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ON A GENERAL CLASS OF LINEAR AND
POSITIVE OPERATORS

Ovidiu T. Pop, Mircea D. Farcag and Dan Barbosu

Abstract

Suppose that (Ly)m>1 is a given sequence of linear and positive
operators. Starting with the mentioned sequence, the new sequence
(Km)m>1 of linear and positive operators is constructed. For the oper-
ators (Km)m>1 a convergence theorem and a Voronovskaja-type theo-
rem are established. As particular cases of the general construction, we
refined the Bernstein’s operators, the Stancu’s operators, the Mirakyan-
Favard-Szasz operators, the Baskakov operators, the Bleimann-Butzer-
Hahn operators, the Meyer-Konig-Zeller operators, the Ismail-May op-
erators.

1 Introduction

In this section, we recall some notions and operators which will be used in the
paper.

Let N be the set of positive integers and Ng = NU {0}. For m € N, let
B, : C([0,1]) — C([0,1]) be the Bernstein operators, defined for any function
f e C((0,1]) by

m

Bu)(2) = pmsla)f ( i ) , (L.1)
k=0
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where p,, r(x) are the fundamental Bernstein polynomials defined by

Pi(z) = (ZL) 2k (1 — )™k, (1.2)

for any = € [0,1] and any k € {0,1,...,m} (see [5] or [25]).
For the following construction see [15]. Define the natural number mg by

max{l, _[B]}v if B € R\Z
mo = . (1.3)
max{1,1— g}, if peZ.
For the real number 3, we have that
m+ B> (1.4)
for any natural number m, m > mg, where
max 1+ 3,{B}}, if BeR\Z
s =mor = 4 b (15)
max{1l + 3,1}, if geZ.
For the real numbers «, 3, o > 0, we set
1, if a<p
(e.8) — _ 1.6
: 1+ LB, if a>pg. (1.6)
B
For the real numbers o and 3, a > 0, we have that 1 < p(®#) and
k+«
0< < plh) 1.7
T m4+8 " a (1.7)
for any natural number m > mg and for any k € {0,1,...,m}.

For the real numbers o and 3, a > 0, mo and p(*?) defined by (1.3)-(1.6),
let the operators Py : C([0, pP]) — C(]0,1]) be defined for any function
f e C([0, ")) by

(PP f) () = me,wc)f( s “)7 (18)

P m+ g

for any natural number m > mg and for any x € [0,1]. These operators are
called Stancu operators, introduced and studied in 1969 by D. D. Stancu in the
paper [24]. Note that in [24], the domain of definition for the Stancu operators
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is C([0,1]) and the numbers « and f verify the condition 0 < a < §5.

In 1980 [4], G. Bleimann, P. L. Butzer and L. Hahn introduced the sequence
of linear positive operators (L, )m>1, Lm : Cg(]0,00)) — Cp([0,00)), defined
for any function f € Cp([0,00)) by

(L f)(x) = ﬁ kf:_o (’Z) " f <m+kl—k) , (1.9)

for any = € [0,00) and any m € N, where Cg([0,00)) = {f|f:[0,00) = R, f
bounded and continuous on [0, c0)}.

For m € N were considered the operators S, : Ca ([0,00)) — C ([0, 00))
defined for any function f € C5 ([0, 00)) by

> mx k
Sy )= e S0 el (), (110

m
k=0

exists

for any z € [0, 00), where C; ([0, 00)) = {f e C([0,0)) : Tim L&)

z—o0 1 + .’EQ
and is finite } The operators (Sy,),,~; are called Mirakjan-Favard-Szasz

operators and were introduced in 1941 by G. M. Mirakjan in [12].

They were intensively studied by J. Favard in 1944 in [8] and O. Szdsz in
1950 in [26].

Let for m € N, the operators V;,, : Ca ([0,00)) — C ([0, 00)) defined for any
function f € C ([0, 00)) by

(Vi f) () = (1 +x)—m§: (m +: a 1) (lix)kf (Z) : (1.11)

k=0

for any € [0,00). They are called the Baskakov operators and were intro-
duced in 1957 by V. A. Baskakov in [2].

