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Tzitzeica-Type centro-affine invariants in
Minkowski spaces

Alexandru Bobe, Wladimir G. Boskoff and Marian G. Ciuca

Abstract

In this article we introduce three centro-affine invariant functions
in Minkowski spaces. Tzitzeica curves and Tzitzeica surfaces may be
defined in this new context. Our main results allow us to understand
the connections between Tzitzeica curves and surfaces in Minkowski
spaces and the original Tzitzeica curves and surfaces from the Euclidian
space.

1 Introduction

Gheorghe Tzitzeica provided one of the first major contributions to affine dif-
ferential geometry in the early twentieth century when he published his results
on “S-surfaces”, later to be known as Tzitzeica surfaces [9, 10]. Indeed, these
works may be considered to be the starting point of the affine differential ge-
ometry as it can be seen in [4] and [6] (for further information on the pioneering
work of Titeica, see [1]).

In the sequel, we review this pioneering work of Tzitzeica, by introducing
the notion of Tzitzeica function for a curve and for a surface. All the results
are presented in a 3-dimensional Minkowski space.
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2 The Tzitzeica function for curves in R}

The space R} is defined as a space to be the usual three-dimensional R-vector
space consisting of vectors {(x1, z2, z3) |1, 2,23 € R}, but endowed with the
inner product
(X,Y), = —z1y1 + 2292 + 23y3.

This space is called the 3-dimensional Minkowski space ([5]). According to
the definitions from [5] the Minkowski norm is defined as || X||; = /[{(X, X),]
and two vectors X and Y are Minkowski orthogonal if (X,Y); =0.

More, consider X = (z1, z2,23) = Tl + To) + 23k and Y = (y1,Y2,y3) =
ylﬂ— ygf+ yglz. The Minkowski vectorial product X x; Y is defined by the
formula

- 7k
X X1 Y = T T2 T3
Y1 Y2 Y3

Let ¢ : I C R — R3 be a regular curve in the 3-dimensional Minkowski
space (that is [|¢(t)]|; # 0). Denote the torsion of the curve ¢ at the point ¢(t)
by Ks(c) (t), and denote the distance from the origin to the osculating plane
at the point ¢(t) by d.(t).

Lemma 2.1. Letc: I CR — R3, c(t) = (x(t),y(t), 2(t)) be a regular curve
in the 3-dimensional Minkowski space. Then we have the relation:

Ka(e)(t) = de(t) - Le(t),

where I.(t) = detle(®).c(®).c®) ¢ g function of the variable t.

(det(c(t),e(),c (1))

Proof. We'll first find the torsion of the curve in terms of the quantities
which appear in the analytic equations of the Frenet frame. According to [5]
the torsion of the curve is

IRCICORONI0)
Hé(t) 1 é(t)”l

Ka(e)(t)

On the other hand, the osculating plane at the point ¢(¢) is the plane spanned

by ¢(t) and ¢(t). Thus, d.(t) is the projection of ¢(t) onto the normal direction
of this plane, that is

_et) xaét) N\ _ (el®), ét) xa E1),
: ; lle(®) < é®ll,
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Putting this together with the expression for torsion, we have

Kap(e)(t) _ det(é(t), (1), €(1))
2(t

= = I.(4).0

d2(t) (det(c(t),C(t)aé(t)))2

Such kind of function appears in [7] and [8] for curves in Euclidian spaces
but expressed in terms of differential forms. A coordinate computation leads
to the formula above. In [7] and [8] is proved that the previous function is a
centro-affine invariant. Is this possible in our Minkowski context?

Definition 2.2. We call the function I. from lemma 2.1 the Tzitzeica func-
tion for the curve c: I C R — R} in the Minkowski space R}.

Definition 2.3. A centro-affine transformation of the curve ¢ : I C
R — R?, c(t) = (z(t),y(t),2(t)) is a curve h : I CR — R3, h(t) = c(t)- M,
where M € M3(R), det M # 0.

Definition 2.4. Let f.: I C R — R be a function associated to a curve c. f,
18 called an centro-affine tnvariant for the curve c if, for any centro-affine
transformation h, it exists k € R such that fr(t) =k - fc(t), YVt € I CR.

