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From prime numbers to irreducible
multivariate polynomials

Nicolae Ciprian Bonciocat

Abstract

We present several methods to produce irreducible multivariate poly-
nomials, starting from sufficiently large prime numbers.

1 Introduction

There are many irreducibility criteria for multivariate polynomials in the liter-
ature. Some recent irreducibility results have been obtained for various classes
of polynomials in several variables, such as linear combinations of relatively
prime polynomials [11], compositions of polynomials [6], [1], multiplicative
convolutions [3], polynomials having one coeflicient of dominant degree [7],
lacunary polynomials [2], and polynomials obtained from irreducible polyno-
mials in fewer variables [8], [9]. For an excellent account on the techniques
used in the study of reducibility of polynomials over arbitrary fields the reader
is referred to Schinzel’s book [15].

The aim of this expository paper is to present some of the results in [4],
[5], [8] and [9] and to show how to use them to provide methods to pro-
duce irreducible multivariate polynomials starting from sufficiently large prime
numbers. This will be achieved by combining some irreducibility criteria for
multivariate polynomials with some irreducibility criteria for polynomials with
integer coefficients that rely on the use of prime numbers.

The paper is organized as follows. In Section 2, we first present some
classical irreducibility criteria of A. Cohn, J. Brillhart, M. Filaseta and A.
Odlyzko for polynomials with integer coefficients, that are obtained by using
the digits of a prime number. We then present some irreducibility criteria
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for polynomials that have one large coefficient and take a prime value, or a
prime power value. Section 3 is devoted to some recent results that provide
methods to produce irreducible multivariate polynomials over arbitrary fields
from irreducible polynomials in fewer variables. In Section 4 we combine some
of the results in Sections 2 and 3, to provide methods to produce irreducible
multivariate polynomials directly from prime numbers. Some examples of
irreducible multivariate polynomials obtained from prime numbers are given
in the last section of the paper.

2 Irreducible polynomials obtained by using the digits
of a prime number

One of the most elegant irreducibility criterion that relies on the existence of a
suitable prime divisor of the value that a given polynomial takes at a specified
integral argument, is due to A. Cohn (see Pdlya and Szegé [16]).

Theorem 2.1. (A. Cohn) If a prime p is expressed in the decimal system
as

n
p=) a0, 0<a; <9,
1=0

then the polynomial > a; X" is irreducible in Z[X].
This result was generalised to an arbitrary base b by Brillhart, Filaseta
and Odlyzko [10].

Theorem 2.2. If a prime p is expressed in the number system with base
b>2 as

p=Yy abt, 0<a<b-1,
=0

then the polynomial >, a; X" is irreducible in Z[X].

For elementary proofs of these results and several nice connections between
prime numbers and irreducible polynomials, the reader is referred to [17] and
[14]. As expected, primes are not the only numbers enjoying this nice prop-
erty. In this respect, Filaseta [12] obtained another generalization of Cohn’s
Theorem by replacing the prime p by a composite number wp with w < b:

Theorem 2.3. (Filaseta) Let p be a prime number, w and b positive
integers, b > 2, w < b, wp > b and suppose that wp is expressed in the number
system with base b as

wp:Zaibi, 0<a; <b-—1.
i=0
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Then the polynomial Y7, a; X" is irreducible over Q.

Cohn’s Theorem was also generalized in [10] and [13] by allowing the co-
efficients of f to be different from digits. In this respect, the following irre-
ducibility criterion for polynomials with non-negative coefficients was proved
in [13).

Theorem 2.4. (Filaseta) Let f(X) = > i ,a; X" be such that f(10) is
a prime. If the a;’s satisfy 0 < a; < a,10%° for each i = 0,1,...,n — 1, then
f(X) is irreducible over Q.

Inspired by these results, we proved in [4] some irreducibility criteria for
polynomials that have one large coefficient and take a prime value.

Theorem 2.5. Let f(X) = > 1" a; X" € Z[X], apa, # 0. Suppose that for
an integer m, a prime number p and a nonzero integer q¢ we have f(m) =p-q
and

jaol > D fail - (Im] + la])"
i=1

Then f is irreducible over Q.

As an immediate consequence, we obtained the following flexible method
to produce irreducible polynomials from prime numbers.

Corollary 2.6. If we write a prime number as a sum of integers ag, . .., Qn,
with agan, # 0 and |ag| > Y7, |ai|2", then the polynomial Y7, a; X" is irre-
ducible over Q.