W. Meyer-Koénig and K. Zeller introduced in [11] a sequence of linear and
positive operators. After a slight adjustment given by E. W. Cheney and A.
Sharma in [6], these operators Z,, : B([0,1)) — C([0,1)), defined for any

function f € B([0,1)) by
(m;rk) (1— )"+ ok f (mlik) (1.12)

for any m € N and for any = € [0,1). These operators are called the Meyer-
Konig and Zeller operators. Observe that Z,, : C ([0,1]) — C ([0, 1]), m € N.

(Zmf) (@)=
k=

0
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In the paper [10], M. Ismail and C. P. May consider the operators
(Rm)m>1- For m € N, R,,, : C([0,00)) — C([0,00)) is defined for any function
f€C([0,00)) by

(R f)(2) = e %5 ki)m(m Z!k)m ( :” >kef+";f (Z) (1.13)

1+

for any x € [0, 00).

In what follows, we consider I C R, I an interval and we shall use the
following sets of functions: FE(I), F(I) which are subsets of the set of real
functions defined on I, B(I) = {f|f : I — R, f bounded on I}, C(I) =
{f|f:I—R, f continuous on I} and Cp(I) = B(I) N C(I).

If f € B(I), then the first order modulus of smoothness of f is the function
w(f; ) : [0,00) = R defined for any 6 > 0 by

w(f;0) =sup{|f(z) — f(z")] : 2',2" € I,]2' — 2"| < 6}. (1.14)

2 Preliminaries

In the following, we consider the general construction and the results from
[22], which we will use afterwards in the paper.

Let I, J be intervals with I C [0,00) and I NJ # (. For any m € N
and k € Ny consider the the functions ¢,, ; : J — R with the property that
Om.k(x) > 0 for any x € J and the linear and positive functionals A,,  :
E(I) - R. Let E(I) and F(J) be subsets of the set of real functions defined
on I, respectively J such that the series

Z Som,k(x)f(zm,k)
k=0

is convergent for any f € E(I) and x € J. For any « € I consider the functions

Yy I — R, 9, (t) =t —x for any t € I and we suppose that ¢? € E(I), for

any x € INJ and any i € {0,1,2,...,s+ 2}. In what follows s € Ny is even.
For m € N define the operators Ly, : E(I) — E(J) by

(me)(:E) = Z <Pm,k(x)Am,k(f) (21)
k=0

for any f € E(I) and = € J. Tt is immediately the following

Proposition 2.1. The operators (Lpy,)m>1 are linear and positive on
E(INnJ).
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For m € N and i € Ny define T; by
(Tsz)(x) =m' (me;) (x) =m' Z ‘Pm,k(x)Am,k (w;) (2'2)
k=0

for any x € I N J.

Theorem 2.1. [22] If f € E(I) is a s times differentiable function in
x € INJ, with f©) continuous in x, and if there exist o, aspo € [0,00)
and m(s) € N such that

Qo < Qg+ 2 (2.3)
(TsLm)(z)  (Ts42Lm)()

and ,

are bounded for any m € N, m > m(s), then

ms ms+2
Jim ot (L)) = 3 2 (BL)@) O @) =0 (24)

i=0
Assume that f is a s times differentiable function on I with f) continuous

on I and an interval K C I NJ exists such that there exist m(s) € N and the
constants kj(K) € R depending on K, so that for any m € N, m > m(s) and

z € K we have
(Tj L) ()
m®i
where j € {s,s + 2}. Then the convergence given in (2.4) is uniform on K
and

< k(K) (2.5)

nﬁﬂ“(mexx»f§:5%;Canxxﬁ“Nm < (2:6)
i=0
< % (ks(K) + kosyo(K))w (f(s); W)

for any x € K and m > m(s).

Remark 2.1. In Theorem 2.1 we choose the smallest as and ag4o if they
exist.

