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On partitionable, confidentially connected and
unbreakable graphs

M. Talmaciu, E. Nechita

Abstract

Some problems related to security in communication networks lead
to consider a new type of connectivity in graphs, namely the confidential
connectivity. In this paper we present a characterization of unbreakable
graphs using the notion of weak decomposition and we give some ap-
plications of minimal unbreakable graphs. In fact, we showed that a
graph G is confidentially connected if and only if it does not have a
star cutset. We also showed that a minimal imperfect graph does not
have a star cutset. We gave a constructive proof of the fact that every
(α, ω)-partitionable graph is confidentially connected, for a superclass
of minimal imperfect graphs.

1 Introduction

Throughout this paper, G = (V, E) is a connected, finite and undirected graph
([1]), without loops and multiple edges, having V = V (G) as the vertex set
and E = E(G) as the set of edges. G is the complement of G. If U ⊆ V ,
by G(U) we denote the subgraph of G induced by U . By G − X we mean
the subgraph G(V −X), whenever X ⊆ V , but we simply write G− v, when
X = {v}. If e = xy is an edge of the graph G, then x and y are adjacent, while
x and e as well as y and e are incident. If xy ∈ E, we also use x ∼ y, and x 6∼ y
whenever x, y are not adjacent in G. If A,B ⊂ V are disjoint and ab ∈ E for
every a ∈ A and b ∈ B, we say that A,B are totally adjacent and we denote
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by A ∼ B, while by A 6∼ B we mean that no edge of G joins some vertex of A
to a vertex of B and, in this case, we say A and B are non-adjacent.

The neighborhood of the vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈ E},
while NG[v] = NG(v)∪{v}; we denote N(v) and N [v], when G appears clearly
from the context. The degree of v in G is dG(v) = |NG(v)|. The neighborhood
of the vertex v in the complement of G will be denoted by N(v).

The neighborhood of S ⊂ V is the set N(S) = ∪v∈SN(v)− S and N [S] =
S ∪ N(S). A graph is complete if every pair of distinct vertices is adjacent.
A clique is a subset Q of V with the property that G(Q) is complete. The
clique number of G, denoted by ω(G), is the size of the maximum clique. A
clique cover is a partition of the vertex set such that each part is a clique.
θ(G) is the size of the smallest possible clique cover of G; it is called the
clique cover number of G. A stable set is a subset X of vertices where every
two vertices are not adjacent. α(G) is the number of vertices of a stable set
of maximum cardinality; it is called the stability number of G. χ(G) = ω(G)
and it is called the chromatic number of G.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a chordless
cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1 vertices, respectively.

A graph G is called perfect if χ(H) = ω(H) for every induced subgraph
H of G, otherwise it is called imperfect. A graph G is called minimally
imperfect if it is not perfect, but all its proper subgraphs are perfect.

A graph G is partitionable if there exist the integers α and ω greater than
one such that G has exactly αω+1 vertices and, for each vertex v ∈ V , G− v
can be partitioned into both α cliques of size ω and ω stable sets of size α.

A graph G is called (α, ω)-partitionable if for every v ∈ V (G), G−v admits
a partition in α ω-cliques and a partition in ω α-stable sets.

An edge uv of the graph G is called a wing if, for some vertices x, y,
{u, v, x, y} induces a P4 in G. The coercion class Cuv of a wing uv is defined
by the following conditions: (a) uv ∈ Cuv and (b) if xy ∈ Cuv and xy, x′y′ are
wings of the same P4 in G, then x′y′ ∈ Cuv.

Let F denote a family of graphs. A graph G is called F-free if none of its
subgraphs are in F.

The Zykov sum of the graphs G1, G2 is the graph G = G1 + G2 having:

V (G) = V (G1) ∪ V (G2),
E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

When searching for recognition algorithms, it frequently appears a type
of partition for the set of vertices in three classes A,B,C, which we call a
weak decomposition, such that: A induces a connected subgraph, C is totally
adjacent to B, while C and A are totally nonadjacent.
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The security represents one of the most important properties in commu-
nication networks. The starting point of this paper is a particular security
problem arising in message passing in distributed systems. A communication
system is confidential if it is possible to exchange a message between every
pair of nodes so that any other specified node cannot intercept this message.
If between two nodes there is a direct link in the network, it is clear that they
can communicate in a confidential way. However, if there is no direct link be-
tween the two vertices then the exchanged message must follow a path having
in its set of internal nodes neither the specified node nor one of its neighbors.
Usually, the topology of the communication network is modeled as a simple,
undirected graph.

