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Some Fixed Point Theorems in G-metric Spaces

Sushanta Kumar Mohanta

Abstract

We prove some fixed point theorems for self mappings satisfying some

kind of contractive type conditions on complete G-metric spaces.

1 Introduction

The study of metric fixed point theory plays an important role because the
study finds applications in many important areas as diverse as differential
equations, operation research, mathematical economics and the like. Different
generalizations of the usual notion of a metric space were proposed by sev-
eral mathematicians such as Gähler [4, 5] (called 2-metric spaces) and Dhage
[2, 3] (called D-metric spaces). K.S.Ha et.al. [6] have pointed out that the
results cited by Gähler are independent, rather than generalizations, of the
corresponding results in metric spaces. Moreover, it was shown that Dhage’s
notion of D-metric space is flawed by errors and most of the results established
by him and others are invalid. These facts determined Mustafa and Sims [12] to
introduce a new concept in the area, called G-metric space. Recently, Mustafa
et.al. studied many fixed point theorems for mappings satisfying various con-
tractive conditions on complete G-metric spaces; see [9-15]. Subsequently,
some authors like Renu Chugh et.al.[1], W. Shatanawi [17] have generalized
some results of Mustafa et.al. [9, 10] and studied some fixed point results for
self-mapping in a complete G-metric space under some contractive conditions
related to a non-decreasing map φ : [0,+∞) → [0,+∞) with lim

n→∞

φn(t) = 0
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for all t ∈ (0,+∞). In the present work, we prove some fixed point theorems
for self-mappings on complete G-metric spaces. Our results generalize some
recent results in the setting of G-metric space.

2 Definitions and Preliminaries

We begin by briefly recalling some basic definitions and results for G-metric
spaces that will be needed in the sequel.

Definition 2.1. (see [8]) Let X be a non empty set, and let G : X ×X ×
X → R+ be a function satisfying the following axioms:

(G1)G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X, with x 6= y,

(G3)G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z 6= y,

(G4)G(x, y, z) = G(x, z, y) = G(y, z, x) = ··· (symmetry in all three variables),

(G5)G(x, y, z) ≤ G(x, a, a)+G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a generalized metric , or, more specifically a
G-metric on X, and the pair (X,G) is called a G-metric space.

Example 2.2. (see [8]) Let R be the set of all real numbers. Define G :
R×R×R → R+ by

G(x, y, z) =| x− y | + | y − z | + | z − x |, for all x, y, z ∈ X.

Then it is clear that (R,G) is a G-metric space.

Proposition 2.3. (see [8]) Let (X,G) be a G-metric space. Then for any
x, y, z, and a ∈ X, it follows that

(1) if G(x, y, z) = 0 then x = y = z,

(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),

(3) G(x, y, y) ≤ 2G(y, x, x),

(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),

(5) G(x, y, z) ≤ 2
3 (G(x, y, a) +G(x, a, z) +G(a, y, z)),
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(6) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

Definition 2.4. (see [8]) Let (X,G) be a G-metric space, let (xn) be a se-
quence of points of X, we say that (xn) is G-convergent to x if lim

n,m→∞

G(x, xn, xm) =

0; that is , for any ǫ > 0, there exists n0 ∈ N such that G(x, xn, xm) <

ǫ, for all n,m ≥ n0. We refer to x as the limit of the sequence (xn) and

write xn

(G)
−→ x.

Proposition 2.5. (see [8]) Let (X,G) be a G-metric space. Then, the
following are equivalent:

(1) (xn) is G-convergentto x.

(2) G(xn, xn, x) → 0, as n → ∞.

(3) G(xn, x, x) → 0, as n → ∞.

(4) G(xm, xn, x) → 0, as m,n → ∞.

Definition 2.6. (see [8]) Let (X,G) be a G-metric space, a sequence (xn)
is called G-Cauchy if given ǫ > 0, there is n0 ∈ N such that G(xn, xm, xl) <
ǫ, for all n,m, l ≥ n0 that is if G(xn, xm, xl) → 0 as n,m, l → ∞.

Proposition 2.7. (see [8]) In a G-metric space (X,G), the following are
equivalent.

(1) The sequence (xn) is G-Cauchy.

(2) For every ǫ > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ǫ for all
n,m ≥ n0.

