′ such that K ⊆ N and N ∩K ′ ⊆ Rad(K ′). It is
easy to check that every module with (P ∗) is Rad-⊕-supplemented and hence
Rad-D12 by Proposition 2.1.

Proposition 3.2. A module with (P ∗) property is completely Rad-D12.

Proof. By [2, Lemma 16], every direct summand of a module with (P ∗) has
(P ∗). Now the result follows from the fact that every module with (P ∗) is
Rad-D12.
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Example 3.3. (i) Let F be a field and R the upper triangular matrix ring(
F F
0 F

)
. For submodules A =

(
0 F
0 F

)
and B =

(
F F
0 0

)
, let M = A ⊕

(R/B). By [8, Lemma 3], M has (P ∗). So by Proposition 3.2, M is completely
Rad-D12.

(ii) LetM = Z(p∞
1
)⊕...⊕Z(p∞

n
) where p1, . . . , pn are distinct prime integers.

By [9, Example 2.16], M has (P ∗). Hence M is completely Rad-D12.

The converse of Proposition 3.2 is not true as we see in following example.

Example 3.4. Let M be the Z-module Z/2Z⊕Z/8Z. Since M is finitely gen-
erated, M does not have (P ∗) by [8, Example 10]. By [6, Theorem 1.4], M is
⊕-supplemented and hence Rad-⊕-supplemented. By [10, Example 2.10], ev-
ery direct summand of M is ⊕-supplemented and hence Rad-⊕-supplemented.
Therefore by Proposition 2.1, M is completely Rad-D12.

A module M is called refinable if for any submodules U, V of M with
M = U + V , there exists a direct summand U ′ of M with U ′ ⊆ U and
M = U ′ + V (see [4, 11. 26]). It is easy to prove that M is refinable iff every
submodule of M is QSL.

Proposition 3.5. Let M be a weakly Rad-supplemented refinable module.
Then M is Rad-D12.

Proof. By Proposition 2.5.

Corollary 3.6. Every weakly Rad-supplemented refinable module is completely
Rad-D12.

Proof. This is a consequence of Proposition 3.5 and the fact that every direct
summand of a weakly Rad-supplemented refinable module is weakly Rad-
supplemented refinable.

LetM be an R-module. By P (M) we denote the sum of radical submodules
of M .

Proposition 3.7. Let M be a Rad-D12 module. If P (M) is a direct summand
of M , then P (M) is a Rad-D12 module.

Proof. Let M = P (M) ⊕ L for some submodule L of M . Let X be a sub-
module of P (M). By hypothesis, there exist a direct summand K of M and
an epimorphism α : K −→ M/(X ⊕ L) such that Kerα ⊆ Rad(K). It is
clear that M/(X ⊕ L) ∼= P (M)/X. Thus Rad(K/Kerα) = K/Kerα, and so
Rad(K) = K. Therefore K ⊆ P (M). This means that P (M) is Rad-D12.
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The following result gives a new characterization of direct summands hav-
ing Rad-D12.

Theorem 3.8. Let M = M1⊕M2. Then M2 is a Rad-D12 module if and only
if for every submodule N of M containing M1, there exist a direct summand K
of M2 and an epimorphism φ : M −→ M/N such that K is a direct summand
Rad-supplement of Kerφ in M .

Proof. Suppose that M2 is a Rad-D12 module. Let N ≤ M with M1 ⊆ N .
Consider the submodule N ∩M2 of M2. Then there exist a direct summand
K of M2 and an epimorphism α : K −→ M2/(N ∩ M2) such that Kerα ⊆
Rad(K). Note that M = N + M2 and K is a direct summand of M . Let
M = K ⊕ K ′ for some submodule K ′ of M . Consider the projection map
η : M −→ K and the isomorphism β : M2/(N ∩ M2) −→ M/N defined by
β(x + N ∩ M2) = x + N . Thus βαη : M −→ M/N is an epimorphism. Let
φ = βαη. Clearly, we have Kerφ = Kerα ⊕K ′. Therefore M = K +Kerφ.
Moreover K ∩Kerφ = Kerα ⊆ Rad(K).

Conversely, suppose that every submodule of M containing M1 has the
stated property. Let H be a submodule of M2. Consider the submodule
H ⊕ M1 of M . By hypothesis, there exist a direct summand K of M2 and
an epimorphism φ : M −→ M/(H ⊕ M1) such that M = K + Kerφ and
K ∩ Kerφ ⊆ Rad(K). Let f : K −→ M/(H ⊕ M1) be the restriction of
φ to K. Consider the isomorphism η : M/(H ⊕ M1) −→ M2/H defined by
η(m1 + m2 + (H ⊕ M1)) = m2 + H. Therefore ηf : K −→ M2/H is an
epimorphism. Let α = ηf . Clearly, Kerα = Kerf = K ∩ Kerφ. Thus
Kerα ⊆ Rad(K). Hence M2 is a Rad-D12 module.

4 Direct sums of Rad-D12 modules

We begin this section by giving an example showing that the class of Rad-D12

modules is not closed under direct sums.

Example 4.1. Let R be a discrete valuation ring and let K be its quotient
field. There exist a free module F and a submoduleX of F such that F/X ∼= K
since every module is a homomorphic image of a free module. Then F is not
Rad-⊕-supplemented by [5, Example 2.15]. Since R is a hereditary ring, then
F is hereditary. Therefore F cannot be Rad-D12 from Theorem 2.4. Note
that since F ∼= ⊕i∈IR and R is local, F is a direct sum of Rad-D12-modules.

Let M be a module. M is called a duo module if every submodule of M is
fully invariant. We next give a sufficient condition for arbitrary direct sums
of Rad-D12 modules to be Rad-D12.
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Theorem 4.2. Let M =
⊕

i∈I Mi be a duo module. If each Mi is Rad-D12,
then M is Rad-D12.

Proof. Let L be a submodule of M . Since M is a duo module we have L =⊕
i∈I(L∩Mi). Let i ∈ I. Because Mi is Rad-D12 and L∩Mi is a submodule

of Mi, there exist a direct summand Ki of Mi and an epimorphism αi :
Ki → Mi

L∩Mi
with Kerαi ⊆ Rad(Ki). Now we define the homomorphism

α :
⊕

i∈I Ki →
⊕

i∈I [
Mi

(L∩Mi)
] ∼= M

[
⊕

i∈I(L∩Mi)]
= M

L by ki1 + . . . + kin 7→
αi1(ki1) + . . . + αin(kin) with kij ∈ Kij for every j = 1, . . . , n. It is not hard
to check that α is an epimorphism with Kerα ⊆ Rad(

⊕
i∈I Ki) and

⊕
i∈I Ki

is a direct summand of M . It follows that M is Rad-D12.

Recall that a module M has Summand Intersection Property (SIP), if the
intersection of any two direct summands of M is again a direct summand of
M . By [10, Page 969], every duo module has SIP.

Remark 4.3. Being duo module in Theorem 4.2 is not necessary. The module
M = Z/2Z⊕Z/8Z in Example 3.4 is not a duo module (M doesn’t have SIP).
Also Z/2Z, Z/8Z and M are Rad-D12.
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