The above type of communication suggests a new type of graph connectiv-
ity (see Definition 4 in Section 3), which is interesting by itself and is closely
related to some well-known concepts in the theory of perfect graphs.

The structure of the paper is the following. In Section 2 we recall a char-
acterization of the weak components and the existence of the weak decom-
position, and give an algorithm to find one. In Section 3 we present a new
characterization of the unbreakable graphs. In Section 4 we present some
applications of minimal unbreakable graphs.

2 Preliminary results

At first, we recall the notions of weak components and weak decompositions.

Definition 1. ([14], [16]) A set A ⊂ V (G) is called a weak set of the
graph G if NG(A) 6= V (G) − A and G(A) is connected. If A is a weak set,
maximal with respect to set inclusion, then G(A) is called a weak component.
For simplicity, the weak component G(A) will be denoted with A.

Definition 2. ([14], [16]) Let G = (V, E) be a connected non-complete
graph. If A is a weak set, then the partition {A,N(A), V − A ∪ N(A)} is
called a weak decomposition of G with respect to A.

Below we recall a characterization of the weak decomposition of a graph.
The name ”weak component” is justified by the following result.

Theorem 1. ([14], [16]) Every connected non-complete graph G = (V,E)
admits a weak component A so that G(V −A) = G(N(A)) + G(N(A)).

Theorem 2. ([14], [16]) Let G = (V,E) be a connected non-complete
graph and A ⊂ V . Then A is a weak component of G if and only if G(A) is
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connected and N(A) ∼ N(A).

The next result, that follows from the Theorem 1, ensures the existence of
a weak decomposition in a connected non-complete graph.

Corollary 1. If G = (V,E) is a connected non-complete graph, then V
admits a weak decomposition (A, B,C), such that G(A) is a weak component
and G(V −A) = G(B) + G(C).

The Theorem 2 provides an O(n + m) algorithm for building a weak de-
composition for a non-complete connected graph.

Algorithm for the weakly decomposition of a graph ([14])
Input: A connected graph with at least two nonadjacent vertices, G = (V, E).
Output: A partition V = (A,N, R) such that G(A) is connected, N = N(A),
A 6∼ R = N(A).
begin

A := any set of vertices such that A ∪N(A) 6= V
N := N(A)
R := V −A ∪N(A)
while (∃n ∈ N , ∃r ∈ R such that nr 6∈ E ) do

begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩R)
R := R− (N(n) ∩R)

end
end

3 A new characterization of the unbreakable graphs us-
ing the weak decomposition

In this section we recall that the class of (α, ω)-partitionable graphs is a sub-
class of the class of graphs without star cutset and we give a new characteri-
zation of the unbreakable graphs.

Definition 3. ([2]) A graph G = (V, E) is called unbreakable if it has at
least three vertices and neither G nor G has a star cutset. The subset A ⊂ V
is called a cutset if G − A is not connected. If, in addition, some v ∈ A is
adjacent to every vertex in A − {v}, then A is called a star cutset and v is
called the center of A.
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Significant results on unbreakable graphs have been obtained in the last
decade. In ([7]), R.B. Hayward proved that, in an unbreakable graph, every
vertex belongs either to some Ck or to Ck, where k ≥ 5. In ([10]), S. Olariu
gave some results concerning unbreakable graphs, using the notion of coercion
class. These results generalize several previously known results about un-
breakable graphs.

Definition 4. A graph G = (V, E) with at least three vertices is confiden-
tially connected if for any three distinct vertices v, x, y ∈ V , there exists a path
Pxy in G such that NG[v] ∩ V (Pxy) ⊆ {x, y}.

In ([4], [14]), the authors proved that a graph G is confidentially connected
if and only if G does not have a star cutset.

Below we remind a central result about perfect graphs.

Star Cutset Lemma. ([2]) No minimal imperfect graph has a star cutset.

M.W. Padberg ([11]) proved that every minimal imperfect graph is parti-
tionable.

In ([4], [14]) we gave a constructive proof of the fact that every (α, ω)-
partitionable graph is confidentially connected.

Thus, a graph G is unbreakable if and only if G and G are confidentially
connected. This means that an important class of graphs, as that of (α, ω)-
partitionable graphs, is included in that of confidentially connected graphs.