Definition 2.8. (see [8]) Let (X,G) and (X
′

, G
′

) be G-metric spaces and
let f : (X,G) → (X

′

, G
′

) be a function, then f is said to be G-continuous at a
point a ∈ X if given ǫ > 0, there exists δ > 0 such that x, y ∈ X; G(a, x, y) <
δ implies G

′

(f(a), f(x), f(y)) < ǫ. A function f is G-continuous on X if and
only if it is G-continuous at all a ∈ X.

Proposition 2.9. (see [8]) Let (X,G) and (X
′

, G
′

) be G-metric spaces,
then a function f : X → X

′

is G-continuous at a point x ∈ X if and only if
it is G-sequentially continuous at x; that is, whenever (xn) is G-convergent to
x, (f(xn)) is G-convergent to f(x).

Proposition 2.10. (see [8]) Let (X,G) be a G-metric space. Then, the
function G(x, y, z) is continuous in all variables.

Definition 2.11. (see [8]) A G-metric space (X,G) is said to be G-complete
(or a complete G-metric space) if every G-Cauchy sequence in (X,G) is G-
convergent in (X,G).
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3 Main Results

In this section we present some fixed point theorems for self mappings satis-
fying various contractive conditions on complete G-metric spaces.

Theorem 3.1. Let (X,G) be a complete G-metric space, and let T : X −→
X be such that

G(T (x), T (y), T (z)) ≤ aG(x, y, z) + bG(x, T (x), T (x))

+cG(y, T (y), T (y)) + dG(z, T (z), T (z))

+emax























G(x, T (y), T (y)), G(y, T (x), T (x)),

G(y, T (z), T (z)), G(z, T (y), T (y)),

G(z, T (x), T (x)), G(x, T (z), T (z))























(1)

for all x, y, z ∈ X, where a, b, c, d, e ≥ 0 with a + b + c + d + 2e < 1. Then T

has a unique fixed point (say u) in X and T is G-continuous at u.

Proof. Let x0 ∈ X be an arbitrary point and define the sequence (xn) by
xn = Tn(x0). Assume xn 6= xn+1 for all n. Then by (1), we have

G(xn, xn+1, xn+1) ≤ aG(xn−1, xn, xn) + bG(xn−1, xn, xn)

+cG(xn, xn+1, xn+1) + dG(xn, xn+1, xn+1)

+emax























G(xn−1, xn+1, xn+1), G(xn, xn, xn),

G(xn, xn+1, xn+1), G(xn, xn+1, xn+1),

G(xn, xn, xn), G(xn−1, xn+1, xn+1)























.

So, it must be the case that,

G(xn, xn+1, xn+1) ≤























aG(xn−1, xn, xn) + bG(xn−1, xn, xn)

+cG(xn, xn+1, xn+1) + dG(xn, xn+1, xn+1)

+emax {G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)}























.

(2)
But by (G5), we have

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1).
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So, (2) becomes

G(xn, xn+1, xn+1) ≤ aG(xn−1, xn, xn) + bG(xn−1, xn, xn) + cG(xn, xn+1, xn+1)

+dG(xn, xn+1, xn+1) + e {G(xn−1, xn, xn) +G(xn, xn+1, xn+1)}

which implies that,

G(xn, xn+1, xn+1) ≤
a+ b+ e

1− c− d− e
G(xn−1, xn, xn). (3)

Let q = a+b+e
1−c−d−e

, then q < 1 since a + b + c + d + 2e < 1 and by repeated
application of (3), we have

G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1). (4)

Then, for all n,m ∈ N, n < m, we have by repeated use of the rectangle
inequality and (4) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤
(

qn + qn+1 + · · ·+ qm−1
)

G(x0, x1, x1)

≤
qn

1− q
G(x0, x1, x1).

Then, limG(xn, xm, xm) = 0, as n,m → ∞, since lim qn

1−q
G(x0, x1, x1) = 0,

as n,m → ∞. For n,m, l ∈ N , (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xl, xm, xm),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is a G-Cauchy
sequence. By completeness of (X,G), there exists u ∈ X such that (xn) is
G-convergent to u. Suppose that T (u) 6= u, then

G(xn, T (u), T (u)) ≤ aG(xn−1, u, u) + bG(xn−1, xn, xn)

+cG(u, T (u), T (u)) + dG(u, T (u), T (u))

+emax























G(xn−1, T (u), T (u)), G(u, xn, xn),

G(u, T (u), T (u)), G(u, T (u), T (u)),

G(u, xn, xn), G(xn−1, T (u), T (u))























.

