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Roman domination perfect graphs

Nader Jafari Rad, Lutz Volkmann

Abstract

A Roman dominating function on a graph G is a function f : V(G) —
{0, 1,2} satisfying the condition that every vertex u € V(G) for which
f(u) = 0 is adjacent to at least one vertex v € V(G) for which f(v) = 2.
The weight of a Roman dominating function is the value f(V(G)) =
> uev(a) f(w). The Roman domination number vr(G) of G is the min-
imum weight of a Roman dominating function on G. A Roman domi-
nating function f : V(G) — {0, 1,2} can be represented by the ordered
partition (Vo, Vi, V2) of V(G), where V; = {v € V(G)| f(v) = i} for
it =0,1,2. A Roman dominating function f = (Vo, V1, V2) on a graph G
is an independent Roman dominating function if V3 U V4 is an indepen-
dent set. The independent Roman domination number iz (G) of G is the
minimum weight of an independent Roman dominating function on G.
In this paper, we study graphs G for which yr(G) = ir(G). In addition,
we investigate so called Roman domination perfect graphs. These are
graphs G with yr(H) = ir(H) for every induced subgraph H of G.

1 Introduction

Let G = (V(G),E(G)) be a simple graph of order n. We denote the open
neighborhood of a vertex v of G by Ng(v), or just N(v), and its closed neigh-
borhood by Nglv] = Nv]. For a vertex set S C V(G), N(S) = UyesN(v)
and N[S| = UyegN[v]. The degree deg(z) of a vertex x denotes the number
of neighbors of z in G, and A(G) is the mazimum degree of G. Also 6(G)
is the minimum degree of G. A set of vertices S in G is a dominating set if
N[S] = V(G). The domination number v(G) of G is the minimum cardinality
of a dominating set of G. If S is a subset of V(G), then we denote by G[S]

Key Words: Domination, Roman domination, Independent Roman domination
Mathematics Subject Classification: 05C69

167



168 NADER JAFARI RAD, LUTZ VOLKMANN

the subgraph of G induced by S. We write K,, for the complete graph of order
n. By G we denote the complement of the graph G. A subset S of vertices is
independent if G[S] has no edge. For notation and graph theory terminology
in general we follow [5] or [9].

A function f : V(G) — {0, 1,2} is a Roman dominating function (or just
RDF) if every vertex u for which f(u) = 0 is adjacent to at least one vertex v
for which f(v) = 2. The weight of a Roman dominating function is the value
fV(G)) = Yuevg) [(uw). The Roman domination number of a graph G,
denoted by vr(G), is the minimum weight of a Roman dominating function
on G. A Roman dominating function f : V(G) — {0, 1,2} can be represented
by the ordered partition (Vp, Vi, V2) of V(G), where V; = {v € V(G) | f(v) =i}
for i = 0,1,2. A function f = (Vp, Vi, V2) is called a yp-function (or yr(G)-
function when we want to refer f to G) if it is a Roman dominating function
and f(V(G)) = vr(G). Roman domination has been studied, for example, in
3, 2, 6, 7].

Independent Roman dominating functions in graphs were studied by Adabi
et al. in [1]. A RDF f = (V,,V4,V2) in a graph G is an independent RDF,
or just IRDF, if V; U V4 is independent. The independent Roman domination
number ig(G) of G is the minimum weight of an IRDF of G. An IRDF with
minimum weight in a graph G will be referred to as an ig-function. The
definitions imply that ygr(G) < ig(G) for any graph G.

In this paper, we study graphs G for which yg(G) = ir(G). In addition,
we investigate so-called Roman domination perfect graphs. These are graphs
G with yr(H) = ir(H) for every induced subgraph H of G. We frequently
use the following.

Lemma 1. ([1]) Let f = (Vo,V1,Va) be a RDF for a graph G. If Vs is
independent, then there is an independent RDF g for G such that w(g) < w(f).