Theorem 2.7. Let f(X) =Y I a; X" € Z[X], apa, # 0. Suppose that
for a prime number p and two nonzero integers m and q with |m| > |q| we
have f(m) =p-q and

n—1
jan] > Y lail - (jm] = [al)™™
=0

Then f is irreducible over Q.

The conditions in Theorem 2.7 take a simpler form in the case of Littlewood
polynomials (polynomials all of whose coefficients are +1).

Corollary 2.8. If f is a Littlewood polynomial and f(m) is a prime num-
ber for an integer m with |m| > 3, then f is irreducible over Q.
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We note here that the condition |m| > 3 is the best possible, in the sense
that there exist Littlewood polynomials f such that f(2) or f(—2) is a prime
number, and which are reducible. To see this, one may consider f;(X) = X3 —
X2+ X —1land fo(X) = —-X3—X?— X —1. Here f1(2) =5, fa(—2) =5, and
f1, f2 are obviously reducible. We also note that one may replace in Corollary
2.8 the Littlewood polynomials by integer polynomials with coefficients of
modulus at most 1.

Theorem 2.9. Let f(X) =Y ,a;i X% € Z[X], with0=do < dy < -+ <
d, and agay ---a, # 0. Suppose that for an integer m, a prime number p
and a nonzero integer q¢ with |m| > |q| we have f(m) = p-q. If for an index
je{l,...,n—1} we have

a5l > (jml + g™~ -3 Jal,

i#]
then f is irreducible over Q.

One may naturally ask whether Cohn’s result will still hold true if we
replace the prime number p with p®, s > 2. This is by no means necessarily
true, as one can see by taking p = 11 and considering the polynomial f(X)
obtained by replacing the powers of 10 by the corresponding powers of X in the
decimal representation of 112. In this case f(10) = 121, and the polynomial
f(X) = X2 +2X + 1 is obviously reducible. For another example one may
consider the decimal representation of 117. Here f(10) = 117 = 19487171,
and the polynomial f(X) is also reducible, being divisible by X + 1:

XT4+9X0 +4X5 +8X* +7TX3 + X2 +7X +1
(X +1)(XO +8X°% —4X* +12X® —5X2 +6X +1).

f(X)

In [5] we found some additional conditions that guarantee us the irreducibil-
ity of a polynomial that takes a prime power value, and this allowed us to
complement the results in [4], by extending them to a larger class of poly-
nomials. This was achieved by adding a natural condition on the derivative
of our polynomials. In [5] we also derived upper bounds for the total num-
ber of irreducible factors of such polynomials, instead of irreducibility criteria,
by considering their higher derivatives. The following result, proved in [5],
extends Theorem 2.2 to prime powers, as follows.

Theorem 2.10. If a prime power p*, s > 2, is expressed in the number
system with base b > 2 as p* = Z?:o abt, with 0 < a; < b—1 and p 1
Sor L dabt, then the polynomial Y i a; X" is irreducible over Q.
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The following results give irreducibility conditions for polynomials that
have one coefficient of sufficiently large modulus and take a value divisible by
a prime power p®, s > 2.

Theorem 2.11. Let f(X) = > 1" ;a; X" € Z[X], apan, # 0. Suppose that
f(lm) = p® - q for some integers m,s,q and a prime number p, with s > 2,
ptqf'(m) and

jaol > > fail - (Im] + la])"
i=1

Then f is irreducible over Q.

In particular, for m = ¢ = 1 we obtained the following flexible irreducibility
criterion, that extends Corollary 2.6 to prime powers.

Corollary 2.12. If we write a prime power p°, s > 2, as a sum of integers
ag, - - -, @ with aga, # 0, |ag| > Y1 |a;|2%, and ay + 2as + - -+ + na, is not
divisible by p, then the polynomial Z?:o a; X" is irreducible over Q.

Theorem 2.13. Let f(X) = Y1 (a;X* € Z[X], apa, # 0. Suppose that
f(m) = p® - q, for some integers m,s,q and a prime number p, with s > 2,
Im| > lq|, p1qf'(m) and

n—1
jan] > Y lail - (jm] = [al)™"
=0

Then f is irreducible over Q.

Corollary 2.14. Let f be a Littlewood polynomial. If f(m) is a prime
power p*, s > 2, for an integer m with |m| > 3, and p t f'(m), then f is
irreducible over Q.

Here too, as in Corollary 2.8, one may replace the Littlewood polynomials
by integer polynomials with coefficients of modulus at most 1.

