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Roman domination perfect graphs

Nader Jafari Rad, Lutz Volkmann

Abstract

A Roman dominating function on a graphG is a function f : V (G) →
{0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which
f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2.
The weight of a Roman dominating function is the value f(V (G)) =∑

u∈V (G) f(u). The Roman domination number γR(G) of G is the min-
imum weight of a Roman dominating function on G. A Roman domi-
nating function f : V (G) → {0, 1, 2} can be represented by the ordered
partition (V0, V1, V2) of V (G), where Vi = {v ∈ V (G) | f(v) = i} for
i = 0, 1, 2. A Roman dominating function f = (V0, V1, V2) on a graph G
is an independent Roman dominating function if V1 ∪ V2 is an indepen-
dent set. The independent Roman domination number iR(G) of G is the
minimum weight of an independent Roman dominating function on G.
In this paper, we study graphs G for which γR(G) = iR(G). In addition,
we investigate so called Roman domination perfect graphs. These are
graphs G with γR(H) = iR(H) for every induced subgraph H of G.

1 Introduction

Let G = (V (G), E(G)) be a simple graph of order n. We denote the open
neighborhood of a vertex v of G by NG(v), or just N(v), and its closed neigh-
borhood by NG[v] = N [v]. For a vertex set S ⊆ V (G), N(S) = ∪v∈SN(v)
and N [S] = ∪v∈SN [v]. The degree deg(x) of a vertex x denotes the number
of neighbors of x in G, and ∆(G) is the maximum degree of G. Also δ(G)
is the minimum degree of G. A set of vertices S in G is a dominating set if
N [S] = V (G). The domination number γ(G) of G is the minimum cardinality
of a dominating set of G. If S is a subset of V (G), then we denote by G[S]
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the subgraph of G induced by S. We write Kn for the complete graph of order
n. By G we denote the complement of the graph G. A subset S of vertices is
independent if G[S] has no edge. For notation and graph theory terminology
in general we follow [5] or [9].

A function f : V (G) → {0, 1, 2} is a Roman dominating function (or just
RDF) if every vertex u for which f(u) = 0 is adjacent to at least one vertex v
for which f(v) = 2. The weight of a Roman dominating function is the value
f(V (G)) =

∑
u∈V (G) f(u). The Roman domination number of a graph G,

denoted by γR(G), is the minimum weight of a Roman dominating function
on G. A Roman dominating function f : V (G) → {0, 1, 2} can be represented
by the ordered partition (V0, V1, V2) of V (G), where Vi = {v ∈ V (G) | f(v) = i}
for i = 0, 1, 2. A function f = (V0, V1, V2) is called a γR-function (or γR(G)-
function when we want to refer f to G) if it is a Roman dominating function
and f(V (G)) = γR(G). Roman domination has been studied, for example, in
[3, 2, 6, 7].

Independent Roman dominating functions in graphs were studied by Adabi
et al. in [1]. A RDF f = (V0, V1, V2) in a graph G is an independent RDF,
or just IRDF, if V1 ∪ V2 is independent. The independent Roman domination
number iR(G) of G is the minimum weight of an IRDF of G. An IRDF with
minimum weight in a graph G will be referred to as an iR-function. The
definitions imply that γR(G) ≤ iR(G) for any graph G.

In this paper, we study graphs G for which γR(G) = iR(G). In addition,
we investigate so-called Roman domination perfect graphs. These are graphs
G with γR(H) = iR(H) for every induced subgraph H of G. We frequently
use the following.

Lemma 1. ([1]) Let f = (V0, V1, V2) be a RDF for a graph G. If V2 is
independent, then there is an independent RDF g for G such that w(g) ≤ w(f).

2 On graphs G with γR(G) = iR(G)

We start with characterizations of graphs G with iR(G) = 2, iR(G) = 3,
iR(G) = 4 and iR(G) = 5. The proof is straightforward, and so is omitted.

Proposition 2. (1) For a graph G of order n ≥ 2, iR(G) = 2 if and only if
G = K2 or ∆(G) = n− 1.

(2) For a graph G of order n ≥ 3, iR(G) = 3 if and only if either G = K3

or ∆(G) = n− 2.
(3) For a graph G of order n ≥ 4, iR(G) = 4 if and only if one of the

following conditions holds:
(i) G = K4.
(ii) ∆(G) = n − 3, and G contains a vertex v of maximum degree such that
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G[V (G)−N [v]] = K2.
(iii) ∆(G) ≤ n− 3 and there are two nonadjacent vertices u, v in G such that
NG[u] ∪NG[v] = V (G).