In the following we prove that the Tzitzeica function for a curve in the
Minkowski space R3 is a centro-affine invariant for the given curve.

Theorem 2.5. Let h: I C R — R$ be a centro-affine transformation of a
curve ¢ : I CR — RS, c(t) = (x(t),y(t), 2(t)). Then the Tzitzeica function
1. is a centro-affine invariant of the curve ¢, and furthermore it satisfies the
relation

1

Ih(t) = det M : Ic(t)'

Proof: Let M € M3(R) be a nonsingular matrix. Then the corresponding
centro-affine transformation of the curve ¢ has the form:

h(t) = c(t) - M = (z1(t), y1 (), 21(2)) -

The following equalities can be deduced after some computations,

det(h(t), h(t), h(t)) = det M - det(c(t), o(t), & (¢)),

det(h(t), h(t), h(t)) = det M - det(c(t), ¢(t), ¢ (¢)).
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Using the relationship between the torsion and the distance d.(t) found
in lemma 2.1, we can deduce the relation which the centro-affine transfor-

mation h(t) satisfies: I(t) — KeU®) _ _deth(®@h@.h@) = detM
i (®) (det(h(t),h(t),h(t)))2 (det M)*

det(e(D).E. W) _ 1 ()]
(det(e().ce@))” M )

Using the above result, we can obtain as a corollary the equivalent of the
theorem of Tzitzeica concerning curves in a Minkowski space.

Definition 2.6. A curve ¢ : I C R — R is called a Tzitzeica curve
in the 3-dimensional Minkowski space if the Tzitzeica function I. is constant
(Tzitzeica condition).

Corollary 2.7. The centro-affine transformation of a Tzitzeica curve is a
Tzitzeica curve. The relation between the constants is
1

I, = L.
P det M

Proof: We know from hypothesis that ¢ is a Tzitzeica curve, so Kégzgt) =

I. € R. Using theorem 2.5 we obtain that %@))@ = I € R, as needed.[]
h

Let us observe that a centro-affine transformation in a 3-Minkowski space
may change the type of the curve ¢, that is, if the speed vector initialy is a
temporal one, after such a transformation it can be a spatial one. Nevertheless,
the torsion in a point of the new curve h and the distance from the origin to

the osculating plane at the corresponding point can be computed and the
K (h)(t)
0

ratio %&)ﬁ) is a constant and according to our Corrolary 2.7 the constancy

ratio

makes sense. So, we can identify the curves ¢ for which the

is preserved for any centro-affine transformation. In fact, if the differential
equation I.(t) = const. is satisfied for a curve ¢, it is satisfied for any h,
h(t) = ¢(t) - M. In [7] the same type differential equation is satisfied by
Tzitzeica curves in an Euclidian space. That is, there is a same solution ¢ in
both cases. So, even if the geometric meaning of the curves may be different,
we can say that the curves from Euclidian space which satisfies the Tzitzeica
condition are curves which satisfies the Tzitzeica condition in Minkowski space
and viceversa. As an example, we can choose a Minkowski circle which is a
Tzitzeica curve in the Minkowski space; its equivalent in the Euclidian space it
is a equilateral hyperbola which is also a Tzitzeica curve, but in the Euclidian
space. Some other examples of Tzitzeica curves can be seen in [3]. The
geometric meaning of these objects depends on the geometry but they both
fullfiled the Tzitzeica condition.
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3 The Tzitzeica function for surfaces in R?

Let f: U = U C R? — R} be a surface in the Minkowski space R} given
by f(z,y) = (z,y,u(z,y)). We denote by Ky (p) the Gauss curvature of f at
the point p = (z,y) and by d; (p) the distance from the origin to the tangent
plane of the surface f at the point f ( ) Accordmg to [5] the formula for the

o - (£3)”
- (33‘) +(%Z)2+1|
by the Gauss map associated to f.

>, where € is a sign defined

Gausssian curvature is Ky (p) =

Lemma 3.1. The surface satisfies:

Ky (p)=dj(p)-Jr (p),

where

2
u  2%u _ [ 0%u
ox2  0y? Oz 0y
ou ou
‘U(ﬂc,y) s —ya,,

Jr(p)=c¢

—i
of

Proof: If we compute 5 X1 af we obtain the vector | 1

, that
Y

— O .y
SIFFIE

of of _ (of _of
is G X1 871/ = (E7_87y’1) .