Taking the limit as n → ∞, and using the fact that the functionG is continuous
on its variables, we have

G(u, T (u), T (u)) ≤ (c+ d+ e)G(u, T (u), T (u)),
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which is a contradiction since 0 ≤ c+ d+ e < 1. So, u = T (u).

For uniqueness of u, suppose that v 6= u is such that T (v) = v, then (1)
implies that

G(u, v, v) = G(T (u), T (v), T (v)) ≤ aG(u, v, v) + bG(u, u, u) + cG(v, v, v)

+dG(v, v, v) + emax























G(u, v, v), G(v, u, u),

G(v, v, v), G(v, v, v),

G(v, u, u), G(u, v, v)























.

So, it must be the case that,

G(u, v, v) ≤ aG(u, v, v) + emax {G(u, v, v), G(v, u, u)}

≤ aG(u, v, v) + emax {2G(v, u, u), G(v, u, u)}

= aG(u, v, v) + 2eG(v, u, u).

Thus,

G(u, v, v) ≤
2e

1− a
G(v, u, u).

Again by the same argument we will find

G(v, u, u) ≤
2e

1− a
G(u, v, v).

Thus, we have

G(u, v, v) ≤

(

2e

1− a

)2

G(u, v, v)

which implies that, u = v, since 0 ≤ 2e
1−a

< 1.

To see that T is G-continuous at u, let (yn) be any sequence in X such
that (yn) is G-convergent to u. For n ∈ N , we have

G(T (yn), T (u), T (yn)) ≤ aG(yn, u, yn) + bG(yn, T (yn), T (yn))

+cG(u, u, u) + dG(yn, T (yn), T (yn))

+emax























G(yn, u, u), G(u, T (yn), T (yn)),

G(u, T (yn), T (yn)), G(yn, u, u),

G(yn, T (yn), T (yn)), G(yn, T (yn), T (yn))























.
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But, G(yn, T (yn), T (yn)) ≤ G(yn, u, u) +G(u, T (yn), T (yn)).
Thus,

G(T (yn), T (u), T (yn)) ≤ aG(yn, yn, u) + (b+ d) {G(yn, u, u) +G(u, T (yn), T (yn))}

+e {G(yn, u, u) +G(u, T (yn), T (yn))}

which gives,

G(u, T (yn), T (yn)) ≤
b+ d+ e

1− b− d− e
G(yn, u, u) +

a

1− b− d− e
G(yn, yn, u).

Taking the limit as n → ∞, we see that G(u, T (yn), T (yn)) → 0 and so, by
Proposition 2.5, the sequence (T (yn)) is G-convergent to u = T (u). Therefore
Proposition 2.9 implies that T is G-continuous at u.

As an application of Theorem 3.1, we have the following Corollary.

Corollary 3.2. Let (X,G) be a complete G-metric space, and let T : X −→
X satisfies for some m ∈ N :

G(Tm(x), Tm(y), Tm(z)) ≤ aG(x, y, z) + bG(x, Tm(x), Tm(x))

+cG(y, Tm(y), Tm(y)) + dG(z, Tm(z), Tm(z))

+emax























G(x, Tm(y), Tm(y)), G(y, Tm(x), Tm(x)),

G(y, Tm(z), Tm(z)), G(z, Tm(y), Tm(y)),

G(z, Tm(x), Tm(x)), G(x, Tm(z), Tm(z))























for all x, y, z ∈ X, where a, b, c, d, e ≥ 0 with a + b + c + d + 2e < 1. Then T

has a unique fixed point (say u) in X and Tm is G-continuous at u.

Proof. From Theorem 3.1, we see that Tm has a unique fixed point (say u) in
X and Tm is G-continuous at u. Since

T (u) = T (Tm(u)) = Tm+1(u) = Tm(T (u)),

we have that T (u) is also a fixed point for Tm. By uniqueness of u, we get
T (u) = u.

