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Small solutions to systems of polynomial
equations with integer coefficients

Mihai Cipu

Abstract

The paper discusses a series of conjectures due to A. Tyszka aiming
to describe boxes in which there exists at least one solution to a system
of polynomial equations with integer coefficients. A proof of the bound
valid in the linear case is given.

1 Two basic questions

When facing systems of equations whose solutions are hard to determine, one
is satisfied to determine (or at least estimate) the number and the size of
solutions. A satisfactory answer could be an algorithm, if a definite formula
is unavailable. These questions are completely answered only for univariate
polynomials over the ring of integers or the field of rational, real or complex
numbers. Many important results, such as Falting’s result on rational points
on irreducible algebraic curves of genus at least 2, ensures the finiteness of the
solution set to specific systems without giving any hint on its cardinality.

A great deal of mathematics appeared as a result of attempts to solve such
problems. One of the first results of the kind is Bézout’s theorem, according
to which the total number of intersection points of two plane projective curves
that have no common component with coordinates in an algebraically closed
field, counted with their multiplicities, is equal to the product of degrees of the
two curves. More generally, the product of degrees is an upper bound for the
number of solutions to n polynomials in n variables, provided that the system
has finitely many solutions. D. N. Bernshtein [3] and A. G. Kushnirenko [13]
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proved that the number of isolated roots in the torus of a polynomial system is
at most the mixed volume of the Newton polytopes of the given polynomials.
Improved bounds take into account various refined (combinatorial, topological,
numerical) invariants of the system under study. Thus, a theorem of Blum,
Cucker, Shub, Smale [4] says that if a system of m polynomials of total degree
at most d in n variables has real solutions then the number of connected
components of the real variety is at most d(2d − 1)n−1. In particular, if a
system of quadratic polynomials has finitely many real solutions then their
number is at most 2 · 3n−1.

A typical result answering an instance of the second problem is Siegel’s
lemma which assures one that a linear system of m equations in n unknowns
Ax = 0 with the entries of the integer matrix at most M in module has
a nontrivial integer solution x whose entries have absolute value at most 1 +
(nM)m/(n−m), provided of course that m < n. Bombieri and Vaaler [5] greatly
improved and extended this result to rings of integers of number fields.

Other answers to the basic questions are given in terms of various numerical
information extracted from the given equations. For instance, A. Baker [1]
showed that the integer solutions to an elliptic equation y2 = f(x), with
f(X) = X3 + aX + b ∈ Z[X], satisfy

max{|x|, |y|} ≤ exp
((

106 H(f)10
6))

.

Here, H(f) := max{1, |a|, |b|} is the height of f . This bound has been consid-
erably improved and generalised to rings of integers of number fields K (see,
e.g., [7]). In this framework, there are known bounds that depend on the de-
gree of K over Q and on the discriminant of f . For instance, Y. Bugeaud [8]
gives an upper bound for the size of integer solutions depending only on the
prime factors of the discriminant of f , provided the coefficients a and b are
coprime and the discriminant is sufficiently large. Such a variant is important
because the discriminant can be arbitrarily smaller than the height.

Since Tarski it is known that the theory of real closed fields is decidable.
Collins’ cylindrical algebraic decomposition algorithm allows one to check the
consistency over the real field of each system E of polynomial equations with
integer coefficients and, for such a compatible system, to determine a positive
a such that there exists a solution in the hypercube [−a, a]n. The value a is
unpredictable, it is only known when the algorithm ends, and a priori depends
on the considered system.

A qualitatively different result is due to Vorobjov [19], who succeeded to
prove that there exists a bivariate polynomial H such that any system E

solvable over R has a real solution with

|xj | ≤ 2H(r,L), j = 1, 2, . . . , n,
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where

d =
m∑

i=1

deg(fi), r =
(

n + 2d

n

)
,

and L is the maximum of the bit-sizes of the coefficients. Many similar results
are nowadays known (see, for instance, [2]). However, since the bound denoted
above H works for all compatible systems over the real field, it is possible that
for specific classes of systems much lower bounds exist. Strikingly simple, yet
tight, bounds have been stated by A. Tyszka.

