An. St. Univ. Ovidius Constanta Vol. 20(1), 2012, 275-284

The Gateaux derivative and orthogonality in

Coo

Salah Mecheri and Hacene Mecheri

Abstract

The general problem in this paper is minimizing the Csc— norm of
suitable affine mappings from B(H) to Cs, using convex and differential
analysis (Gateaux derivative) as well as input from operator theory. The
mappings considered generalize the so-called elementary operators and
in particular the generalized derivations, which are of great interest by
themselves. The main results obtained characterize global minima in
terms of (Banach space) orthogonality.

1 Introduction

The general problem in this paper is minimizing the C'xc— norm of suitable
affine mappings from B(H) to Cy, using convex and differential analysis
(Gateaux derivative) as well as input from operator theory. The mappings
considered generalize the so-called elementary operators and in particular the
generalized derivations, which are of great interest by themselves. The main
results obtained characterize global minima in terms of (Banach space) or-
thogonality, and constitute an interesting combination of infinite-dimensional
differential analysis, operator theory and duality. This leads us to characterize
the orthogonality in the sense of Birkhoof in Cy,. Let E be a complex Banach
space. We first define orthogonality in E. We say that b € F is orthogonal to
a € F if for all complex A there holds

lla+ bl > [lal| - (1.1)
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This definition has a natural geometric interpretation. Namely, b_La if and only
if the complex line {a + A\b | A € C} is orthogonal to the open ball K (0, ||al|),
i.e., if and only if this complex line is a tangent one. Note that if b is orthogonal
to a, then a need not be orthogonal to b. If E is a Hilbert space, then from
(1.1) follows (a,b) = 0, i.e., orthogonality in the usual sense. Recall [1] that
the norm ||.|| of the Banach space V is said to be Gateaux differentiable at a
non-zero element x € V' if

e+ ]~ el

lim " = ReD(x,y)

for all y € V and t € R. Here R denotes the set of reals, Re denotes the real
part and D(z is the unique support functional (in the dual space V*) such
that [|D(z)|| = 1 and D(x,x) = ||=|| [4, 7]. It is well known (see [8] and the
references therein) that for 1 < p < oo, the von Neumann-Schatten class C),
is a uniformly convex Banach space. Therefore every non-zero T' € C), is a
smooth point and in this case the support functional of T"is given by

TPt uxe

D(T,X) =tr —
[l

, (1.2)

for all X € C), where T'= U |T| is the polar decomposition of T. The first re-
sult concerning the orthogonality in a Banach space was given by Anderson[2]
showing that if A is a normal operator on a Hilbert space H, then AS = SA
implies that for any bounded linear operator X there holds

IS+ AX — X A|| > ||S]|. (1.3)

This means that the range of the derivation 64 : B(H) — B(H) defined by
04(X) = AX— X Ais orthogonal to its kernel. This result has been generalized
in two directions: by extending to the class of elementary mappings

E:B(H)— B(H); E(X)= zn:AiXBi

and

E:B(H)— B(H); E(X)=) AXB;- X,

i=1
where (Aj, As,...A,) and (B, Ba, ...B,,) are n— tuples of bounded operators
on H, and by extending the inequality (1.3) to C)-classes with 1 < p < oo
see [9], [12]. The Géateaux derivative concept was used in [6, 9, 10, 15] and
[11]. In all of the above results A was not arbitrary; in fact, certain normality-
like assumptions have been imposed on A. A characterization of T' € C,, for
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1 < p < oo, which are orthogonal to R(d4 | Cp) (the range of 64 | Cp) for a
general operator A has been carried out by F. Kittaneh [8], who showed that,
if T has the polar decomposition T'= U |T'|, then

1T+ 64X, = IT1,, (1.4)

for all X € C,, (1< p < o0), if and only if, |T["~" U* € ker d 4.

Let Coo be the class of compact operators with ||T|| = supy =1 [|Tf]]
denoting the usual operator norm. In order to characterize those operators
which are orthogonal to the range of a derivation in Cw. First we characterize
the global minimum of the map

X = IS+ o(X)l¢. » ¢ is a linear map in B(H),

in Cy, by using the Gateaux derivative. These results are then applied to char-
acterize the operators S € Cy, which are orthogonal to the range of elementary
operators.

2 Preliminaries

Let B(H) denote the algebra of all bounded linear operators on a complex
separable and infinite dimensional Hilbert space H and let T' € B(H) be
compact, and let s1(T) > so(T) > ... > 0 denote the singular values of T' ,

i.e., the eigenvalues of |T'| = (T*T)% arranged in their decreasing order. The
operator T is said to be belong to the Schatten p-classes C), if

o} P

17N, = lz si(T)"

i=1

= [tr(T)?)7 < 00, 1<p< oo,

where tr denotes the trace functional. Hence C; is the trace class, Cy is the
Hilbert-Schmidt class, and C., corresponds to the class of compact operators
with
1Tl = 5:(T") = sup || Tf]
llfl=1

denoting the usual operator norm. For the general theory of the Schatten
p-classes the reader is referred to [16]. We state the following theorem which
we will use in proving our main result Theorem 3.2. Recall that the polar
decomposition of A € B(H) is A = U|A|, where U is a partial isometry,
ker U = ker(A*A) and A*A = |A|. This decomposition is unique.