Remark 3.3. We see that Theorem 3.1 is generalization of the Result
[10, Theorem 2.1], where [10, Theorem 2.1] obtained by taking e = 0 in Theo-
rem 3.1.
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Theorem 3.4. Let (X,G) be a complete G-metric space, and let T : X −→
X be such that

G(T (x), T (y), T (z)) ≤ a {G(x, T (y), T (y)) +G(y, T (x), T (x))}

+b {G(y, T (z), T (z)) +G(z, T (y), T (y))}

+c {G(z, T (x), T (x)) +G(x, T (z), T (z))}+ dG(x, y, z)

+emax {G(x, T (x), T (x)), G(y, T (y), T (y)), G(z, T (z), T (z))}

(5)

for all x, y, z ∈ X, where a, b, c, d, e ≥ 0 with 2a+ 2b+ 2c+ d+ 2e < 1. Then
T has a unique fixed point (say u) in X and T is G-continuous at u.

Proof. Let x0 ∈ X be an arbitrary point and define the sequence (xn) by
xn = Tn(x0). Assume xn 6= xn+1 for all n. Then by (5), we have

G(xn, xn+1, xn+1) ≤ a {G(xn−1, xn+1, xn+1) +G(xn, xn, xn)}

+b {G(xn, xn+1, xn+1) +G(xn, xn+1, xn+1)}

+c {G(xn, xn, xn) +G(xn−1, xn+1, xn+1)}+ dG(xn−1, xn, xn)

+emax {G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn+1, xn+1)}

≤ a {G(xn−1, xn, xn) +G(xn, xn+1, xn+1)}+ 2bG(xn, xn+1, xn+1)

+c {G(xn−1, xn, xn) +G(xn, xn+1, xn+1)}+ dG(xn−1, xn, xn)

+e {G(xn−1, xn, xn) +G(xn, xn+1, xn+1)}

which implies that,

G(xn, xn+1, xn+1) ≤
a+ c+ d+ e

1− a− 2b− c− e
G(xn−1, xn, xn). (6)

Let q = a+c+d+e
1−a−2b−c−e

, then q < 1 since 2a+2b+2c+d+2e < 1 and by repeated
application of (6), we have

G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1). (7)

Then for all n,m ∈ N, n < m, we have by repeated use of the rectangle
inequality and (7) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤
(

qn + qn+1 + · · ·+ qm−1
)

G(x0, x1, x1)

≤
qn

1− q
G(x0, x1, x1).
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Then, limG(xn, xm, xm) = 0, as n,m → ∞, since lim qn

1−q
G(x0, x1, x1) = 0,

as n,m → ∞. For n,m, l ∈ N , (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xl, xm, xm),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is a G-Cauchy
sequence. By completeness of (X,G), there exists u ∈ X such that (xn) is
G-convergent to u. Suppose that T (u) 6= u, then

G(xn, T (u), T (u)) ≤ a {G(xn−1, T (u), T (u)) +G(u, xn, xn)}

+b {G(u, T (u), T (u)) +G(u, T (u), T (u))}

+c {G(u, xn, xn) +G(xn−1, T (u), T (u))}+ dG(xn−1, u, u)

+emax {G(xn−1, xn, xn), G(u, T (u), T (u)), G(u, T (u), T (u))} .

Taking the limit as n → ∞, and using the fact that the function G is
continuous on its variables, we have

G(u, T (u), T (u)) ≤ (a+ 2b+ c+ e)G(u, T (u), T (u)),

which is a contradiction since 0 ≤ a+ 2b+ c+ e < 1. So, u = T (u).

For uniqueness of u, suppose that v 6= u is such that T (v) = v, then (5)
implies that

G(u, v, v) = G(T (u), T (v), T (v)) ≤ a {G(u, v, v) +G(v, u, u)}+ 2bG(v, v, v)

+c {G(v, u, u) +G(u, v, v)}+ dG(u, v, v)

+emax {G(u, u, u), G(v, v, v), G(v, v, v)}

= (a+ c) {G(u, v, v) +G(v, u, u)}+ dG(u, v, v).

So, it must be the case that,

G(u, v, v) ≤
a+ c

1− a− c− d
G(v, u, u).

Again by the same argument we will find

G(v, u, u) ≤
a+ c

1− a− c− d
G(u, v, v).