Theorem 2.15. Let f(X) = Y." ja; X% € Z[X], with 0 = dy < dy <
<o < dy and agay - - a, # 0. Suppose that f(m) = p° - q, for some integers
m, s,q and a prime number p, with s > 2, |m| > |q| and pt qf'(m). If for an
index j € {1,...,n — 1} we have

jag| > (Im| + [g) =% -y |ail,
i

then f is irreducible over Q.
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In particular, Theorems 2.11, 2.13 and 2.15 show that, if f(m) is a prime
power for an integer m with |m| > 2, f(m) and f/(m) are relatively prime, and
f has one coefficient of sufficiently large modulus, then f must be irreducible
over Q. For the proof of the results in this section we refer the reader to [4]
and [5].

3 Irreducible multivariate polynomials obtained from ir-
reducible polynomials in fewer variables

The reader may naturally ask whether we can produce irreducible multivariate
polynomials from irreducible polynomials in fewer variables in the same way
in which the irreducible polynomials are constructed from prime numbers in
the theorems in Section 2 above. More precisely, given an arbitrary field
K, one may ask under what hypotheses a polynomial F(X,Y) € K[X,Y]
such that F(X,h(X)) is irreducible over K for some h € K[X], is necessarily
irreducible over K(X). Then, instead of asking F(X,h(X)) to be irreducible
over K for some h € K[X], we allow F to satisfy the equality F(X,h(X)) =
f(X)® - g(X), with f,g € K[X], f irreducible over K, g # 0, s > 2, and
ask under what hypotheses F' will still be irreducible over K(X). In [8] and
[9] we established such hypotheses and obtained some efficient methods to
construct irreducible multivariate polynomials over an arbitrary field, starting
from arbitrary irreducible polynomials in a smaller number of variables. The
following two results provide such hypotheses, expressed in terms of the slopes
of the edges of a Newton polygon, together with a condition involving a partial
derivative of our polynomials.

Theorem 3.1. Let K be a field and F(X,Y) ="  a;(X)Y" € K[X,Y],
with a; € K[X], i = 0,...,n, apa, # 0. Let us assume that there exist
three polynomials f,g,h € K[X] such that f is irreducible over K, g # 0
and F(X,h(X)) = f(X) - g(X). Then F is irreducible over K(X) if either
degg < degh and for an index j € {1,...,n} with a; # 0 we have

degay — dega; degay — dega;
max ——— .

deg h in ———=2 1
T oE ek o ®
or if
. degag — degay,
min ————— > max{degh, degg}. (2)

Theorem 3.2. Let K be a field and F(X,Y) ="  a;(X)Y' € K[X,Y],
with a; € K[X]|, i = 0,...,n, aga, # 0. Let us assume that there exist
three polynomials f,g,h € K[X] such that [ is irreducible over K, g # 0,
F(X,h(X)) = f(X)*-g(X), for an integer s > 2, and OF/0Y (X, h(X)) is not
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divisible by f. Then F is irreducible over K(X) if either degg < degh and
for an index j € {1,...,n} with a; # 0 we have

degay — dega; degay, — dega;

r;??;( - < degh < Ikn>11]1 ik ) (3)
or if
. degag — degay
min ———— > max{degh, degg}. (4)

For the sake of the reader, we will include here a proof of the Theorem 3.1.

Proof: One may prove this result by using a Newton polygon argument.
Instead, we will give as in [8] a proof based on the study of the location of
the roots of F, regarded as a polynomial in Y with coefficients in K[X]. We
first introduce a nonarchimedean absolute value |- | on K(X), as follows. We
fix an arbitrary real number § > 1, and for any polynomial u(X) € K[X] we
define |u(X)| by the equality

[u(X)] = gles ),

We then extend the absolute value | - | to K(X) by multiplicativity. Thus for

any w(X) € K(X), w(X) = ;jgg;, with u(X),v(X) € K[X], v(X) # 0, we let

|lw(X)| = “588“ We note here that for any non-zero element v of K[X] one

has |u| > 1. Let now K(X) be a fixed algebraic closure of K(X), and let us
fix an extension of our absolute value | - | to K(X), which we will also denote
by | -|.