2 On graphs G with 7z(G) = ig(G)

We start with characterizations of graphs G with ir(G) = 2, ir(G) = 3,
ir(G) =4 and ig(G) = 5. The proof is straightforward, and so is omitted.

Proposition 2. (1) For a graph G of order n > 2, ir(G) = 2 if and only if
G=K; or A(G)=n—1.

(2) For a graph G of order n > 3, ir(G) = 3 if and only if either G = K3
or A(G) =n—2.

(8) For a graph G of order n > 4, ir(G) = 4 if and only if one of the
following conditions holds:
(i) G = K.

(1)) A(G) =n —3, and G contains a vertex v of maximum degree such that
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GlV(G) = N[v]] = Ka.
(i) A(G) < n — 3 and there are two nonadjacent vertices u,v in G such that
Nelu] U Ne[v] = V(G).

(4) For a graph G of order n > 5, igr(G) = 5 if and only if one of the
following conditions hold:
(i) G = Ks.
(i) A(G) < n—4 and |Ng[z]UNgy]| < |[V(G)|—1 for all pairs of nonadjacent
vertices x,y € V(G). In addition, there are two nonadjacent vertices u,v in
G such that |Ng[u] U Ng[v]| = |[V(G)| — 1 or G contains a vertex v of degree
n — 4 such that G[V(G) — N[v]] = K3.

According to Lemma 1, the following is obviously verified.

Lemma 3. For a graph G, yr(G) = ir(G) if and only if there is a yr-function
=MW, V1, Va) for G such that G[V,] has no edge.

We note that a forbidden subgraph characterization for the graphs G hav-
ing 7r(G) = igr(G) cannot be obtained since for any graph G, the addition
of a new vertex that is adjacent to all vertices of G produces a new graph H
with ’yR(H) = ZR(H) = 2.

Theorem 4. Let k > 2 be an integer. If a graph G of order n > 1 does not
contain the star Ky 41 as an induced subgraph, then

ir(G) < (k= 1)a(G) — 2(k — 2).

Proof. Let f = (Vp,V1,Va) be a vyg-function for G. Let I be a maximal
independent subset of V5. Then [ is a dominating set for V5. Let X =
V(G) — (N[I]U V), and let Y be a maximal independent subset of X. Then
Y is a dominating set for X. Since G is Kj jy1-free, any vertex of V5 — I is
adjacent to at most k — 1 vertices of Y. We deduce that |Y| < (k—1)|V, —I].
Now define g : V(G) — {0,1,2} by g(v) =2 ifv € TUY, g(v) =1 if v € V7,
and g(v) = 0 otherwise. Then ¢ is a RDF for G. Now

w(g) < 2(k—=1D[Va—TI[+2[I[ + W]
= 2(k = 1)Va| = 2(k = 2)[I[ + [W]
< 2k = D)|Va| = 2(k = 2)[I[ + (k = D)VA]
= (k=1DEVa|+ W) = 2(k = 2]
< (k=1)r(G) —2(k - 2),

Now the result follows by Lemma 1. O
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Next we will list some properties of the K y1-free graphs G with ig(G) =
(k—1)yr(G) —2(k—2). Of course, we may assume that k& > 3, since for k = 2
it is the well-known family of claw-free graphs.

If ir(G) = (k—1)yr(G) —2(k — 2), then, using the notation of the proof of
Theorem 4 equality holds at each point in the above sequence of inequalities.

The equality 2(k — 2)|I| = 2(k — 2) implies that |I| =1 for every choice of
I, and thus G[V4] is complete.

The equality |V;| = (k—1)|V1| leads to |Vi| = 0. This implies that yr(G) =
2|Va|. Because of |Y| = (k — 1)|Va — I|, we note (i) that every maximal
independent set Y in G[X] has (k — 1)(|V2| — 1) vertices, with exactly k — 1
vertices adjacent to each vertex of V5 — I. Furthermore, every vertex in X is
joined to exactly one vertex of V5 — I, otherwise, Y can be chosen to contain
a vertex joined to at least two vertices of V2 — I, contradicting (i).