(4) For a graph G of order n ≥ 5, iR(G) = 5 if and only if one of the
following conditions hold:
(i) G = K5.
(ii) ∆(G) ≤ n−4 and |NG[x]∪NG[y]| ≤ |V (G)|−1 for all pairs of nonadjacent
vertices x, y ∈ V (G). In addition, there are two nonadjacent vertices u, v in
G such that |NG[u] ∪NG[v]| = |V (G)| − 1 or G contains a vertex v of degree
n− 4 such that G[V (G)−N [v]] = K3.

According to Lemma 1, the following is obviously verified.

Lemma 3. For a graph G, γR(G) = iR(G) if and only if there is a γR-function
f = (V0, V1, V2) for G such that G[V2] has no edge.

We note that a forbidden subgraph characterization for the graphs G hav-
ing γR(G) = iR(G) cannot be obtained since for any graph G, the addition
of a new vertex that is adjacent to all vertices of G produces a new graph H
with γR(H) = iR(H) = 2.

Theorem 4. Let k ≥ 2 be an integer. If a graph G of order n > 1 does not
contain the star K1,k+1 as an induced subgraph, then

iR(G) ≤ (k − 1)γR(G)− 2(k − 2).

Proof. Let f = (V0, V1, V2) be a γR-function for G. Let I be a maximal
independent subset of V2. Then I is a dominating set for V2. Let X =
V (G)− (N [I] ∪ V1), and let Y be a maximal independent subset of X. Then
Y is a dominating set for X. Since G is K1,k+1-free, any vertex of V2 − I is
adjacent to at most k− 1 vertices of Y . We deduce that |Y | ≤ (k− 1)|V2 − I|.
Now define g : V (G) −→ {0, 1, 2} by g(v) = 2 if v ∈ I ∪ Y , g(v) = 1 if v ∈ V1,
and g(v) = 0 otherwise. Then g is a RDF for G. Now

w(g) ≤ 2(k − 1)|V2 − I|+ 2|I|+ |V1|
= 2(k − 1)|V2| − 2(k − 2)|I|+ |V1|
≤ 2(k − 1)|V2| − 2(k − 2)|I|+ (k − 1)|V1|
= (k − 1)(2|V2|+ |V1|)− 2(k − 2)|I|
≤ (k − 1)γR(G)− 2(k − 2).

Now the result follows by Lemma 1.
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Next we will list some properties of the K1,k+1-free graphs G with iR(G) =
(k−1)γR(G)−2(k−2). Of course, we may assume that k ≥ 3, since for k = 2
it is the well-known family of claw-free graphs.

If iR(G) = (k−1)γR(G)−2(k−2), then, using the notation of the proof of
Theorem 4 equality holds at each point in the above sequence of inequalities.

The equality 2(k− 2)|I| = 2(k− 2) implies that |I| = 1 for every choice of
I, and thus G[V2] is complete.

The equality |V1| = (k−1)|V1| leads to |V1| = 0. This implies that γR(G) =
2|V2|. Because of |Y | = (k − 1)|V2 − I|, we note (i) that every maximal
independent set Y in G[X] has (k − 1)(|V2| − 1) vertices, with exactly k − 1
vertices adjacent to each vertex of V2 − I. Furthermore, every vertex in X is
joined to exactly one vertex of V2 − I, otherwise, Y can be chosen to contain
a vertex joined to at least two vertices of V2 − I, contradicting (i).

As a consequence of Theorem 4, we obtain the following corollary.

Corollary 5. If G is a claw-free graph, then γR(G) = iR(G).

Since any line graph is claw-free, Corollary 5 implies that γR(L(G)) =
iR(L(G)), where L(G) is the line graph of G.

3 Roman domination perfect graphs

In 1990, Sumner [8] defines a graph G to be domination perfect if γ(H) = i(H)
for any induced subgraph H of G, where i(H) is the independent domination
number of H. Fulman [4] showed that the absence of all of the eight induced
subgraphs of Figure 1 in G is sufficient for G to be domination perfect.

Theorem 6. (Fulman [4] 1993) If a graph G does not contain any of the
graphs in Figure 1 as an induced subgraph, then G is domination perfect.
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Figure 1.
We next consider a closely related concept. A graph G is called Roman

domination perfect if γR(H) = iR(H) for any induced subgraph H of G. For
x ∈ X ⊆ V (G), we define I(x,X) = N [x] − N [X − {x}]. Note that I(x,X)
is the set of vertices dominated by x but not by the rest of X. Corollary 5
implies that if G has no induced subgraph isomorphic to the claw K1,3, then
G is domination perfect. Following the ideas in [4] and [10], we now prove an
analogue to Theorem 6.

Theorem 7. If a graph G does not contain any of the graphs in Figure 1 as
an induced subgraph, then G is Roman domination perfect.