Assume by contrary that our polynomial F' decomposes as F(X,Y) =
F(X,Y) Fp(X,Y), with Fy, Fy € K[X,Y], degy F1 =t > 1 and degy I =
s > 1. Since

F(X,h(X)) = f(X) - g(X) = Fi (X, h(X)) - Fo(X, h(X))

and f is irreducible over K, it follows that one of the polynomials Fy (X, h(X)),
F5(X, h(X)) must divide g(X), say F1 (X, h(X)) | g(X). In particular, one has

deg F1 (X, h(X)) < deg g(X). (5)

We consider now the factorisation of the polynomial F(X,Y) over K(X),

say F(X,Y) = ap(X)(Y — &)+ (Y — &), with &,...,&, € K(X). Since
ap # 0 we must have || #0,4=1,...,n. Let us denote

A =ma and B =mi

deg ay, — dega; . degay —dega;
X — n—m———
k<j j—k k>j J—k

)
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and notice that by (1) A is strictly smaller than B. Then for eachi=1,...,n
we must either have |&| < 84, or |&] > 6. In order to prove this, let us
assume by contrary that for some index i € {1,...,n} we have §4 < || < 65.
Since a; # 0 we deduce from 04 < |&| that |a;| - [&)7 > |ak| - |&]* for each
k < j, while from |¢;| < 6P we find that |a;| - [£]7 > |ak| - |&]F for each k > j.
By taking the maximum with respect to k in these inequalities, we obtain

Jaj| - [&il > maxag| - & (6)
#J
On the other hand, since F'(X,¢;) = 0, we must have
0> fa;&]| — | 2 aréf| = lag| - [ — max |ax| - |&][",
k#j k#j

which contradicts (6).

Now, since F;(X,Y) is a factor of our polynomial F(X,Y), it will factorize
over K(X) as Fi(X,Y) =b,(X)(Y — &) --- (Y — &), say, with b,(X) € K[X],
b:(X) # 0. In particular, we have

[b:(X)] > 1. (7)

Recalling the definition of our absolute value and using (5) and (7), we then
deduce that

5degg > 6deg Fi(X,h(X)) |F1(X7h(X))|
t

= [b(X)]- [T 1n(x) = &l = th(X) =&l

i=1
Now, for any index i € {1,...,t} we either have
(W(X) = & > |[h(X)] = |&] > 98" — 64, if |&] <64,

or
Ih(X) = &| > |&] — [R(X)| > 67 —5%8hif |g] > 67,

Since A < degh < B it follows that for a large enough § both the quantities
gdegh _ 54 and 68 — §9°8" bhecome greater than 1, and hence we must have

5degg > min{édegh . 6‘4, §B o 5degh}7

since t > 1. On the other hand, by our assumption that A < degh < B and
deg g < deg h, both the inequalities 6989 > §deeh _§4 and gdeeg > §8 — gdegh
must fail for a large enough §, and this completes the proof of the first part of
the theorem.
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Assume now that the inequality (2) holds. In this case all the &;’s satisfy

& > 68 with B = gl;g% and hence we have |h(X) — &| > 65 —

ddesh for each i € {1,...,n}. This implies that for a large enough § we must
have 6989 > §B — §d°8"  On the other hand, this inequality can not hold for
a large enough ¢, since B > max{degg, degh}, and this completes the proof
of the theorem. [J

Even though Theorems 3.1 and 3.2 may be in some cases difficult to apply,
they have a series of corollaries that are extremely useful to test the irre-
ducibility of a given polynomial on the one hand, and to provide methods to
produce irreducible multivariate polynomials, on the other hand. The first two
such corollaries are the following irreducibility criteria that use the Euclidean
algorithm.

Corollary 3.3. Let K be a field, f,h € K[X], f irreducible over K,
degh > 1 and express the polynomial f “in base h” via the Euclidean algo-
rithm, say f = > o a;h', with ag,ay,...,a, € K[X]. Then the polynomial
St o ai(X)Y" is irreducible over K(X).

Corollary 3.4. Let K be a field, f,g,h € K[X], f irreducible over K,
g # 0, deg g < degh, and assume that for an integer s > 2 the polynomial f*-g
is expressed “in base” h via the Euclidean algorithm as f*-g = > a;h’,
with ag,ai,...,a, € K[X]|. If Y0 ia;hi™ is not divisible by f, then the
polynomial "7, a;(X)Y" € K[X,Y] is irreducible over K(X).

A more efficient method (that requires no division) to obtain irreducible

multivariate polynomials starting from an irreducible univariate polynomial is
given by the following two results.

Corollary 3.5. If we write an irreducible polynomial f € K[X] as a sum
of polynomials ayg, ... ,a, € K[X] with degag > jmax dega;, then F(X,Y) =
St 0ai(X)Y" is irreducible over K(X). o

Corollary 3.6. Let f € K[X] be an irreducible polynomial. If for an

integer s > 2 we write f* as a sum of polynomials ay,...,a, € K[X] with
degag > max dega;, and a1 + 2as + - - - + na, is not divisible by f, then the
1SN

polynomiaif(X, Y) =31 yai(X)Y" is irreducible over K(X).
Another way to produce irreducible multivariate polynomials is to replace

the monomials by X* of an irreducible univariate polynomial with monomials
of the form b, X*Y7, i+ j =k.