As a consequence of Theorem 4, we obtain the following corollary.

Corollary 5. If G is a claw-free graph, then yr(G) = ir(G).

Since any line graph is claw-free, Corollary 5 implies that vr(L(G)) =
ir(L(G)), where L(G) is the line graph of G.

3 Roman domination perfect graphs

In 1990, Sumner [8] defines a graph G to be domination perfectif v(H) = i(H)
for any induced subgraph H of G, where i(H) is the independent domination
number of H. Fulman [4] showed that the absence of all of the eight induced
subgraphs of Figure 1 in G is sufficient for G to be domination perfect.

Theorem 6. (Fulman [4] 1993) If a graph G does not contain any of the
graphs in Figure 1 as an induced subgraph, then G is domination perfect.

G1 G2
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We next consider a closely related conclé})%l.lr?Al‘graph G is called Roman
domination perfect if ygr(H) = ig(H) for any induced subgraph H of G. For
x € X CV(G), we define I(z,X) = N[z] — N[X — {«}]. Note that I(z, X)
is the set of vertices dominated by x but not by the rest of X. Corollary 5
implies that if G' has no induced subgraph isomorphic to the claw K 3, then
G is domination perfect. Following the ideas in [4] and [10], we now prove an
analogue to Theorem 6.

Theorem 7. If a graph G does not contain any of the graphs in Figure 1 as
an induced subgraph, then G is Roman domination perfect.

Proof. Tt suffices to prove that if G does not contain the graphs in Figure 1
as induced subgraphs, then yz(G) = igr(G). Suppose to the contrary that
vr(GQ) < ir(G), and let f = (Vo, V1, V2) be a yg-function for G such that the
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number of edges of the induced subgraph G[V3] is minimum. It follows from
our assumption yr(G) < ir(G) and Lemmas 1 and 3 that V3 is not dependent.
Let u, v be two adjacent vertices in V5. Since f is a yg-function, I(u, V) and
I(v,V3) are disjoint sets each of cardinality at least two. Since the number
of edges in G[V3] is minimum, I(u,V2) as well as I(v,V3) do not contain a
dominating vertex. Thus there exist a1,a2 € I(u,V2) and by,by € I(v,V3)
such that ajas € E(G) and b1by & E(G). If each vertex of I(u, V3) is adjacent
to each vertex of I(v, V3), then G contains an induced subgraph isomorphic to
G4, a contradiction. Hence it remains that case that there are two nonadjacent
vertices uy € I(u, Vo) and vy € I(v, Va).

If {u1,v1} does not dominate the set I = I(u,V2) U I(v,Va), then there
exists a vertex ug € I(u, Va)UI(v, Vo) such that usuy ¢ E(G) and ugv; & E(G).
We assume, without loss of generality, that us € I(u, V2). As I(v, V3) does not
contain a dominating vertex, we see that there is a vertex ve € I(v, V2) such
that vav1 € E(G). Considering the subgraph H = G[{u,v,u1,v1,us,v2}], it
is easy to see that depending on the existence of edges wive and wuqvs, the
subgraph H is isomorphic to one of G1,G3 or G3, a contradiction. So we
assume next that {u;,v;} dominates the set I = I(u, Vo) U I(v, V).