Thus, we have

G(u, v, v) ≤

(

a+ c

1− a− c− d

)2

G(u, v, v)
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which implies that, u = v, since 0 ≤ a+c
1−a−c−d

< 1.
To see that T is G-continuous at u, let (yn) be any sequence in X such

that (yn) is G-convergent to u. Then

G(T (yn), T (u), T (u)) ≤ a {G(yn, T (u), T (u)) +G(u, T (yn), T (yn))}

+b {G(u, T (u), T (u)) +G(u, T (u), T (u))}

+c {G(u, T (yn), T (yn)) +G(yn, T (u), T (u))}+ dG(yn, u, u)

+emax {G(yn, T (yn), T (yn)), G(u, T (u), T (u)), G(u, T (u), T (u))}

which gives,

G(T (yn), u, u) ≤ a {G(yn, u, u) + 2G(T (yn), u, u)}+ 2bG(u, u, u)

+c {2G(T (yn), u, u) +G(yn, u, u)}+ dG(yn, u, u)

+e {G(yn, u, u) + 2G(T (yn), u, u))} .

Thus, we deduce that,

G(T (yn), u, u) ≤
a+ c+ d+ e

1− 2a− 2c− 2e
G(yn, u, u).

Taking the limit as n → ∞, we see that G(T (yn), u, u) → 0 and so, by Propo-
sition 2.5, the sequence (T (yn)) is G-convergent to u = T (u). Therefore
Proposition 2.9 implies that T is G-continuous at u.

We see that Theorem 3.4 is generalization of the Result [10, Theorem 2.9],
where [10, Theorem 2.9] obtained by taking b = c = d = e = 0 in Theorem
3.4.

As an application of Theorem 3.4, we have the following results.

Corollary 3.5. Let (X,G) be a complete G-metric space. Suppose that
T : X −→ X satisfies for some m ∈ N :

G(Tm(x), Tm(y), Tm(z)) ≤ a {G(x, Tm(y), Tm(y)) +G(y, Tm(x), Tm(x))}

+b {G(y, Tm(z), Tm(z)) +G(z, Tm(y), Tm(y))}

+c {G(z, Tm(x), Tm(x)) +G(x, Tm(z), Tm(z))}

+dG(x, y, z) + emax























G(x, Tm(x), Tm(x)),

G(y, Tm(y), Tm(y)),

G(z, Tm(z), Tm(z))






















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for all x, y, z ∈ X, where a, b, c, d, e ≥ 0 with 2a+ 2b+ 2c+ d+ 2e < 1. Then
T has a unique fixed point (say u) in X and Tm is G-continuous at u.

Proof. The proof follows from Theorem 3.4 and the same argument used in
Corollary 3.2.

Corollary 3.6. (see [13]) Let X be a complete G-metric space. Suppose
there is k ∈ [0, 1) such that the map T : X → X satisfies

G(T (x), T (y), T (z)) ≤ k G(x, y, z),

for all x, y, z ∈ X. Then T has a unique fixed point (say u) and T is G-
continuous at u.

Proof. Result follows from Theorem 3.4 by taking a = b = c = e = 0 and d =
k.

Theorem 3.7. Let (X,G) be a complete G-metric space, and let T : X −→
X be a mapping which satisfies the following condition

G(T (x), T (y), T (z)) ≤ kmax























































G(x, T (x), T (x)), G(y, T (y), T (y)), G(z, T (z), T (z)),

G(x, T (y), T (y)), G(y, T (z), T (z)), G(z, T (x), T (x)),

G(x, T (z), T (z)), G(y, T (x), T (x)), G(z, T (y), T (y)),

G(x, T (y), T (z)), G(y, T (z), T (x)), G(z, T (x), T (y)),

G(x, y, T (z)), G(y, z, T (x)), G(z, x, T (y)), G(x, y, z)























































(8)
for all x, y, z ∈ X, and 0 ≤ k < 1

3 . Then T has a unique fixed point (say u)
in X and T is G-continuous at u.

Proof. Let x0 ∈ X be an arbitrary point and define the sequence (xn) by
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xn = Tn(x0). Assume xn 6= xn+1 for all n. Then by (8), we have

G(xn, xn+1, xn+1) ≤ kmax







































































G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn+1, xn+1),

G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1), G(xn, xn, xn),

G(xn−1, xn+1, xn+1), G(xn, xn, xn), G(xn, xn+1, xn+1),

G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1), G(xn, xn, xn+1),

G(xn−1, xn, xn+1), G(xn, xn, xn), G(xn, xn−1, xn+1),

G(xn−1, xn, xn)







































































.

So,

G(xn, xn+1, xn+1) ≤ kmax







G(xn−1, xn, xn), G(xn−1, xn+1, xn+1),

G(xn, xn, xn+1), G(xn−1, xn, xn+1)







.