Corollary 3.7. Let K be a field, f(X) =bpX™ + b1 X™ 4+ ...+ b, X" €
K[X],0=mn9g <mnp < - <mng, bop---b, # 0, f being irreducible over K,
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and construct from f the polynomial F(X,Y) = bo XYoo 4 p XY 4+
b XY € K[X,Y], with 41,51 >0, iy + 5, =n;, 1 =0,..., k. If for an index
t €{0,...,k} we have

max 't <1< min =t
Js<Jt Jt — Js Js>Jt Jt — Js

then F is irreducible over K(X).

Corollary 3.8. Let K be a field, f € K[X] be irreducible over K, and
assume that for an integer s > 2 we have f(X)® = bpX™ + b X™ + ... +
bpX™ € K[X],0=n¢g <ny <---<nyg, bog---bx #0. Let us construct from
f* the polynomial F(X,Y) = bo XY Jo4b XY +b, XYk € K[X,Y],
with i,5;1 >0, 44+ 51 =n;, 1 =0,..., k. If 0F/0Y (X, X) is not divisible by f
and for an index t € {0, ...k}, we have

max "t <1 < min 2
Jo<Jt Jt — Ju Jv>Jt Jt — Ju

then F is irreducible over K(X).

Another method to construct irreducible polynomials in two variables is to
simply replace the variable X by Y in some of the monomials of an irreducible
univariate polynomial f(X).

Corollary 3.9. Let K be a field, f(X) =bpX™ +b; X™ 4+ ...+ b X" €
K[X],0=mng <ni < - <ng, bpby ---b, # 0, f being irreducible over K.
Then for every partition of the set S = {0, 1, ..., k} into two disjoint nonempty
subsets S1, Sy with k € S1, the polynomial in two variables

FX,Y)= > biX"+ > bY™ e K[X,Y]
i1€S51 i€S2

is wrreducible over K(X).

Corollary 3.10. Let K be a field, f € K[X] irreducible over K, and
assume that for an integer s > 2 we have f(X)® = bpX™ + b X™ + ... +
bpX™ € K[X], 0 =ng < np < -+ < mnyg, bg---b, # 0. Then, for every
partition of the set S = {0,1,...,k} into two disjoint nonempty subsets Sy, So
with k € Sy, the polynomial in two variables

FX,Y)=> biX"+ > bY™ € K[X,Y]
1€57 1€So

is irreducible over K (X), if OF/0Y (X, X) is not divisible by f.
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Theorems 3.1 and 3.2 also provide irreducibility criteria for compositions
of polynomials, as follows.

Corollary 3.11. Let K be a field of characteristic 0 and let f1, fa € K[X]
with deg f1 > 1, deg fo > 2. If f1 o fo(X) is irreducible over K, then fi o
(f2(X) =X +Y) € K[X,Y] is irreducible over K(X).

Corollary 3.12. Let K be a field of characteristic 0 and let f, f1, fa, f3 €
K[X] with deg fo > 2, deg f3 < deg f1 and f irreducible over K. If f1 o0 fo+
f3 = f* for an integer s > 2 and f1 o fa + f4 is not divisible by f, then the
polynomial f1o(f2(X)—X+Y)+ f3(Y) € K[X,Y] is irreducible over K(X).

As an immediate consequence of previous results, one may formulate simi-
lar irreducibility criteria for polynomials in r > 3 variables X7, Xs, ..., X, over
K. For any polynomial f € K[Xy,...,X,] we denote by deg, f the degree of
f as a polynomial in X, with coefficients in K[X7,...,X,_1]. For instance,
the next result follows from Corollary 3.5 by writing ¥ for X,, X for X, _;
and by replacing K with K(Xy,...,X,_2).

Corollary 3.13. If f € K[X1,...,X,_1] is irreducible over K(X1,...,X,_2)
and we write f as a sum of polynomials ag,...,a, € K[X1,...,X,_1] with
deg,_; ag > max deg, _; a;, then F(X1,..., X)) =Y" ja;(X1,..., Xr—1)X}

is irreducible over K(X1,...,Xr-1).

The above results allow on the one hand to test the irreducibility of various
polynomials when other irreducibility criteria fail, and on the other hand to
construct various classes of irreducible multivariate polynomials from arbitrary
irreducible polynomials in a smaller number of variables. For the proof of the
results in this section we refer the reader to [8] and [9].