Now, if m € N and ¢, (z) =0, A x(f) =0 for any f € E(I), any x € J
and any k € {m + 1,m + 2,...}, then we obtain a class of operators defined
by finite sums, so that the relation (2.1) becomes

(L f)(@) =D (@) A i (f). (2.7)
k=0

Remark 2.2. From above, it follows that the theorems from [22] hold for the
operators defined by finite sums and for the operators defined by infinite sums.
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3 Main results

Taking the above results into account, we can make the following construction
(see [22] and [23]).

Let I, J be real intervals with I N J # () and p,, = m for any m € N (the
finite case) or p,, = oo for any m € N (the infinite case). For any m € N and
ke {0,1,...,pm} NNp, consider the nodes x,, , € I (in this construction we
have Ay i (f) = f(zmk)) and the functions ¢y, : J — R, with the property
that @ k() > 0, for any x € J. We suppose that for any compact K C INJ
there exists the sequence (¢, (K))m>1, depending on K, such that

lim u,,(K) =0 (3.1)

m—r oo

and
p7n

Z @m,k(x) -1
k=0

for any x € K, any m € N and we note u(K) = sup{um,(K) : m € N}.

< up(K) (3.2)

Pm

Remark 3.1. From (3.1) and (3.2) it follows that lim ) ¢, x(z) =1 for

any x € K and the convergence is uniform on K.

Let w: I — (0,00) be a fixed function, called the weight function, such
there exists a positive constant M such that M < w(x), for any z € I and the
set functions

E,(I) ={f|f : I — Rsuchthat wf is bounded on I}. (3.3)

For f € E,(I) there exists a positive constant M (f), depending on f, such
that w(z)|f(z)| < M(f), for any = € I.
Let K C I NJ compact set and x € K. If p,, = m for any m € N, then

Pm
the sum Y @ (z) f(zm k) exists for any m € N.
k=0
If p,, = oo for any m € N, we consider the sequence (s, (m)),>1 defined
by spn(m) = > @m.k()|f(@m,x)], for any n € N. Taking (3.2) into account,
k=0
we get
n n
1 M(f)
sn(m) ];JSOWJC(I)w(xm,k)w(xm7k)|f(xm7k)‘ =T kz:%@m,k(x) =

%(1 + un(K)) < %(1 +u(K)),

IN
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oo
from where it follows that the sum Y @, 1 (2)|f(Tm k)| exists for any m € N.
k=0

It follows that the sum > ¢, () f(Tm,x) exists and then from the above
k=0

Pm
results, we get that the sum > ¢, (@) f(@m 1) exists for any m € N.
k=0
For m € N let the given operator L, : Fy,(I) — F(J) defined by

Pm

(L £)(@) = ok (@) f(@m.) (3.4)

k=0
for any © € J and any f € E,(I), with the property that for any f €
E,(I)NC(I), we have
lim (L f)(x) = f(x) (3.5)

m—r 00

uniformly on any compact K C I NJ.

Remark 3.2. We suppose that the functions ¢, e; € E,(I), € I, where
eI >R e(t)y=t"foranytel,ie€{0,1,2,3,4}.

Remark 3.3. Taking the Bohman-Korovkin Theorem into account, from (3.5)
it follows that for the operators (Ly,)m>1 we have

lim (Lpe;)(z) = e;(x) (3.6)

m—o0

uniformly on any compact K C I'NJ, i€ {0,1,2} and

lim (Ln33)(z) =0 (3.7)

m—0o0
uniformly on any compact K C I NJ, where z € I.

Remark 3.4. From Remark 3.3 it follows that for any compact K C I NnJ
there exist the sequences (vy,(K))m>1, (Wm(K))m>1 depending on K, such
that

im0, (K) = Tim_w,, (K) =0 (3.8)

and
|(Lme1)(x) — a| < v (K), (3.9)
(L) () < win(K), (3.10)

for any = € K and any m € N. We suppose in the following that there exists
0 < ag < 2, ag not depending on K, such that the sequence
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(m2=°2w,, (K))m>1 is bounded and li_r>n m2= %2, (K) = 0. So, there exists

ko(K) > 0, depending on K such that
m* 2w, (K) < ko (K) (3.11)

for any m € N.