Since D = (Vo — {u,v}) U{uy,v1} has fewer edges than V3, the function
(V(G) — (ViU D), V1, D) is not a RDF. Thus there exists a vertex w that is
not dominated by D. The definition of D shows that w must be adjacent to
u or to v. Moreover, since {u1,v;} dominates I, the vertex w does not belong
to I. This implies that w must be adjacent to both u and v. Since I(u,Va)
does not contain a dominating vertex, there is a vertex ug € I(u, Va) such that
urug € E(G). Similarly, there is a vertex vy € I(v, Va) such that vive & E(G).
As {uy,v1} dominates the set I, we find that {ujve,v1u2} C E(G). Now
consider the subgraph H = G[{u,v,w,u;,v1,us,v2}]. The only edges in H
whose existence is undetermined are usvs, usw and vow. If none is present,
H is isomorphic to G5, a contradiction. If only uqvs is present, then H — v is
isomorphic to Ga, a contradiction. If only uow or if only vow is present, then
we obtain the contradiction that H is isomorphic to Gg. If only usve and usw
are present, then H —u is isomorphic to G3, a contradiction. The same occurs
if only usvo and vow are present. Finally, if only usw and vow are present, H
is isomorphic to G7, and if all three edges are present, H is isomorphic to Gs.
In both cases a contradiction, and the proof is complete. ]

Recall that a graph is called chordal if every cycle of length exceeding three
has an edge joining two nonadjacent vertices in the cycle.

Corollary 8. If a chordal graph G does not contain G1 as an induced sub-
graph, then G is Roman domination perfect.
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Proof. Assume that G does not contain GG; as an induced subgraph. Note that
the graphs G, G3, ..., Gg in Figure 1 are not chordal. Applying Theorem 7,
we deduce that GG is Roman domination perfect. O

Note that since the graph G is Roman domination perfect, the converses
of Theorem 7 and Corollary 8 are false.
The proofs of the next two corollaries are similar to that of Corollary 8.

Corollary 9. If a graph G of girth at least five does not contain Gy as an
induced subgraph, then G is Roman domination perfect.

Corollary 10. If a bipartite graph G does not contain Gy, G2, G3 and G4 as
induced subgraphs, then G is Roman domination perfect.

The subdivision graph S(G) of a graph G is the graph obtained from G by
subdividing each edge of G. A subdivision graph S(G) does not contain two
adjacent vertices u and v such that deg(u) > 3 and deg(v) > 3. Since each
graph of G1, G, ..., Gg has two adjacent vertices of degree at least three, the
next result follows from Theorem 7.

Corollary 11. If S(G) is the subdivision graph of a graph G, then S(G) is
Roman domination perfect.

References

[1] M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad and M. Saied Moradi,
Properties of independent Roman domination in graphs, submitted for
publication.

[2] E.-W. Chambers., B. Kinnersley, N. Prince, and D.B. West, Extremal
Problems for Roman Domination, STAM J. Discr. Math., 23 (2009), 1575-
1586.

[3] E.J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi,
On Roman domination in graphs, Discrete Math. 278 (2004), 11-22.

[4] J. Fulmann, A note on the characterization of domination perfect graphs,

J. Graph Theory, 17 (1993), 47-51.

[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Dom-
ination in Graphs, Marcel Dekker, NewYork, 1998.

[6] C.S. ReVelle, K. E. Rosing, Defendens imperium romanum: a classical
problem in military strategy, Amer. Math. Monthly 107 (2000), 585-594.



174 NADER JAFARI RAD, LUTZ VOLKMANN

[7] 1. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (6) (1999), 136 —
139.

[8] D. P. Sumner, Critial concepts in domination, Discrete Math. 86 (1990),
33-46.

[9] D. B. West, Introduction to graph theory, (2nd edition), Prentice Hall,
USA (2001).

[10] I. E. Zverovich and V. E. Zverovich, A characterization of domination
perfect graphs, J. Graph Theory, 15 1991, 109-114.

Acknowledgment. This research is supported by Shahrood University of
Technology

Shahrood University of Technology,
Department of Mathematics, Shahrood,
Iran

e-mail: n.jafarirad@shahroodut.ac.ir

Lehrstuhl II fiir Mathematik,

RWTH Aachen University,
Templergraben 55, D-52056 Aachen,
Germany

e-mail: volkm@math2.rwth-aachen.de