Proof. It suffices to prove that if G does not contain the graphs in Figure 1
as induced subgraphs, then γR(G) = iR(G). Suppose to the contrary that
γR(G) < iR(G), and let f = (V0, V1, V2) be a γR-function for G such that the
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number of edges of the induced subgraph G[V2] is minimum. It follows from
our assumption γR(G) < iR(G) and Lemmas 1 and 3 that V2 is not dependent.
Let u, v be two adjacent vertices in V2. Since f is a γR-function, I(u, V2) and
I(v, V2) are disjoint sets each of cardinality at least two. Since the number
of edges in G[V2] is minimum, I(u, V2) as well as I(v, V2) do not contain a
dominating vertex. Thus there exist a1, a2 ∈ I(u, V2) and b1, b2 ∈ I(v, V2)
such that a1a2 ̸∈ E(G) and b1b2 ̸∈ E(G). If each vertex of I(u, V2) is adjacent
to each vertex of I(v, V2), then G contains an induced subgraph isomorphic to
G4, a contradiction. Hence it remains that case that there are two nonadjacent
vertices u1 ∈ I(u, V2) and v1 ∈ I(v, V2).

If {u1, v1} does not dominate the set I = I(u, V2) ∪ I(v, V2), then there
exists a vertex u2 ∈ I(u, V2)∪I(v, V2) such that u2u1 ̸∈ E(G) and u2v1 ̸∈ E(G).
We assume, without loss of generality, that u2 ∈ I(u, V2). As I(v, V2) does not
contain a dominating vertex, we see that there is a vertex v2 ∈ I(v, V2) such
that v2v1 ̸∈ E(G). Considering the subgraph H = G[{u, v, u1, v1, u2, v2}], it
is easy to see that depending on the existence of edges u1v2 and u2v2, the
subgraph H is isomorphic to one of G1, G2 or G3, a contradiction. So we
assume next that {u1, v1} dominates the set I = I(u, V2) ∪ I(v, V2).

Since D = (V2 − {u, v}) ∪ {u1, v1} has fewer edges than V2, the function
(V (G) − (V1 ∪D), V1, D) is not a RDF. Thus there exists a vertex w that is
not dominated by D. The definition of D shows that w must be adjacent to
u or to v. Moreover, since {u1, v1} dominates I, the vertex w does not belong
to I. This implies that w must be adjacent to both u and v. Since I(u, V2)
does not contain a dominating vertex, there is a vertex u2 ∈ I(u, V2) such that
u1u2 ̸∈ E(G). Similarly, there is a vertex v2 ∈ I(v, V2) such that v1v2 ̸∈ E(G).
As {u1, v1} dominates the set I, we find that {u1v2, v1u2} ⊆ E(G). Now
consider the subgraph H = G[{u, v, w, u1, v1, u2, v2}]. The only edges in H
whose existence is undetermined are u2v2, u2w and v2w. If none is present,
H is isomorphic to G5, a contradiction. If only u2v2 is present, then H − v is
isomorphic to G2, a contradiction. If only u2w or if only v2w is present, then
we obtain the contradiction that H is isomorphic to G6. If only u2v2 and u2w
are present, then H−u is isomorphic to G3, a contradiction. The same occurs
if only u2v2 and v2w are present. Finally, if only u2w and v2w are present, H
is isomorphic to G7, and if all three edges are present, H is isomorphic to G8.
In both cases a contradiction, and the proof is complete.

Recall that a graph is called chordal if every cycle of length exceeding three
has an edge joining two nonadjacent vertices in the cycle.

Corollary 8. If a chordal graph G does not contain G1 as an induced sub-
graph, then G is Roman domination perfect.
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Proof. Assume that G does not contain G1 as an induced subgraph. Note that
the graphs G2, G3, . . . , G8 in Figure 1 are not chordal. Applying Theorem 7,
we deduce that G is Roman domination perfect.

Note that since the graph G1 is Roman domination perfect, the converses
of Theorem 7 and Corollary 8 are false.

The proofs of the next two corollaries are similar to that of Corollary 8.

Corollary 9. If a graph G of girth at least five does not contain G1 as an
induced subgraph, then G is Roman domination perfect.

Corollary 10. If a bipartite graph G does not contain G1, G2, G3 and G4 as
induced subgraphs, then G is Roman domination perfect.

The subdivision graph S(G) of a graph G is the graph obtained from G by
subdividing each edge of G. A subdivision graph S(G) does not contain two
adjacent vertices u and v such that deg(u) ≥ 3 and deg(v) ≥ 3. Since each
graph of G1, G2, . . . , G8 has two adjacent vertices of degree at least three, the
next result follows from Theorem 7.

Corollary 11. If S(G) is the subdivision graph of a graph G, then S(G) is
Roman domination perfect.
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