(9)
But by (G5), we have

G(xn−1, xn, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn, xn+1)

≤ G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

and

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1).

So, (9) becomes

G(xn, xn+1, xn+1) ≤ k {G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)}

which implies that,

G(xn, xn+1, xn+1) ≤
k

1− 2k
G(xn−1, xn, xn). (10)

Let q = k
1−2k , then q < 1 since 0 ≤ k < 1

3 and by repeated application of (10),
we have

G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1). (11)
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Then for all n,m ∈ N, n < m, we have by repeated use of the rectangle
inequality and (11) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤
(

qn + qn+1 + · · ·+ qm−1
)

G(x0, x1, x1)

≤
qn

1− q
G(x0, x1, x1).

Then, limG(xn, xm, xm) = 0, as n,m → ∞, since lim qn

1−q
G(x0, x1, x1) = 0,

as n,m → ∞. For n,m, l ∈ N , (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xl, xm, xm),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is a G-Cauchy
sequence. By completeness of (X,G), there exists u ∈ X such that (xn) is
G-convergent to u. Suppose that T (u) 6= u, then

G(xn, T (u), T (u)) ≤ kmax







































































G(xn−1, xn, xn), G(u, T (u), T (u)), G(u, T (u), T (u)),

G(xn−1, T (u), T (u)), G(u, T (u), T (u)), G(u, xn, xn),

G(xn−1, T (u), T (u)), G(u, xn, xn), G(u, T (u), T (u)),

G(xn−1, T (u), T (u)), G(u, T (u), xn), G(u, xn, T (u)),

G(xn−1, u, T (u)), G(u, u, xn), G(u, xn−1, T (u)),

G(xn−1, u, u)







































































.

Taking the limit as n → ∞, and using the fact that the functionG is continuous
on its variables, we have

G(u, T (u), T (u)) ≤ kmax {G(u, T (u), T (u)), G(u, T (u), u)}

≤ kmax {G(u, T (u), T (u)), 2G(u, T (u), T (u))}

= 2k.G(u, T (u), T (u))

which is a contradiction since 0 ≤ k < 1
3 . So, u = T (u).

For uniqueness of u, suppose that v 6= u is such that T (v) = v, then (9)
implies that

G(u, v, v) = G(T (u), T (v), T (v)) ≤ kmax {G(u, v, v), G(v, u, u)} .
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So, it must be the case that,

G(u, v, v) ≤ k G(v, u, u).

Again by the same argument we will find

G(v, u, u) ≤ k G(u, v, v).

Thus, we have
G(u, v, v) ≤ k2 G(u, v, v)

which implies that, u = v, since 0 ≤ k < 1
3 .

To see that T is G-continuous at u, let (yn) be any sequence in X such
that (yn) is G-convergent to u. Then

G(T (yn), T (u), T (u)) ≤ kmax























































G(yn, T (yn), T (yn)), G(u, u, u), G(u, u, u),

G(yn, u, u), G(u, u, u), G(u, T (yn), T (yn)),

G(yn, u, u), G(u, T (yn), T (yn)), G(u, u, u),

G(yn, u, u), G(u, u, T (yn)), G(u, T (yn), u),

G(yn, u, u), G(u, u, T (yn)), G(u, yn, u), G(yn, u, u)























































which gives,

G(T (yn), u, u) ≤ kmax {G(yn, T (yn), T (yn)), G(u, T (yn), T (yn)), G(yn, u, u)} .

By (G5), we have

G(yn, T (yn), T (yn)) ≤ G(yn, u, u) +G(u, T (yn), T (yn)).

Thus, we deduce that,

G(T (yn), u, u) ≤ k {G(yn, u, u) +G(u, T (yn), T (yn))} .

So,

G(T (yn), u, u) ≤
k

1− 2k
G(yn, u, u).

Taking the limit as n → ∞, we see that G(T (yn), u, u) → 0 and so, by Propo-
sition 2.5, the sequence (T (yn)) is G-convergent to u = T (u). Therefore
Proposition 2.9 implies that T is G-continuous at u.
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As an application of Theorem 3.7, we have the following result.