2 Conjectural answers

In the rest of the paper, A denotes a subring of the field of complex numbers
C and n a positive integer.

In a series of papers (among which [15, 16, 17, 18]), Tyszka discusses the
following conjectural answers to the basic questions.

Conjecture Nn(A). Let S be a system of equations of the type xi = 1 or
xi = xj + xk or xi = xj · xk for some i, j, k between 1 and n. If S has finitely
many solutions in A then their number is at most 2n.

It is easily seen that the bound is sharp for all n ≥ 1: there are precisely
2n solutions to the system x1 · x1 = x1, . . ., xn · xn = xn.

Conjecture Cn(A). Let S be a system of equations of the type xi = 1 or
xi = xj + xk or xi = xj · xk for some i, j, k between 1 and n. If S has a
solution in the ring A then there exists (x1, x2, . . . , xn) ∈ An satisfying the
system and |xi| ≤ 22n−2

for i = 1, 2, . . . , n.

A stronger conjecture is found in [17] and [18].

Conjecture Fn(A). Let S be a system of equations of the type xi = 1 or
xi = xj + xk or xi = xj · xk for some i, j, k between 1 and n. If S has only
finitely many solutions in A then any solution (x1, x2, . . . , xn) in A satisfies

|xj | ≤ 22n−1
, j = 1, 2, . . . , n.

The bound on the size of solutions is sharp for n > 1, as the example of
the system

x1 · x1 = x2, x1 + x1 = x2, x2 · x2 = x3, . . . , xn−1 · xn−1 = xn

with unique nonzero solution
(
2, 22, 24, . . . , 22n−1

)
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shows.
The apparent simplicity of equations in the above statements is mislead-

ing. Actually, to any given polynomials f1, . . . , fr ∈ Z[X1, . . . , Xs] one can
associate a system of the type specified in Conjecture Cn(A) for a huge value
of n depending on r, s, the degree and height of the given polynomials. The
algorithm is conceptually simple, based on natural ideas, but is somewhat
cumbersome to properly write it down because of the explosion of the number
of unknowns. Instead of formally introducing the algorithm, we prefer to use
it in an example and refer the interested reader to [15]. This example also
illustrates how tricky is to rewrite a given system of polynomial equations into
the form required in the statement of conjectures above.

Example. Let us consider the system of generalized Pell equations

x2 − 3z2 = 1, y2 − 783z2 = 1, (1)

for which the solution (2, 28, 1) is easy to spot. It is less easy to notice that a
second solution is (97, 1567, 56). In [10] it is shown that any system ax2−bz2 =
1, cy2−dz2 = 1, with a, b, c, d positive integers such that ad 6= bc, has at most
two solutions in positive integers. (The same sharp bound was established for
another family of simultaneous Pell equations in [9].) Taking into account
solutions with a third entry 0, one concludes that our system has precisely
8 + 8 + 4 = 20 solutions in the ring of integers and all of them have entries
with absolute value at most 1567.

In order to invoke Conjecture Fn(Z), for a suitable value of n, we transform
the system in the following way. The equations

x1 = 1, x2 = x1 + x1, x4 = x2 + x2, x3 + x1 = x4, x5 = x4 · x4,

x6 + x1 = x5, x7 = x5 · x5, x8 = x3 · x7, x9 = x5 + x8, x1 + x10 = x9

have a unique solution, in which x3 = 3 and x10 = 783. Therefore, the
simultaneous Pell equations (1) are equivalent to the system consisting of the
previous equations together with the following ones

x12 = x11 · x11, x14 = x13 · x13, x16 = x15 · x15, x17 = x3 · x16,

x18 = x10 · x16, x12 = x1 + x17, x14 = x1 + x18.

Clearly, one has x = x11, y = x13, and z = x15. Supposing Conjecture F18(Z)
to be true, it would result that

max{|x|, |y|, |z|} ≤ 2218−1
= 2131072 ≈ 4.015 · 1039456.