Then the equation of the tangent plane in a given point (z,y,u(z,y)) is
~05(X —a) + (=5) (V =)+ (Z — u(,y)) = 0.

It means that the distance from the origin to the tangent plane of the
surface f in the point f(p) is:

R

5 .
au
\/’ 877,/) +1‘

82u‘02u 224 \?
If we compute 5{((17) we obtain e-2222v (8181’) 7 that is the J; (p) from
1 (P) |u(e,y)—2 52—y 52|

the enounce.lJ

Definition 3.2. We call the function J; from lemma 3.1 the Tzitzeica func-
tion for the surface f in the Minkowski space R3.
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Definition 3.3. A centro-affine transformation of a surface f is a

surface g : U = U C R?2 — R} given by

9(z,y) = f(z,y) - M,
where M € Ms(R), det M # 0.

Definition 3.4. Let Ay : U C R? — R be a function associated to a surface
f. Ay is called an centro-affine invariant for the surface f if, for any
centro-affine transformation g, it exists k € R such that Ay(p) = k- Af(p),
Vp e U C R2.

In the following we prove that the Tzitzeica function for a surface in the
Minkowski space R3 is an centro-affine invariant for the given surface.

Theorem 3.5. Let f : U = U C R? — R} be a surface and g a centro-
affine transformation of the surface f. Then the Tzitzeica function Jy is a
centro-affine invariant, and furthermore it satisfies the relation:

-1

Jg(P) = W )

Jr (p).-

Proof: Let us consider g a centro-affine transformation of a surface f given
by g(z,y) = f(x,y) - M, where M € M5(R), det M # 0.
The following equalities can be proved after computations

K, = (—det M)* - K;

and dg = |det M| - dy.
It rezults

K 1
Jy=t =~ O
I (et M) Y

Using the above theorem, we can obtain as a corollary the theorem of
Tzitzeica concerning surfaces.

[e]
Definition 3.6. A surface f : U = U C R?> — R$ is called Tzitzeica
surface in the Minkowski space R} if the Tzitzeica function Jy is constant.

Corollary 3.7. In a Minkowski 3-dimensional space a centro-affine transfor-
mation of a Tzitzeica surface is a Tzitzeica surface. Furthermore the centro-

affine invariant satisfies the relation J, = W -Jy.
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Proof: Knowing that f is a Tzitzeica surface we have that J; is constant,
and using theorem 3.5 we obtain immediatly the conclusion and the relation.[J
Let us see the connection with the Tzitzeica surfaces in the Euclidian space.

In [7] and [8] we can see an equivalent of the Tzitzeica invariant function. In co-

82u_8zu_ 224 \?

922 9y2 Oxdy
du du 4"

(u(w,y)—zm—ya—y)

That is the equivalent equation of the Tzitzeica surfaces in the Euclidian space
2 4
is 2y . Pu ( Oy ) = k(u(a:,y) — g du y%) . This formula is up to a

. . K . . .
ordinates, if we compute f we obtain the affine invariant
9

0z2 " oyz ~ \ Bzoy dzr

sign the function of Tzitzeica surfaces in Minkowski spaces. As in the case of
Tzitzeica curves, we can assert that objects which are Tzitzeica surfaces in the
Euclidian space are Tzitzeica surfaces in the Minkowski space, too, even if the
geometric meaning of the objects is different. The inverse is also true. As an
example let us consider the Minkowski sphere —224-y2?+22 = 1. It is easy to see
that this surface is a Tzitzeica surface in the Minkowski 3-dimensional space
R$, but the equation of this Minkowski sphere in the Euclidian 3-dimensional
space represents an hyperboloid which is different to the Euclidian sphere.
The Tzitzeica surface induced by the equation of the Euler’s line of a triangle
as in [2] is an example of Tzitzeica surface in a Minkowski space according to
our theory, too. Then the equations of Tzitzeica surfaces in Minkowski spaces
are equations of Tzitzeica surfaces in Euclidian spaces and viceversa.
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