Using Theorem 2 we give, in Theorem 3 below, a necessary and sufficient
condition for a connected and non-complete graph to be unbreakable. A similar
result is stated in [3] and proved in [4] and [14], but for confidentially connected
graphs.

Theorem 3. A connected non-complete graph G = (V, E) is unbreakable
if and only if {NG(v)|v ∈ V } is the family of the weak components of G, while
{NG(v)|v ∈ V } is the family of the weak components of G.

Proof. Let G be unbreakable. Then, neither G nor G have a star cutset.
Because G is unbreakable if and only if G is unbreakable, we can just put G
as G. Therefore, it is sufficient to prove the direct implication only for G.

Claim 1. For any three distinct vertices v, x, y ∈ V , there exists a chordless
path Pxy in G such that NG[v] ∩ V (Pxy) ⊆ {x, y}.
It follows immediately from the definition of a unbreakable graph.

Claim 2. NG(a) 6= ∅ , for every a ∈ V .
To prove Claim 2 we just write that V − {x, y} is a star cutset.

Claim 3. NG(NG(a)) = NG(a) , for every vertex a ∈ V .
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If ∃b ∈ NG(a) so that NG(b) ∩NG(a) = ∅, then, for x = b, v = a, y ∈ NG(a),
we obtain a contradiction to Claim 1.

Claim 4. G(N(a)) is connected, for every vertex a ∈ V .
If G(N(a)) would be disconnected, then, taking x, y in different connected
components of G(N(a)) and v = a, we obtain again a contradiction to Claim
1.

Claim 5. The set of the non-neighbors of any vertex in G induces a weakly
component in G .
Since NG(a) = NG(NG(a)), NG(NG(a)) = {a} and {a} ∼ NG(a) in G, it
follows that NG(NG(a)) ∼ NG(NG(a)) in G. Furthermore, as G(N(a)) is
connected, it follows, according to Theorem 2, that NG(a) is a weak compo-
nent of G.

Claim 6. Every weak component of G has the form NG(r) .
If for any weak component A, |N(A)| > 1, then we fix a vertex v ∈ N(A). By
Theorem 2, v is adjacent to every vertex in N(A), hence {v} ∪N(A) forms a
star cutset.

The converse implication is trivial by the following argument: if, for some
v, NG[v] is a star cutset, then G[N(v)] is not connected, hence N(v) is not a
weak component, which is a contradiction.

Theorem 3 provides the following recognition algorithm for unbreakable
graphs:

Input: A connected non-complete graph G = (V, E).
Output: An answer to the question: ”Is G unbreakable”?
begin

1. Generate LG, the family of the weak components of G as follows:
LG ← ∅
while V 6= ∅ do

determine the weak component A with the weak decomposition
algorithm

L ← L ∪ {A}
V ← V −A

Generate L
′
G, the family of the weak components of G

2. Determine NG(v), ∀v ∈ V
3. If ∃A ∈ LG such that A 6= NG(v), ∀v ∈ V

then Return: ”G is not unbreakable”
else

if ∃B ∈ L
′
G such as B 6= NG(v), ∀v ∈ V

then Return: ”G is not unbreakable”
else Return: ”G is unbreakable”
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end

As Theorem 2 provides an O(n + m)-algorithm for building a weak de-
composition for a connected non-complete graph, it follows that the step 1 of
the above algorithm is O(n · (n + m)). Because the steps 2 and 3 perform in
smaller time, it follows that the complexity of the recognition algorithm for
unbreakable graphs is O(n · (n + m)).

4 Some applications of minimal unbreakable graphs

In this section we point out some applications of minimal unbreakable graphs
in optimization problems and in chemistry.

Facility location analysis deals with the problem of finding optimal loca-
tions for one or more facilities in a given environment (see [9]). Location
problems are classical optimization problems with many applications in in-
dustry and economy. The spatial location of the facilities often takes place in
the context of a given transportation, communication, or transmission system.

The aim of this problem could be to determine a location that minimizes
the maximum distance to any other location in the network. Another type of
location problems optimizes a ”minimum of a sum” criterion, which is used in
determining the location for a service facility like a shopping mall, for which
we try to minimize the total travel time. The following centrality indices are
defined in [9]:

The eccentricity of a vertex u is eG(u) = max{d(u, v)|v ∈ V }.
The radius is r(G) = min{eG(u)|u ∈ V }.
The center of a graph G is C(G) = {u ∈ V |r(G) = eG(u)}.
We consider the second type of location problems.
Suppose that we want to place a service facility such that the total distance

to all customers in the region is minimal. The problem of finding an appro-
priate location can be solved by computing the set of vertices with minimum
total distance.