Solutions to polynomial systems 93

However, a clever rewritting of the system (1) allows one to diminish the
value of n. For instance, the equations

x1 = 1, x2 = x1 + x1, x4 = x2 + x2, x3 + x1 = x4, x5 = x4 · x4,

x6 = x5 · x5, x7 = x4 + x6, x8 = x1 + x7,

yield x8 = 261. Combined with

x10 = x9 · x9, x12 = x11 · x11, x14 = x13 · x13,

x15 = x3 · x14, x16 = x8 · x15, x10 = x1 + x15, x12 = x1 + x16,

it results that (1) is equivalent to a system of equations in n = 16 unknowns.
This time one gets from F16(Z)

max{|x|, |y|, |z|} ≤ 2216−1
= 232768 ≈ 2.601 · 109864.

Even better, if first one replaces the system (1) by the equivalent one

x2 − 3z2 = 1, x2 + 780z2 = y2,

and then one put this into the form

x1 = 1, x2 = x1 + x1, x4 = x2 + x2, x3 + x1 = x4, x5 = x4 · x4,

x6 = x5 · x5, x7 = x4 + x6, x9 = x8 · x8, x11 = x10 · x10,

x13 = x12 · x12, x14 = x3 · x13, x15 = x7 · x14,

x9 = x1 + x14, x11 = x9 + x15,

one deduces from Conjecture F15(Z)

max{|x|, |y|, |z|} ≤ 2215−1
= 216384 ≈ 1.190 · 104392.

To help reader to have an idea on the order of magnitude of the bounds thus
obtained, it suffices to mention that the number of electrons on the earth is
estimated to be about 1060, while 1080 is said to be the number of electrons in
the visible universe. Having in view that each year consists of about 3.16 · 107

seconds, if one would succeed to examine one billion of integer triples each
second with the help of each of the 3 · 108 computers sold up to date in the
whole world, one would have to admit that a blind search for the solutions in
positive integers to the system (1) will need a time much longer than the most
optimistic estimate for the existence of our planet.
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What is the present status of the above mentioned conjectures? A brute
force attack (with some computer assistance) suffices to establish the validity
of Cn(A) for n ≤ 4 and any subring A of C. Decidability of the theory of
real closed fields entails Cn(R) and Cn(C) are decidable for fixed n. Tyszka
mentions availability of Mathematica, MuPAD, Perl and Python codes for
checking this by solving randomly chosen systems.

However, there is evidence that the statements do not hold for rings rele-
vant in number theory, except maybe for very small n. Matiyasevich’s solution
to Hilbert’s tenth problem imply that Cn(Z) is false for n À 0. By tracing
some work reported in the literature [12], Tyszka was able to give an explicit
example showing that C21(Z) fails (see [15]). Moreover, C10(Z[ 1p ]) fails for
any prime p greater than 2256. Similarly, if k ≥ 273 is an integer such that
t := k2 + 2 is prime then one can prove that the system

x1 = 1, x1 + x1 = x2, x3 · x3 = x4, x2 + x4 = x5, x5 · x6 = x1

has the solutions
(
1, 2, λ, λ2, λ2 + 2, (λ2 + 1)−1

)
for λ ∈ C \ {±√−1}.

If one insists that λ ∈ Z[t−1] then it readily follows that λ ≥ k and therefore
λ2 + 2 > 226−2

. This inequality contradicts C6(Z)[t−1].
Tyszka [15, 18] also shows that C5(Z[

√
4s4 − 1]) is false for any s ≥ 13

such that 4s4 − 1 is square-free. We shall improve below on this result.

Proposition 2.1. C5(Z[
√

d ]) is false for any integer d ≥ 16384.

Proof. Consider the system

x1 = 1, x2 · x3 = x1, x2 + x3 = x4, x5 · x5 = x4. (2)

All complex solutions are of the form
(
1, λ, λ−1, λ + λ−1,±

√
λ + λ−1

)
for λ ∈ C, λ 6= 0.

Assume that the system above is solvable in Z[
√

d ]. Then x2 = λ =
a + b

√
d, with a, b integers. Note that for d perfect square or b = 0, from

λ−1 ∈ Z[
√

d ] it would result λ = ±1 and therefore
√

λ + λ−1 6∈ Z[
√

d ].
Hence, x3 = λ−1 = u + v

√
d, with u, v integers and v · b 6= 0. The second

equation in (2) is equivalent to av + bu = 0, au + dbv = 1, whence it readily
follows u = a, v = −b and a2 − db2 = 1. Therefore,

max
{|λ|, |λ−1|} ≥ |a|+ |b|

√
d ≥

√
d + 1 +

√
d > 2

√
d ≥ 28 = 225−2

.