Lemma 3.1. For any K C INJ there exists the constants ko(K) and koK),
depending on K, such that

(ToLm)(2) < ko(K) (3.12)
and
Li’;j @) < ky(x) (3.13)

for any x € K and any m € N.

Proof. Let m € N and « € K. Then taking (3.2) into account, we obtain that

Pm

(ToLm)(x) = (Lmeo)(®) = > @mu(@) <1+ um(K) <1+ u(K) = ko(K)
k=0

Further, we have

(TQLm)(:E) _ mz(LmQ/}i)(.T) _ m27a2(Lm¢2)(1,)

and taking (3.10), (3.11) into account we obtain (3.13). O

In the following, for m € N and k € {0,1,...,pn} NNy we consider the
nodes Y, 1 € I such that

Bm = sup | Tk — Ym, | < 00 (3.14)
ke{ovly"':prn}ﬁNO

for any m € N and
lim m2=*3,, =0, (3.15)

m—o0

so there exists { > 0 such that
m2=28,, <1 (3.16)

for any m € N. For m € N and k € {0,1,...,pm} NNy, we note B, 1 =
Tk — Ym,k, and then |8y, x| < B for any k£ € {0,1,...,pn} NNy and any
m € N.
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For m € N define the operator K, : E,,(I) = F(J) by

Pm

(Kmf)(@) =D @mp (@) f (Ym.k), (3.17)
k=0

for any x € I and any f € E,(I).

Lemma 3.2. For any K =1[0,b] C I NJ there exist the constants k{(K) and
kL (K), depending on K, such that

(ToKom)() < Ky(K) (3.18)
and
%723@) < k4y(K) (3.19)

for any x € K and any m € N.

Proof. We have (ToKy,)(z) = (Kmeo)(z) = icpmyk(x) = (Lmeg)(z) =
k=0

(ToLm)(z) < 1+ um(K) < 1+ u(K) and we can take kj(K) = ko(K). Fur-
ther,we have
(TZKm)(x) _ m2(me:%)(x) _ m27a2(meg)(x)

me2 me2

and
(Kmt3)(2) = (Kmea) (@) = 22(Kper)(z) + 2*(Kpneo) (x) =

Pm Pm Pm

= Cmk @k =22 ) Cmp(@)ymp + 2 Y pmu(r) =
k=0 k=0 k=0
Pm

Pm
= Omk(@) @mk = Bnk)” = 28> O k(@) (@mk — Brnk)+
k=0 k=0

Pm Pm Pm
+a? Z @m,k(x) = Z @m,k(x)xgn,k -2 Z @m,k(m)xm,kﬁm,k‘F
k=0 k=0 k=0

DPm Pm Pm
+ Z me,k(x)ﬁg%k — 2z Z @m,k}(x)xm,k + 2x Z @m,k(x)ﬁm,k‘F
k=0 k=0 k=0

Pm

+ z? Z @m,k(x) < (mei)(x) + 2Bm (Lmer)(x) + (621 + 22 By) (Limeo) ()
k=0
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so that

m*~ 2 (K 2) () < m?~ 2 (L} ) (x) 4 2m°~? By, (Limer ) () +
+m2728, (B 4 22) (Limeo) () < ko(K) + 20(b + v(K))+
+1(B+2b)(1 + u(K)) = ky(K)

where v(K) = sup{vn,(K) : m € N} and 8 = sup{B, : m € N}. O

Lemma 3.3. If ay > 3as — 2 then

i) If e € INJ and (T“L’;‘z(z is bounded for any m € N, then %4)(3”) 15
bounded for any m € N.

ii) If K =[0,b] c INJ and T“Li% is bounded on K for any m € N, then

% is bounded on K for any m € N.