We denote the sum of the distances from a vertex u to any other vertex in
a graph G=(V,E) as the total distance s(u) =

∑
v∈V d(u, v). If the minimum

total distance of G is denoted by s(G) = min{s(u)|u ∈ V }, the median M(G)
of G is given by M(G) = {u ∈ V |s(G) = s(u)} .

The Wiener index was introduced in 1947 by H. Wiener [17] and is defined
as the sum of all distances between all pairs of vertices in G:

W (G) =
∑

u,v∈V dG(u, v).

We point out that the theoretical framework is especially well elaborated for
the Wiener index of trees (see [5]).
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The Wiener index is a graph invariant which has found extensive applica-
tion in chemistry (see [12]).

The distance-counting polynomial was introduced in [8] as:

H(G, x) =
∑

k d(G, k)xk,

with d(G, 0) = |V (G)| and d(G, 1) = |E(G)|, where d(G, k) is the number of
pairs of vertices lying at distance k to each other. This polynomial was called
Wiener polynomial (see [6], [13]).

A finite metric space is denoted by (X, d), where X is a finite set of points
and d is a metric. Take n=|X|. A metric can be stated through C2

n nonnegative
numbers that give the distance between the unordered pairs of points {i, j},
which means that we obtain a matrix with n rous and n columns, where, at
the intersection of rous i and columns j, the distance between i and j, with
i, j ∈ X, appears. We call this matrix, the distances matrix. We have a
natural correspondence between metrics and graphs. Given a graph G with n
vertices with the lengths on the edges (which may be equal with 1), we can
get a natural metric dG by setting, for every i, j ∈ V (G), the distance dG(i, j)
as being the length of the shortest path between i and j in G. Conversely,
given a metric space (X, d), a weighted graph G(d) can be obtained, generated
by the metric, in the following manner: we consider X as the set of vertices
of the graph, adding edges between every pair of vertices and considering the
length of the edge {i, j} as d(i, j). It is clear that the metric dG(d) is identical
to the original metric d.

Definition 5. A unbreakable graph G = (V,E) is called minimal if none
of its proper induced subgraphs is unbreakable.

Theorem 4. ([14], [15]) G is minimal unbreakable if and only if G is Ck

or Ck for some k ≥ 5.

Our result concerning the center of a minimal unbreakable graph is the
following.

Theorem 5. If G=(V,E) is a minimal unbreakable graph, then the center
and the median are equal to V .
Proof. We consider the distances matrix for Cn, with n even and n odd
separately, and for Cn, with n even and n odd, we obtain: eG(v)= n

2 for
G = Cn, ∀v ∈ V ; eG(v) = 2 for G = Cn, ∀v ∈ V . So, r(G)= n

2 for G = Cn and
r(G) = 2 for G = Cn, and C(G) = V . sCn

(v) = n + 1, ∀v ∈ V ; s(Cn) = n + 1;
M(Cn) = V . sCn(v)=n

2 (n
2 +1), n odd, ∀v ∈ V ; sCn(v)=n

2
n
2 , n even, ∀v ∈ V ;

M(Cn) = V . So, M(G) = V .
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Theorem 6. If G=(V,E) is a minimal unbreakable graph, then the Wiener
polynomial is a polynomial with degree 2 if G = Cn and with degree n

2 if
G = Cn.
Proof. Having the distances matrix for Cn with n even and n odd and for Cn

with n even and n odd, we obtain: H(G, x)=n +n(n−1)
2 x + nx2 for G = Cn;

H(G, x)=n
∑n

2
k=0x

k for G = Cn; W (G)=1
2n n

2 (n
2 +1) for G = Cn and n odd;

W (G)= 1
2n n

2
n
2 for G = Cn and n even; W (G)=1

2n(n + 1) for G = Cn.

5 Conclusions and future work

In this paper we study the class of (α, ω)-partitionable graphs as a subclass of
graphs without star cutset and we give a new characterization of the unbreak-
able graphs. In the future, we intend to verify the Normal Graph Conjecture
for the class of O-graphs, which is a subclass of the class of (α, ω)-partitionable
graphs.
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