Theorem 2.1 ([7]). Let X,Y € Cw. Then, there holds
D(X;Y) = max{Re(U"Y f, f)},

Ifl=1
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where X = U |X| is the polar decomposition of X and T is the subspace in
which X € Cy attains its norm.

Theorem 2.2. [7] Let (V,||-||) be an arbitrary Banach space and F : V — R.
If F has a global minimum at v € V, then

DF(v;y) >0,
forally e V.

3 Main Results

Let X be a Banach space, ¢ a linear map X — X, and ¢(x) = ¢(x) + s for
some element s € X. Use the notation

1
D(z;y) = lm —([lz +ty]| —[|z[))-

= 1li
t—0

Recall that the rank one operator f ® g is defined by f® g : @ — (z, f)g

and tr[T(f ® g)] = (T'g, f). The following theorem is a simple consequence of

the known result in convex analysis (the necessary and sufficient condition for
optimality)

Theorem 3.1. The map (Fy)(x) = || ()| has a global minimum at x € X
if and only if
D(¥(z);é(y)) 20, Vy € X. (3.1)

Now we are ready to prove our first result in C-classes. It gives a neces-
sary and sufficient optimality condition for minimizing F.

Let ¢ : B(H) — B(H) be a linear map, that is, ¢(aX + 8Y) = agp(X) +
Bo(Y), for all a, §, XY, and let S € C. Put

U={XeB(H): ¢X)eCx}.
Let ¥ : U — C defined by
B(X) = S+ 6(X).

Define the function Fy : U — R by Fy(X) = [(X)o_-
In the following theorem we characterize the global minimum of F, on C,
when ¢ is a linear map satisfying

tr(Xp(Y)) = tr(¢*(X)Y), for all X, Y € Cae, (3.2)

where ¢* is an appropriate conjugate of the linear map ¢. Recall that (3.2) is
the definition of the adjoint mapping ¢* of ¢.
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An example of ¢ and ¢* which satisfy condition (3.2) is given by:
The elementary operator E : J — J defined by

E(X) = Xn: A; X B;,
=1

where (41, As, ..., Ay,) and (By, Bs, ..., B,) are n—tuples of bounded Hilbert
space operators and J is a separable ideal of compact operators associated
with some unitarily invariant norm. In [7], Keckic showed that the conjugate
operator E* : J* — J* of E has the form

E*(X) = Z B: X A;,
i=1

and that E and E* satisfy condition (3.2).

Theorem 3.2. Let V € Cy be a smooth point and let (V) have the polar
decomposition (V) = U [¢(V)| and let f € T'. Then Fy, has a global minimum
on Coo at 'V if and only if (f @ U f) € ker ¢*.

Proof. Let V € C be a smooth point and let (V) have the polar decompo-
sition ¥(V) = U |[(V)].
Assume that Fy, has a global minimum on C at V. Then

D@ (V);0(Y)) =0, (3.3)
forall Y € Cx. Then VY € Cy, we get

max {Re[(U"¢(Y) f, f)]} = 0.
[Ifll=1

Re(tr(f @ Uf)p(Y)) >0, for allY € Cw. (3.4)
Since the map ¢ satisfies (3.2), one has

tr((f@Uf)o(Y)) = tr(¢™(f @ UL)Y).
Then (3.4) is equivalent to

tr(p*(f@QUS)Y) >0, for allY € Cy.
Equivalently, on taking Y = h ® g we get,

Re(p*(f @ Uf)g,h) >0, for allg,h € H.
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As h, g are arbitrary we can easily check that
Re(¢*(f @ Uf)g,h) =0, for allg,h € H.

Thus ¢*(f@Uf) =0, ie., fQUS € ker ¢*. Conversely, let f @ Uf € ker ¢*,
then tr((f @ Uf)p(Y)) =0, forall Y € C. Or tr(¢*(f @ Uf)Y) =0, for all
Y € C. By taking Y = h® g we get, Retr{¢*(f@Uf)g,h) =0, for all h,g €
H. As h,g are arbitrary we can easily check that Retr{¢*(f @ Uf)g,h) > 0,
for all h,g € H. Equivalently Retr(¢*(f @ Uf)Y = Retr((f @ Uf)p(Y)) >0
for all Y € Cw. Now as Y is taken arbitrary, we get (3.3), which completes
the proof of the second part of the theorem. O

We state our first corollary of Theorem 3.2. Let ¢ = d4 g, where 4 B
: B(H) — B(H) is the generalized derivation defined by 64 p(X) = AX-XB.