4 Irreducible multivariate polynomials obtained from
prime numbers

In this section we give some results that provide methods to obtain irreducible
multivariate polynomials directly from prime numbers, by combining some of
the irreducibility criteria in Sections 2 and 3 above. The first such results
combine the methods in Theorem 2.2 and Corollary 3.5.

Corollary 4.1. If a prime number p is expressed in the number system
with base b > 2 asp=ag+ a1b+---+a,b", 0<a; <b-—1, then for every
permutation o of the set {0,1,...,n} with 0(0) = 0 and a,-1(,) # 0, the
polynomial

FXY) =) a X"y
=0
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is wrreducible over Q(X).

Corollary 4.2. If a prime number p is expressed in the number system
with base b > 2 as p=ag+ a1b+ -+ apd™, 0 < a; < b—1, then for every
permutation o of the set {0,1,...,n} with 0(0) =0 and a,-1(n) # Go—1(n)+1,
the polynomial

n

FXY) =D (ai—ai)(1+ X 4+ XYY, a4y :=0
=0

is irreducible over Q(X).

For the proof of Corollaries 4.1 and 4.2 we first note that one may extend
Corollary 3.5 to a larger class of polynomials, as follows:

Corollary 4.3. If we write an irreducible polynomial f € K[X] as a sum
of polynomials fo, ..., fn € K[X] with deg fo > jmax deg f;, then for every

permutation o of the set {0,1,...,n} with o(0) =0 and Jo-i(n) # 0, the
polynomial F(X,Y) = Y"1 fi(X)Y W is irreducible over K(X).

Proof. This follows easily by Theorem 3.1 using (2) with F(X,Y) =
S oot (o(X)YY, F(X) = S0 £i(X) and g(X) = h(X) = 1. Thus, by
writing an arbitrary irreducible polynomial f € K[X] as f(X) =Y, fi(X)
with deg fo > max deg f;, one may construct polynomials F'(X,Y) =

S fi(X)Y® € K[X,Y] of arbitrarily large degrees with respect to Y, and
which are irreducible over K(X). O

In particular, from Corollary 4.3, we obtain the following irreducibility
criterion.

Corollary 4.4. Let f(X) = a, X"+ -+ a1 X + a9 € K[X] be an irre-
ducible polynomial. Then for every permutation o of the set {0,1,...,n} with
a(0) = 0 and a,_,-1(,) # 0, the polynomial F'(X,Y) = S Ui XYW
is irreducible over K(X).

Proof. Here we write f(X) = > 1 fi(X) with fi(X) = ap_i X", i =
0,1,...,n, and we obviously have deg fo > max deg f;. The conclusion fol-

lows by Corollary 4.3. O

We return now to the proof of Corollaries 4.1 and 4.2. First, by Theorem
2.2, the polynomial f(X) = a, X" +---4+a1X +ag is irreducible over Q, hence
its reciprocal f(X) = X"f(1/X) = agX"+---+a,_1X +a,, is also irreducible
over Q. Since one may write f as f = fo+ f1 + -+ fn with f;(X) = a; X",
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1=0,1,...,n, and deg fo > max deg f;, the proof of Corollary 4.1 follows by

Corollary 4.3 with f replaced by f.

For the proof of Corollary 4.2, we observe that f(X) = a, X"+ -+a1 X +
ap may be written as f(X) = Y"1 (a;—a;11)(1+ X+ -+ X?), with a, 11 = 0.
This shows that f may be written as f = fo + f1 + -+ + fn with fi;(X) =
(a; —ajy)(1+X +--+X%,i=0,1,...,n. Since deg fo > 1rgz_a<xndcgfi, the

conclusion follows again by Corollary 4.3.
In a similar way one may produce irreducible multivariate polynomials by
combining the methods in Theorem 2.10 and Corollary 4.4, as follows.

Corollary 4.5. If a prime power p°, s > 2 is expressed in the num-
ber system with base b > 2 as p°® = Z?:o a;bt with 0 < a; < b—1 and
pt Yo ia;b"t, then for every permutation o of the set {0,1,...,n} with
0(0) =0 and a,_,-1(») # 0, the polynomial F(X,Y) = Y1 jan_; X" 'Y
is irreducible over Q(X).

Another method to produce irreducible multivariate polynomials from prime
numbers is obtained by combining Corollary 2.8 and Corollary 4.4, as follows.