Proof. We have
mw4 Z@mk zm,k*I 4Z@mk ﬂmk xmk*x)S“i’

+62§0mk mk xmk 4Z<pmk mk xmk_$)+

Pm

+D Pm k(@) Bk < (L) (@) + 48| (Lin¥3) ()] + 685, (L3 ) () +
=0
+4B5 (L) (@)] + B (Lmeo) (z)

so that we can write

(TaKm)(@) _ i,
mo4

+4m47a4ﬂ |(Lm1/1

+ 4mixa 3 (Lm¢

Kpty)(a) < m*= (Lt ) (2)+
()] + 6m* = B2 (L3 ) () +

| (@)| +m* =B (Lneo) () = m* ™ (L) () +
+4ﬁmm4_a4|(L ( )| +6(m2 “Brm) m2_a2(Lm¢i)($)m_2+3a2_a4+
+4(m* 2 ) (L m%)(zﬂm*z”araw
+ (m*72 By ) (Lineo) (x)m~ 02—,

Further, applying the Cauchy’s inequality for linear and positive operators
(see [17]), we get

(Ln3)?(2) < (Lint3) (@) (L) (@)
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and
6—ag—ay 2 (Tng)(l‘) (T4Lm)(l‘)
m = (L)) < Fred) Ei)
so that we have
6—ag—ay —243ag9—ay

m4ia45ﬂ1(Lm¢i)(m) = m27a2ﬂmm 2 (meg)(x)m 2

Taking into account the conditions 0 < as < 2, 0 < ay < 4, ag < ag +
2 and ay4 > 3as — 2, we obtain —2 + 3as — ay4 < 0 so it follows that
Brm*=|(L,,43)(z)] is bounded. On the other hand, we have that |(L,,.)(z)| <
V (Limeo) (@) (Lnp2)(z) and —4+4ao — s = (—2+ 302 — ) + (—2+az) < 0.

From (3.9), (3.16), the above remarks and the inequality verified by %,
it follows the conclusion of the lemma.
Theorem 3.1. If f € E,,(I) is continuous at x € I N J, then

lim (K f)(2) = f(2). (3.20)

m— o0

If f is continuous on I, K C I NJ is a compact, then the convergence given
in (3.20) is uniform on K and

|<Kmf><z> - (Z samw)) f(x)
k=0

< () + Ky (1o (i)

m270¢2
(3.21)
for any x € K and any m € N.
Proof. One applies Theorem 2.1 for s = 0 and Lemma 3.2. O
Corollary 3.1. If f € E(I) is continuous on I,
Pm
Z Pmp(z) =1
k=0
foranyx € J andm e N, K C INJ is a compact, then
1
/ / .
() = ) < oK) + B0 (i) (22

for any x € K and any m € N.

Proof. Directly from Theorem 3.1. O
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Lemma 3.4. We have

Pm
: 2—az _
Tim_m ];) P (2) Bk = 0

Pm
lim m?292 Z Om k()T kB = 0

m—r oo
k=0
Pm
: 2—a 2
Jim m?70 Y ok (2) 6, = 0
k=0

Proof. For the first relation, we have —f,, < Bk < B for any m € N,
ke {0,1,...,pm} NNp so that

Pm Dm
o m270425m Z spm’k(x) < m27a2 Z (Pm,k(x)ﬁm,k <
k=0 k=0
Prm
<m?To2p,, Z k() B,k
k=0

and we take into account that lim m2~*28,, = 0. The other relations can
m—0o0

be proved analogously. O

Theorem 3.2. If f € E,,(I) is a two times differentiable function at x € INJ,

with f® continuous at x and (T“fn% is bounded for any m € N, m > m(2),
then
Jim = (5 ) = (T ) ()~ (L)) )= (323)
- (Tl )| =
Proof. From Theorem 2.1, we have
im_m? e [(Kmfxx) — (T (@) () — (T o) (2) 7 ()
- g )@ 12| 0.
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But
(ToKm)(x) = (ToLm)(x),
Pm
(T Km) () = (T1Lin) () = MY 0 () B i
k=0
Pm
(TQKm)(x) = (Tsz)({E) - 2m2 Z ‘pm,k(x)xm,kﬁm,k‘i‘
k=0
Pm Pm
12 ok (@) B i+ 2m%2 Y P i (%) Bk
k=0 k=0
and taking Lemma 3.4 into account, the relation (3.23) results. O

Remark 3.5. The relation (3.23) is a Voronovskaja-type theorem.