Corollary 3.8. Let (X,G) be a complete G-metric space, and let T : X −→
X be a mapping which satisfies the following condition for some m ∈ N :

G(Tm(x), Tm(y), Tm(z)) ≤ kmax







































































































G(x, Tm(x), Tm(x)), G(y, Tm(y), Tm(y)),

G(z, Tm(z), Tm(z)), G(x, Tm(y), Tm(y)),

G(y, Tm(z), Tm(z)), G(z, Tm(x), Tm(x)),

G(x, Tm(z), Tm(z)), G(y, Tm(x), Tm(x)),

G(z, Tm(y), Tm(y)), G(x, Tm(y), Tm(z)),

G(y, Tm(z), Tm(x)), G(z, Tm(x), Tm(y)),

G(x, y, Tm(z)), G(y, z, Tm(x)),

G(z, x, Tm(y)), G(x, y, z)







































































































for all x, y, z ∈ X, and 0 ≤ k < 1
3 . Then T has a unique fixed point (say u)

in X and Tm is G-continuous at u.

Proof. The proof follows from the previous theorem and the same argument
used in Corollary 3.2.

Theorem 3.9. Let (X,G) be a complete G-metric space, and let T : X −→
X be a mapping which satisfies the following condition

G(T (x), T (y), T (z)) ≤ kmax























G(x, T (y), T (y)) +G(y, T (x), T (x)) +G(z, T (z), T (z)),

G(y, T (z), T (z)) +G(z, T (y), T (y)) +G(x, T (x), T (x)),

G(z, T (x), T (x)) +G(x, T (z), T (z)) +G(y, T (y), T (y))























(12)
for all x, y, z ∈ X, and 0 ≤ k < 1

3 . Then T has a unique fixed point (say u)
in X and T is G-continuous at u.

Proof. Let x0 ∈ X be an arbitrary point and define the sequence (xn) by
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xn = Tn(x0). Assume xn 6= xn+1 for all n. Then by (12), we get

G(xn, xn+1, xn+1) ≤ kmax























G(xn−1, xn+1, xn+1) +G(xn, xn, xn) +G(xn, xn+1, xn+1),

G(xn, xn+1, xn+1) +G(xn, xn+1, xn+1) +G(xn−1, xn, xn),

G(xn, xn, xn) +G(xn−1, xn+1, xn+1) +G(xn, xn+1, xn+1)























.

(13)
By (G5), we have

G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn) +G(xn, xn+1, xn+1).

So, (13) becomes

G(xn, xn+1, xn+1) ≤ k {G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)}

which implies that,

G(xn, xn+1, xn+1) ≤
k

1− 2k
G(xn−1, xn, xn). (14)

Let q = k
1−2k , then q < 1 since 0 ≤ k < 1

3 and by repeated application of (14),
we have

G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1). (15)

Then for all n,m ∈ N, n < m, we have by repeated use of the rectangle
inequality and (15) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤
(

qn + qn+1 + · · ·+ qm−1
)

G(x0, x1, x1)

≤
qn

1− q
G(x0, x1, x1).

Then, limG(xn, xm, xm) = 0, as n,m → ∞, since lim qn

1−q
G(x0, x1, x1) = 0,

as n,m → ∞. For n,m, l ∈ N , (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xl, xm, xm),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is a G-Cauchy
sequence. By completeness of (X,G), there exists u ∈ X such that (xn) is
G-convergent to u. Suppose that T (u) 6= u, then
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G(xn, T (u), T (u)) ≤ kmax























G(xn−1, T (u), T (u)) +G(u, xn, xn) +G(u, T (u), T (u)),

G(u, T (u), T (u)) +G(u, T (u), T (u)) +G(xn−1, xn, xn),

G(u, xn, xn) +G(xn−1, T (u), T (u)) +G(u, T (u), T (u))























.

Taking the limit as n → ∞, and using the fact that the functionG is continuous
on its variables, we have

G(u, T (u), T (u)) ≤ 2k G(u, T (u), T (u))

which is a contradiction since 0 ≤ k < 1
3 . So, u = T (u).

To prove uniqueness of u, suppose that v 6= u is such that T (v) = v, then

G(u, v, v) ≤ kmax























G(u, v, v) +G(v, u, u) +G(v, v, v),

G(v, v, v) +G(v, v, v) +G(u, u, u),

G(v, u, u) +G(u, v, v) +G(v, v, v)























.

So, it must be the case that,

G(u, v, v) ≤ k {G(u, v, v) +G(v, u, u)}

which implies that,

G(u, v, v) ≤
k

1− k
G(v, u, u).