Solutions to polynomial systems 95

3 The linear case

Tyszka made an analogous conjecture on systems in which the multiplication
is prohibited. Below G denotes an additive subgroup of C, while n stands for
a positive integer.

Conjecture Ln(G). Let T be a system of equations of the type xi = 1 or
xi = xj + xk for some i, j, k between 1 and n. If T has a solution in the
group G then there exists (x1, x2, . . . , xn) ∈ (G ∩ Q)n satisfying the system
and |xi| ≤ 2n−1 for i = 1, 2, . . . , n.

For n > 1 the bound can not be improved in general, as the system

x1 = 1, x1 + x1 = x2, x2 + x2 = x3, . . . , xn−1 + xn−1 = xn

has a unique solution
(
1, 2, 22, 23, . . . , 2n−1

)
.

In [15] and [18] one may find a proof that a system of the type considered
in Conjecture Ln(G) which is solvable in integers (or in a group G containing
Q) must have an integer solution (rational solution, respectively), all of whose
entries have absolute value at most 5(n−1)/2. The aim of this paper is to
improve on these results.

Theorem 3.1. Let T be a system of equations of the type xi = 1 or xi = xj+xk

for some i, j, k between 1 and n. If T has a solution in a subgroup G of C
containingQ or in Z then there exists (x1, x2, . . . , xn) ∈ (G∩Q)n, respectively
in Zn, satisfying the system and |xi| ≤ 2n for i = 1, 2, . . . , n.

On the way to the proof of this result we establish an other conjecture of
Tyszka [15, Conjecture 4].

Theorem 3.2. Let B be a matrix with m < n rows and n columns. Assume
that each row of B, after deleting all zero entries, has one of the forms

(1), (1, 1), (−1, 2), (2,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1).

Then any maximal minor of B has the module at most 2n−1.

We start the proof of Theorem 3.1 by associating a system of linear equa-
tions My = b with integer coefficients to a given system T of equations of the
type xi = 1 or xi = xj + xk (i, j, k ∈ {1, 2, . . . , n}).

Below, all indices appearing in the same equation are pairwise distinct.
We may assume that x1 = 1 is the only equation from T of the type xi = 1,
otherwise either there exists the obvious solution with all components zero
or T is equivalent to a system of the kind described in Conjecture Lt(Z)
for some positive integer t smaller than n (system obtained by replacing each
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variable xi appearing in an equation xi = 1 by x1 and decreasing by 1 all
indices greater than i). To equation x1 = 1 one associates a row in the
matrix M with entries 1, 0, . . . , 0, whereas the corresponding entry in b is 1. A
permutation of this row corresponds to each equation of the type x1 +xi = x1

or xi + xi = xi or xi + xj = xi (recall that i, j > 1, i 6= j), with a null entry
in the appropriate place of b. The only nonzero entries in a row associated to
an equation x1 + xi = xj or x1 + x1 = xi are 1 and −1, while the appropriate
entry of b is 1. To an equation xk + xi = xj or xi + xj = x1 (i, j, k > 1)
it corresponds a row consisting of 1, 1 and −1 in the appropriate places and
only zeros in the other places, while the entry of b is 0. An equation of the
type xi + xi = xj generates a row of M whose nonzero entries are 2 and −1,
and the corresponding entry in b is 0.

Since T is supposed to be compatible, no equations of the type x1+x1 = x1

or xi +x1 = xi appear in it. Moreover, if one supposes the existence of integer
solutions, no equation of the form xi + xi = x1 exists.

To sum up, the extended matrix of the linear system My = b is an integer

matrix
(
M

... b) with n+1 columns whose rows are obtained by filling out with
suitably many zeroes one of the vectors

(1
... 0), (1

... 1), (1,−1
... 1), (−1, 1

... 1), (−1, 2
... 0), (3)

(2,−1
... 0), (−1, 1, 1

... 0), (1,−1, 1
... 0), (1, 1,−1

... 0).