In the following, in every application, we have pX: emk(x) = 1, so
k=0
(ToLy)(z) =1 for any z € J and m € N and u,(K) =0 for any K C InN.J
and m € N,

We counsider the applications from [23]. In the following, by particular-
ization of the sequence ym x, m € N, k € {0,1,...,pn} NNy and applying
Corollary 3.1, Theorem 3.1 and Theorem 3.2 from this paper we can obtain
convergence theorem, approximation theorems and Voronovskaja-type theo-
rems for the new operators. Because every application is a simple substitute
in the theorems of this section, we won’t replace anything. In the Applications
3.1, 3.2, 3.5, 3.6 and 3.7, we take w(xz) = 1, z € I. In the Applications 3.3
and 3.4, we take w(z) = H%’ x el
Application 3.1. If I = J = [0,1], E(I) = F(J) = C([0,1]), Zmi = £, m €
N, k € {0,1,...,m}, we get the Bernstein operators. We have u,,([0,1]) = 0,
vm([0,1]) = 0 and w,,([0,1]) = £, m € N. We consider the nodes ¥, » =

Am?
v k(kH), m €N, k€ {0,1,...,m}. Then on verify immediately that 8,, =

m
—— m € Nand lim 3, =0. In this case, the operators (K,,)m>1
m+4/m(m+1) m—o0 =

have the form

k(k+1)>’

m

(Ko f)(2) = me,m)f(
k=0

0,1], m € N and we get (T1B,,)(z) = 0, (T2Bn)(z
, )(x) = (3m2—6m)2?(1—2)2+mz(1—x), ko(K) = k{(K) =
ka(K) = 5, ka(K) = 12, kb () = 14242,

—_

b
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Application 3.2. We study a particular case of the Stancu operators. Let
o =10 and 8 = —3. We obtain I = [0,22], K = [0,1] and for any f €
C([0,22]), z € [0,1] and m € N

_ 2k + 20
(Prng’ 1/2 mek ( 1>~
We consider the nodes yp, 1 = %. In this case, the operators (K, )m>1
have the form
Z m(4k + 40)
Pm, k 2m — 1)2 )

where f € C([0,22]), = € [0,1], m € N. We get (T1 PG> /?)(z) = mz(iojf),

10,—1/2 mx x x)?
(LPS" ) () = <(,,,>—+g+>
(Tu PR ) (@) = Gy [48m2a? (1 — 2)2 + 16ma (1 — ) — 96ma?(1 - )
32(20+x)ma(1— :E)+24(20+:E) ma(1—x)+(20+2)4], ko(K) = 1, k) (K) =

(T PR ")) (@)

)
=z(l—z)and z(l —z) <

as =1, agy = 2; because lim %
m— oo m _

for any @ € [0,1], it follows that ky(K) = 2 and similarly ky(K) = 13.

Further, we have k4(K) = 100, taking into account that wu,,(K) = 0 and

vm (K) = 327

Application 3.3. If I = J = [0,00), E(I) = C3([0,0)), F(J) = C([0,0)),
k

K = [O7b]> b > 0, Pm = OO, Tmk = %7 Som,k(x) = e—mx(mkix!) , m € N, k €

Ny, we obtain the Mirakjan-Favard-Szdsz operators and we have wu,,(K) = 0,

U (K) = 0 and wy,,(K) = £, m € N. We consider the nodes y,, x = 2k(k+1)

m(2k+1)°
m € N, k € Ng and we have (,, = ﬁ, m € N. In this case, the operators
(Km)m>1 are

—TYLQZ' = 2k(k+1>
(Ko f)( kzzo k! ( (2k+1)>’
Wheref € Cs(]0, 00)), ;v e [0,00), m € N. We get (115,)(z) =0, (T2Sn)(x) =
x, (TySp)(z) = 3 x +mz, ko(K) =1 = k{(K), ko(K) = b, ks(K) =
3b2—|—b kLK) = 1 (see [18]).