Corollary 4.6. If we write a prime number as ag + aim + -+ + a,m"
with a; € {—1,1} and m an integer with |m| > 3, then for every permutation
o of the set {0,1,...,n} with 0(0) = 0 and a,,_,-1(,) # 0, the polynomial
F(X,Y) =31 0an_i X"V is irreducible over Q(X).

Proof. By Corollary 2.8, the Littlewood polynomial f(X) = > " ja; X’
is irreducible over Q, so by Corollary 4.4, F(X,Y) = 37" ja,—i X"V is
irreducible over Q(X). O

By combining now Theorem 2.2 and Corollary 3.9, one obtains the follow-
ing result.

Corollary 4.7. If a prime number is expressed in the number system with
base b > 2 as p = agh™ + a1b™ + ...+ apb™, 0 = ng < Ny < - < ng,
ag---ay # 0, then for every partition of the set S = {0,1,...,k} into two
disjoint, nonempty subsets S1, Sy with k € Sy, the polynomial in two variables

FX,Y)=Y aX"+> a;Y" € QX,Y]
1€S1 i€S2

is @rreducible over Q(X).

The last result in this section combines Theorem 2.2 and Corollary 3.11,
as follows.
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Corollary 4.8. If a prime number p is expressed in the number system
with base b > 2 as p = ag + a1b® + asb®* + - + a0 with 0 < a; < b—1,
k>2,n>1, then the polynomial

FX,Y)=> a;- (X¥ - X +Y)
=0

is irreducible over Q(X).

Proof. Here we use the fact that the polynomial f(X) = """ a;X* may
be written as f = fi o fo with fi(X) = > ja; X" and fo(X) = X*. By
Theorem 2.2, the polynomial f; o fo must be irreducible over Q, hence by
Corollary 3.11 the polynomial in two variables F(X,Y) = Y7 a;- (X*— X +
Y)? must be irreducible over Q(X). O

5 Examples

1) Let p = 20102009200820072006200520042003. Since p is a prime number,
by Cohn’s Theorem, the polynomial

f(X) — 2X31+X29+2X27+9X24+2X23+8X20+2X19+7X16
+ 2X 46X 42X 4 5X% 42X 44X +2X° +3

must be irreducible over Q. Then, by Corollary 3.9, the polynomial

F(X,Y) = 2X3142X27 42X 4 2Xx19 yoX 42X 4 2X7 4 2X3
+ Y2 49y 1 8Y20 1 7v10 16y 4+ 5V 4+ 4Y1 43 € Q[X,Y]

is irreducible over Q(X). We note that in this way one may produce from f(X)
a number of 2% —1 polynomials F(X,Y) € Q[X, Y] which are irreducible over
QX).

2) Let p = 1222333444555666777888999. We may write the prime p as
p=ag+ai+as+---+ ag with

ap =  10% as = 666-10°
ap = 222.10% ag = T77-10°
as = 333.108 ar = 88%-10°
as = 444-10% as = 99
as = b555-1012 ag = 9

We obviously have |ag| > 2|ai|+ 22|ag| + - - - + 2%|ag|, so, by Corollary 2.6, the
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polynomial

f(X)

e a0+a1X+---—|—a9X9

10%% + 2221021 X + 333 - 108 X2 + 444 - 105 X3 + 555 - 1012 x4

+ 666-10°X° +777-10°X% 4888 - 103X 7 4+ 99X +9X?

is irreducible over Q. Write now f(X) = ao(X) + a1(X) + a2(X) + a3(X) +
CM(X) with

ap(X) = 99X8 +9x°

al(X) = 777-10°X° 4888 10°X"

az(X) = 555-10"2X* +666-10°X°
a3(X) = 333-10"8X? 444410 X
as(X) = 10* 4222102 X.

Since degag > max{degai,deg as,degas,degays}, by Corollary 3.5 the poly-
nomial in two variables F(X,Y) = ao(X) + a1 (X)Y +az(X)Y? +a3(X)Y3 +
a4(X)Y*? is irreducible over Q(X).

3) Let p = 9988776655443322110053. Since p is a prime number, by Cohn’s
Theorem the polynomial

f(X)

9X% +9X20 48X +8X " 47X +7X10 4 6X1° +6X M 45X

+ 55X 4aXxM 44X0 4+ 3X9 +3X8 +2X7 +2X0 + XP + Xt 45X +3

must be irreducible over Q. By Corollary 4.4 with o(i) = i + 1 for i =
1,2,...,20 and 0(21) = 1, the polynomial

F(X,Y)

= BXYH 4 XY 4 XPYIT 4 2XOY10 4 2XTY! 4 3X5Y M 43Xy
+AXOY P ax My 45X PY 10 45X Y0 46X MY 46X YT
+ 7XOYO 47X TTYS 48X Y 48X YE 4 9X Y2 4 3Y 49X

is irreducible over Q(X).
4) For an example related to Corollary 4.8, let

p1 = 9007005003001,
p2 = 90007000500030001,
p3 = 9000007000005000003000001.