Compatible systems of linear equations with integer coefficients have solu-
tions restricted as in the following result.

Theorem A. ([6]) Let M be an integer m×n matrix of rank r and b ∈ Zm

such that the system My = b has integer solutions. Denote by D the maximum

of the absolute values of the r-minors of the augmented matrix (M
... b). Then

there is a solution y ∈ Zn satisfying |yj | ≤ D, j = 1, 2, . . . , n.

In order to get the bound D, Tyszka applies Hadamard’s determinantal
inequality, which is an algebraic statement of a geometric fact: the volume
of a parallelepiped is at most the product of the Euclidean lengths of its
edges. Instead of this classical result, we employ a more recent one, due to R.
Waldi [20]. For reader’s convenience, we quote it bellow. Although it might
not be apparent, Waldi’s theorem is a common generalisation to Bézout’s
theorem and Hadamard’s inequality.

Theorem B. ([20]) Consider on Rn the norm

L(y1, y2, . . . , yn) =
1
2
(|y1|+ |y2|+ · · ·+ |yn|+ |y1 + y2 + · · ·+ yn|

)
.
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Then for any matrix M with rows r1, r2, . . . , rn ∈ Rn one has

| det(M)| ≤ L(r1)L(r2) · · ·L(rn).

It is clear that the vectors v ∈ Rn whose nonzero entries are restricted as
in (3) satisfy L(v) ≤ 2. Hence, the proof of Theorem 3.2 is easily concluded
by noticing that the rank of the matrix B is at most m ≤ n− 1.

Now we can complete the proof of Theorem 3.2 for systems T solvable in
integers. We apply Theorems A and B to the system Mx = b obtained as
explained above.

The proof of the case of systems compatible over a group G is similar.
Cramer’s formula gives the value of each basic variable as the quotient of two
maximal minors of the extended matrix, while the secondary variables are
equal to zero. Therefore, the nonzero entries of each solution of the given
system T are rational numbers, bounded in module by the module of the
numerator. One concludes as in the previous paragraph, by invoking Theo-
rem 3.2.

Notice that the conclusion of Theorem 3.1 is closer to the bound claimed
in Conjectures Ln(Z) and Ln(G) than Tyszka’s bound 5(n−1)/2 for all n ≥ 8.
Moreover,

2n

2n−1
= 2 for all n ≥ 1, while lim

n→∞
5(n−1)/2

2n−1
= ∞.

The result below lists several cases where systems as in Conjecture Ln(Z)
have solutions whose entries are bounded in module by 2n−1.

Proposition 3.3. Let T be a system of equations of the type xi = 1 or xi =
xj + xk for some i, j, k between 1 and n. Suppose T has integer solutions.
Then there exists (x1, x2, . . . , xn) ∈ Zn satisfying the system and |xi| ≤ 2n−1

for i = 1, 2, . . . , n if any of the following conditions holds:

α) the matrix of the system has rank less than n,

β) n ≥ 5 and there is no equation of the form 2xi = xj (1 ≤ i 6= j ≤ n),

γ) n ≥ 37 is odd and the system contains at most n/2 equations of the form
2xi = xj (1 ≤ i 6= j ≤ n),

δ) n ≥ 44 is even and the system contains at most n/2 equations of the
form 2xi = xj (1 ≤ i 6= j ≤ n).
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Proof. Sufficiency of condition α) is obvious from the arguments exposed in
the proof of the previous theorem. If hypothesis β) holds then the matrix
has only rows whose nonzero entries are 1, (1, 1,−1), (1,−1, 1) or (−1, 1, 1).
Applying Hadamard’ inequality, one obtains D ≤ 3n/2. As is easily seen, for
n ≥ 5 one has 3n/2 < 2n−1. Suppose now that among the equations of the
system T there are precisely r (1 ≤ r ≤ n/2) equations of the form 2xi = xj

(1 ≤ i 6= j ≤ n). The maximal minors of the matrix are bounded according to
Hadamard by 3(n−r)/25r/2, which is at most 3b(n+1)/2c5bn/2c. This number is
smaller than 2n−1 if n is subject to restrictions indicated in γ) and δ).

Acknowledgements. The author thanks the referees for comments and
suggestions.
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