Again by the same argument we will find

G(v, u, u) ≤
k

1− k
G(u, v, v).

Thus, we deduce that,

G(u, v, v) ≤

(

k

1− k

)2

G(u, v, v)

which implies that, u = v, since 0 ≤ k < 1
3 .
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To see that T is G-continuous at u, let (yn) be any sequence in X such
that (yn) is G-convergent to u. Then

G(T (yn), T (u), T (u)) ≤ kmax







































































G(yn, T (u), T (u)) +G(u, T (yn), T (yn))

+G(u, T (u), T (u)),

G(u, T (u), T (u)) +G(u, T (u), T (u))

+G(yn, T (yn), T (yn)),

G(u, T (yn), T (yn)) +G(yn, T (u), T (u))

+G(u, T (u), T (u))







































































which gives,

G(T (yn), u, u) ≤ kmax {G(yn, u, u) +G(u, T (yn), T (yn)), G(yn, T (yn), T (yn))} .
(16)

By (G5), we have

G(yn, T (yn), T (yn)) ≤ G(yn, u, u) +G(u, T (yn), T (yn)).

Thus, (16) becomes

G(T (yn), u, u) ≤ k {G(yn, u, u) +G(u, T (yn), T (yn))} . (17)

Again by (G5), we have

G(u, T (yn), T (yn)) ≤ 2G(T (yn), u, u).

Therefore (17) implies that

G(T (yn), u, u) ≤ k {G(yn, u, u) + 2G(T (yn), u, u}

and we deduce that

G(T (yn), u, u) ≤
k

1− 2k
G(yn, u, u).

Taking the limit as n → ∞, we see that G(T (yn), u, u) → 0 and so, by Propo-
sition 2.5, the sequence (T (yn)) is G-convergent to u = T (u). Therefore
Proposition 2.9 implies that T is G-continuous at u.

Some results in the literature related to Theorem 3.7 and Theorem 3.9 are
available in [9].



SOME FIXED POINT THEOREMS IN G-METRIC SPACES 303

Corollary 3.10. Let (X,G) be a complete G-metric space, and let T :
X −→ X be a mapping which satisfies the following condition for some m ∈ N :

G(Tm(x), Tm(y), Tm(z)) ≤ kmax







































































G(x, Tm(y), Tm(y)) +G(y, Tm(x), Tm(x))

+G(z, Tm(z), Tm(z)),

G(y, Tm(z), Tm(z)) +G(z, Tm(y), Tm(y))

+G(x, Tm(x), Tm(x)),

G(z, Tm(x), Tm(x)) +G(x, Tm(z), Tm(z))

+G(y, Tm(y), Tm(y))







































































for all x, y, z ∈ X, and 0 ≤ k < 1
3 . Then T has a unique fixed point (say u)

in X and Tm is G-continuous at u.

Proof. The proof follows from the previous theorem and the same argument
used in Corollary 3.2.

Theorem 3.11. Let (X,G) be a complete G-metric space, and let T :
X −→ X be a mapping which satisfies the following condition

G(T (x), T (y), T (z)) ≤ kmax























G(x, T (y), T (y)) +G(y, T (x), T (x)) +G(z, T (x), T (y)),

G(y, T (z), T (z)) +G(z, T (y), T (y)) +G(x, T (y), T (z)),

G(z, T (x), T (x)) +G(x, T (z), T (z)) +G(y, T (z), T (x))























for all x, y, z ∈ X, and 0 ≤ k < 1
4 . Then T has a unique fixed point (say u)

in X and T is G-continuous at u.

Proof. The proof follows from the argument similar to that used in Theorem
3.9.

Theorem 3.12. Let (X,G) be a complete G-metric space, and let T :
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X −→ X be a mapping which satisfies the following condition

G(T (x), T (y), T (z)) ≤ kmax























G(x, T (y), T (y)) +G(y, T (x), T (x)) +G(x, y, T (z)),

G(y, T (z), T (z)) +G(z, T (y), T (y)) +G(y, z, T (x)),

G(z, T (x), T (x)) +G(x, T (z), T (z)) +G(z, x, T (y))























for all x, y, z ∈ X, and 0 ≤ k < 1
5 . Then T has a unique fixed point (say u)

in X and T is G-continuous at u.

Proof. The proof can be obtained by the argument similar to that used in
Theorem 3.9.
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