Corollary 3.1. Let V € Cu, ¥(V) has the polar decomposition ¥(V) =
Uyp(V)| and let f € T. Then Fy has a global minimum on Cs at V', if and
only if (f @Uf) € kerdp~ a-.

Proof. Tt is easily seen that fQU f € ker¢* is equivalent to tr((fQU f)o(Y)) =
0 O

This result may be reformulated in the following form where the global
minimum V does not appear. It characterizes the operators V' in C which
are orthogonal to the range of the derivation 4 5. Let I' be the subspace in
which the operator S € C attains its norm

Theorem 3.3. Let S € Cu, ¥(S) has the polar decomposition (S) =
U|¥(S)| and let f € T. Then

[+ (AX = XB)lc = [¥S)lc., -
(fRUf) € kerdp« a+, for all X € Cw .
As a corollary of this theorem we have

Corollary 3.2. Let S € Co Nkerda p, ¥(S) has the polar decomposition
W(S) =U |¢(S)| and let f € T'. Then the two following assertions are equiva-
lent:

1.
IS+ (AX = XB)|l o > |Slle » for all X € Cw.

2. (f® Uf) € keréB*’A*.
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Remark 3.1. We point out that, thanks to our general results given previ-
ously with more general linear maps ¢, Theorem 3.3 and its Corollary 3.2 are
still true for more general classes of operators than da g such as the elemen-

tary operators E(X) and E (X). Note that Theorem 3.2 and Corollary 3.1
generalize the results given in [8]

Remark 3.2. Since Cs contains C, (0 < p < o0) and if I # {0}, then
Cos DI D F(H), where F(H) is the set of all finite rank operators and I is
a bilateral ideal of B(H). These show that our results in Coo generalize some
results in the literature concerning the orthogonality in the sense of Birkhoff

(see [8], [9])-

Now we will present an other characterization of the orthogonality in the
sense of Birkhoof.

Theorem 3.4. Let S|Y € Cy and f € T, where S = U|S| is a smooth point
in C. The following conditions are mutually equivalent.

(i) The map Fy has a global minimum on Cs at S;

(it) maxyer, || fi=1 Re (#(Y) f,Uf) = 0;

(111) tr((f QUo(Y)) =0 for all Y € Cu;

(iv) p(Y)f LS.

Proof. (i) < (ii). Applying Theorem 3.2 by taking into account Theorem 3.1.
(ii) < (iii). (See the proof of Theorem 3.2)
(ii) < (iv) Let T be the subspace where S attains its norm. Note that the
set

{(X oM )1 FeT: |fl =1},

is the numerical range of X*¢(Y") on the subspace I', which has in the complex
plane, such a position that it contains at least one value with positive real part,
under all rotation around the origin. By Toeplitz -Haussdorf Theorem the
numerical range is a closed convex set. Hence the condition (ii) is equivalent
to the condition that the numerical range of the operator X*¢(Y) contains
the origin. Since the vectors U f and S f always have the same direction. Thus
(iv) is equivalent to (ii). Notice that for ¢ € T" there holds Sf = ||S||{Uf. O

As consequences of the above theorem we obtain.

Corollary 3.3. Let p(Y) =AY —YB, S,Y € Cy and let f € T, where S =
U|S| is a smooth point in Cws,. Then the following conditions are equivalent.
(i) The map ||S + AY — Y B|| has a global minimum on Cs at S;
(ZZ) maxgser, ||f||=1 Re <(AY — YB)f, Uf> >0, VY € Cx;
(iii) tr((f @ Uf)AY —=YB) =0, VY € Cw;
(iv) (AY =Y B)fL1Sf, VY € C.
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If we assume that S € kerds p we obtain.

Corollary 3.4. Let ¢(Y) = AY — Y B, where S,Y € C, S = U|S| is
a smooth point in C and let f € T'. Then the following conditions are
equivalent.

(i) ||S+AY =Y B|| > ||S]|, VS € ker 64 B;

(’LZ) maxyrerp, [|£]]=1 Re <(AY — YB)f, Uf> > O, VY € Coo;

(iii) tr((f @ Uf)AY —YB) =0, VY € Cy;

(iv) (AY —YB)fLSf, VY € Cy

If we take ¢(Y) =Y, we obtain the following theorem which characterize
the orthogonality in the sense of Birkhoof of two operators in Cy.

Corollary 3.5. Let S,Y € Cy, where S is a smooth point in Cs and let
p € I'. Then the following conditions are mutually equivalent.

(i) Y LS in the sense of Birkhoof;

(ii) maxyer, | fj=1 Re (Y f,Uf) >0, VY € Cq;

(iii) tr((f @ Uf)Y) =0, VY € Cu;

()Y fLSf, VY € Cw.

Remark 3.3. Note that a related result to Corollary 3.5 has been given by L.
Gagek et al [5, Theorem 2.1].
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