Application 3.4. Let I = J = [0,00), E(I) = C5([0,)), F(J) = C(]0, 00)),

k
K= [O7b]7 b >0, pm = o0, LTm,k = %7 me,k(x) = (1 +x)_m(m+]5—1) (HLI) ’
m € N, k € Nyg. In this case we get the Baskakov operators and we have
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= VAR 2 ) N, k € Ny and we have 8, = —-=. The operators

U (K) = 0, v, (K) = 0 and w,,(K) = 17(17:117), m € N. We consider the nodes
" s

2m
K,)m>1 have the form

) = (142 S (") () (VL)

g k 14z 2m

Ym
(

€ N. We get (see [18]) (T1Vin)(x) = 0,
3m(m +2)z* + 6m(m +2)a® + m(3m +

)
where f € C3([0,00)), x € [0,00), m
) = 9b* + 1863 + 106 + b and ky(K) =

k
(ToVi)(2) = me(1+x), (TuVin)(z)
7)x? +mx, ka(K) = b(1 +b), ka(K

b +2(142v2) + 1.

Application 3.5. If I = J = [0,00), E(I) = F(J) = C([0,00)), K = [0,],
b>0, pm = 00, Tk = =, P i) = % (ﬁ) e_(klty;)m, m € N,
k € Ny, we get the Ismail-May operators and we have u,, (K) =0, vy, (K) =0

3
and wp, (K) = M, m € N. We consider the nodes y,, ; = VR (k)

m m ’

m € N, k € Ny and we have 3, = % In this case, the operators (K, )m>1

(o) =752 3 MR (oYt (VETED),

k=0
where f € C([0, 00)), mGN We obtain (71 Ry, )(a:) 0, (Ty )(x): x(1+
z)%, (TyRy)(z) = 3m?22 (14 2)* + m(6z +4)2* (1 +x)* +mx(1+x) (1+3z)?,
ko(K) = 1+b(14b)?, ks(K) = 1+ b*(1+b)* and kh(K) = b + 20> + Lo+ 20

(see [20]).

For the Bleimann-Butzer-Hahn operators and for the Meyer-Konig and
Zeller operators we only give the convergence and approximation theorems.
Application 3.6. We consider I = J = [0,00), E(I) = F(J) = Cp([0,0)),

K = [O,b], b> Oa Pm =M, Tmk = ﬁv Sﬁm,k(x) = W(lel>xkv m e N7

k €{0,1,...,m}. In this case we get the Bleimann-Butzer-Hahn operators and
vvehaveumK:0,1}mK:bL andme:MmeN see
1+b m+2

[19]). We consider the nodes Y., = m, méeN, ke{0,1,...,m}, where

(Ym)m>1 1s a sequence of real numbers with the property that lim m(1l —
m—oo

Ym) = 0 and we have ,,, = m|l — |, m € N. The operators (K,,)m>1 have

the form
(Knf)(e) = (1 42) ™3 (k) 2t f (mﬂk_k)

k=0
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where x € [0,00), m € N, f € Cp([0,00)). We obtain (ToL,,)(z) = 1,

(ThLy,)(z) = —ma (1-1%) , k2 (K) = 4b(1 + b)?, for m > 24(1 + b) and for

B =1— 7, m €N, we obtain kj(K) = 4b(1 + b)? + L2030,

Application 3.7. If [ = J =[0,1], E(I) = B([0,1]), E(J) = C([0,1]), K =
[0,1], pm = 00, Tk = mLJrk, (Pm.i)(x) = (mljk)(l—x)mﬂxk, m €N, k € Ny,
we get the Meyer-Konig and Zeller operators and we have wu,,([0,1]) = 0,

vm([0,1]) = 0 and w,,([0,1]) = m, m € N. We consider the nodes

Ym ko = mi@l’j{ ,m €N, k € Ny, where (7, )m>1 is a sequence of real numbers
such that
. TYm
lim =0
m—00 M + Y,
Then on verify immediately that 3, = —22— m € N and the operator

m~+Ym ’
(K )m>1 have the form

n ) =3 (" Y=yt (A2,

= m+k+vm

where f € B([0,1]), z € [0,1], m € N. For ~,, = X, we obtain (T Z,,)(z) = 1,

ko(K) =1, ko(K) =2, (T1Z)(z) = 0 (see [18]) and kb (K) = L2,
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