Since p1, p2 and ps are prime numbers, by Corollary 4.8 the polynomials

F =
F, =
Fy =

T4+3(X3 X4+ Y)+5(X3 - X +Y)P 4+ 7(X3 - X+Y)P+9(X* - X +Y)*
T4+3(X* — X +Y)+5(X* - X+ YV +7(X* - X +Y)P +9(X* - X +Y)*
I+3(X - X4+Y)+5(X - X +Y) ?+7(X - X +Y)P +9(X° - X +Y)!
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are irreducible over Q(X).

Acknowledgements. This work was supported by CNCSIS-UEFISCSU,

project PNII-IDEI 443, code 1190/2008.

References

1]
2]

3]

[10]

[11]

M. Ayad, Irreducibility of f(u(zx),v(y)), J. Algebra 279 (2004), 302-307.

A.L. Bonciocat, N.C. Bonciocat, Some classes of irreducible polynomials,
Acta Arith. 123 (2006) no. 4, 349-360.

A.I. Bonciocat, N.C. Bonciocat, A Capelli type theorem for multiplicative
convolutions of polynomials, Math. Nachr. 281 (2008) no. 9, 1240-1253.

A.I. Bonciocat, N.C. Bonciocat, The irreducibility of polynomials that
have one large coefficient and take a prime value, Canad. Math. Bull. 52
(2009) no. 4, 511-520.

A.L. Bonciocat, N.C. Bonciocat, A. Zaharescu, On the irreducibility of
polynomials that take a prime power value, to appear in Bull. Math. Soc.
Sci. Math. Roumanie vol. 54 (102) (2011).

A.I. Bonciocat, A. Zaharescu, Irreducibility results for compositions of
polynomials in several variables, Proc. Indian Acad. Sci. (Math. Sci.) 115
(2005) no. 2, 117-126.

N.C. Bonciocat, On an irreducibility criterion of Perron for multivariate
polynomials, Bull. Math. Soc. Sci. Math. Roumanie 53 (101) (2010), no.
3, 213-217.

N.C. Bonciocat, A. Zaharescu, Irreducible multivariate polynomials ob-
tained from polynomials in fewer variables, J. Pure Appl. Algebra 212
(2008), 2338-2343.

N.C. Bonciocat, A. Zaharescu, Irreducible multivariate polynomials ob-
tained from polynomials in fewer variables, 1I, to appear in Proc. Indian
Acad. Sci. (Math. Sci.).

J. Brillhart, M. Filaseta, A. Odlyzko, On an irreducibility theorem of A.
Cohn, Canad. J. Math. 33 (1981) no. 5, 1055-1059.

M. Cavachi, M. Vajaitu, A. Zaharescu, An irreducibility criterion for
polynomials in several variables, Acta Math. Univ. Ostrav. 12 (2004),
no. 1, 13-18.



FROM PRIME NUMBERS TO IRREDUCIBLE MULTIVARIATE POLYNOMIALS 53

[12]

[13]

[14]

[15]

[16]

[17]

M. Filaseta, A further generalization of an irreducibility theorem of A.
Cohn, Canad. J. Math 40 (1988), no. 2, 339-351.

M. Filaseta, Irreducibility criteria for polynomials with non-negative co-
efficients, Canad. J. Math 34 (1982), no. 6, 1390-1395.

K. Girstmair, On an Irreducibility Criterion of M. Ram Murty, Amer.
Math. Monthly 112 (2005) no. 3, 269-270.

A. Schinzel, Polynomials with special regard to reducibility, Encyclopedia
Math. Appl. 77, Cambridge Univ. Press, 2000.

G. Pdlya, Verschiedene Bemerkungen zur Zahlentheorie, Jahresber.
Deutschen Math. Ver., 28 (1919), 31-40.

M. Ram Murty, Prime numbers and irreducible polynomials, Amer. Math.
Monthly 109 (2002) no. 5, 452-458.

Institute of Mathematics of the Romanian Academy,
P.O. Box 1-764, Bucharest 014700, Romania
e-mail: Nicolae.Bonciocat@imar.ro



54

N.C. BONCIOCAT




