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HEXAGONAL 2-COMPLEXES HAVE A
STRONGLY CONVEX METRIC

Dorin Andrica and Ioana-Claudia Lazăr

Abstract

We give two distinct proofs for the fact that any finite simply con-
nected hexagonal 2-complex has a strongly convex metric. In our first
proof we show that these complexes are CAT(0) spaces, while the sec-
ond proof makes use of the fact that finite, simply connected hexagonal
2-complexes are collapsible. Both proofs rely on the fact that hexagonal
2-complexes have the 12-property.

Introduction

We investigate in this paper, in two distinct manners, whether finite simply
connected hexagonal 2-complexes have a strongly convex metric ([13], [16],
[14], [15]). The main observation which permits this study is that any hexag-
onal 2-complex has the 12-property (see [8], [1]).

Our first proof relies on the following important fact. In dimension 2,
the 12-property (6-property, 8-property) coincides with the CAT(0) property
of the standard piecewise Euclidean metric on a simply connected hexago-
nal (simplicial, cubical) complex (see [5], chapter II.5, page 207). We will
prove that hexagonal 2-complexes have the 12-property. Hence, since hexago-
nal 2-complexes are, according to their definition, endowed with the standard
piecewise Euclidean metric, they are non-positively curved. We show further
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that the curvature at the exterior vertices of such spaces is bounded above
by a strictly negative real number. Our proof of this is similar to the one
given by I.-C. Lazăr for the fact that any simplicial 2-complex obtained by
performing an elementary collapse on a CAT(0) simplicial 2-complex, remains
a CAT(0) space (see [9], Proposition 2; [12], Proposition 3.1.3.). Simply con-
nected hexagonal 2-complexes are therefore CAT(0) spaces (see [2], [5], [4],
[6]) and hence strongly convex (see [5], chapter II.1, page 160). Similarly, sim-
ply connected simplicial 2-complexes with the 6-property also have a strongly
convex metric, when endowed with the standard piecewise Euclidean metric.

Our second proof uses results proven in [10] on finite simply connected
hexagon 2-complexes with the 12-property. Besides, it relies on the fact that
collapsible hexagonal 2-complexes are strongly convex. The proof of this is
one of the paper’s goals. Similarly in [16] ([3]) it is proven that any col-
lapsible simplicial 2-complex (cubical 2-complex) admits a strongly convex
metric. Hence, since finite, simply connected, simplicial 2-complexes (square
2-complexes) with the 6-property (8-property), collapse to a point (see [7],
[11]), one may conclude that finite, simply connected simplicial 2-complexes
(cubical 2-complexes) with the 6-property (8-property) admit a strongly con-
vex metric (see [3]). In this paper we obtain a similar result on finite, simply
connected hexagonal 2-complexes. Namely, we prove that, due to the fact
that simply connected hexagonal 2-complexes have the 12−property and are
therefore collapsible (see [10]), they have a strongly convex metric. We note
that, although the 12-property on the more general hexagon 2-complexes also
ensures their collapsibility, if their fundamental group vanishes (see [10]), a
similar result does not hold on finite, simply connected hexagon 2-complexes
with the 12-property. We emphasize that, although the intersection of any two
2-cells of a hexagonal 2-complex is either the empty set, or a single common
face of the two intersecting cells, in a hexagon 2-complex such intersection
may be a union of faces. The paper’s main result is included in the second
author’s Ph.D. thesis (see [12]).

1 Preliminaries

We present in this section the notions we shall work with and the results we
shall refer to.

Let (X, d) be a metric space. Given a path γ : [a, b] → X in X, its length
is defined by

L(γ) = sup{
∑n

i=1 d(γ(ti−1), γ(ti))},

where the supremum is taken over all possible subdivisions of [a, b], a = t0 <

t1 < ... < tn = b. (X, d) is a length space if for any two points x, y in X
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d(x, y) = inf{L(γ)|γ is a path from x to y}.

We call d a length, or an intrinsic metric, and we allow ∞ as a possible value
of d.

A path γ : [a, b] → X in a metric space (X, d) is called a segment if its
length is minimal among the paths with the same endpoints. It follows that, if
(X, d) is a length space, a segment is defined as follows: a path γ : [a, b] → X is
a segment if and only if its length is equal to the distance between its endpoints
L(γ) = d(γ(a), γ(b)).

If there exists a (a unique) segment between any two points in a length
space (X, d), then d is called a convex (strongly convex ) metric.

A point z in a metric space (X, d) is called a midpoint between points
x, y ∈ X if d(x, z) = d(z, y) = 1

2d(x, y).

Let (X, d) be a metric space. If d is a convex (strongly convex) metric,
then for every x, y ∈ X there exists a (a unique) midpoint z. In case X is
complete, the converse implication holds as well (see [6], chapter 2.4.4, page
42).

In a compact metric space (X, d), there exists a segment between any two
points x, y that can be connected by at least one rectifiable curve (see [6],
chapter 2.5.2, page 49).

Let (X, d) be a compact strongly convex metric space. The concave col-
lection T for d is a finite set of segments in X which satisfy the following
condition: ∀ρ, τ ∈ T , ∀x1, x2 ∈ ρ, ∀y1, y2 ∈ τ , we have

d(xm, ym) ≤ 1
2 [d(x1, y1) + d(x2, y2)],

where xm and ym are the midpoints of the segments [x1, x2] and [y1, y2].

Let X be a length space. A curve γ : I → X is called a geodesic seg-
ment (or a geodesic) if for every t ∈ I there exists an interval J containing a
neighborhood of t in I such that γ|J is a segment. In other words, a geodesic
segment is a curve which is locally a segment.

We call a length space X a geodesic space if every pair of points in X can
be joined by a segment.

Let k ≤ 0 be a real number. Let X2
k denote a simply connected complete

Riemannian 2−manifold of constant curvature k. SoX2
0 is the Euclidean plane

R
2. If k < 0, X2

k is the hyperbolic plane.

A geodesic triangle △ = △(p, q, r) in a geodesic space X is a configura-
tion of three segments (edges) connecting three points (vertices) in pairs. A
comparison triangle for △ is a geodesic triangle △ = △(p, q, r) in X2

k with the
same edge lengths. For any x ∈ △, say x ∈ [p, q], there exists a comparison
point x, i.e. a point x ∈ [p, q] such that d(p, x) = dX2

k

(p, x).
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A metric space X is a CAT(k)-space if it is a geodesic space all of whose
geodesic triangles satisfy the so called CAT( k)-inequality. Namely, for any
geodesic triangle △(p, q, r) ⊂ X, and any two points x, y ∈ △, we have

d(x, y) ≤ dX2

k

(x, y),

where x, y are the corresponding points in the comparison triangle △.
A geodesic space X has curvature ≤ k if the CAT(k)- inequality holds

locally in X. If X has curvature ≤ 0, we say X is nonpositively curved.
If γ1, γ2 are two segments with the same initial point x = γ1(0) = γ2(0) in

a geodesic space X, the Aleksandrov angle between γ1 and γ2 at x is defined
as

∠x(γ1(s), γ2(t)) = lim sups,t→0 ∠x(γ1(s), γ2(t)),

where ∠x(γ1(s), γ2(t)) denotes the angle at the vertex corresponding to x in
a comparison triangle in R

2 for the geodesic triangle in X with vertices at
x, γ1(s), γ2(t).

A metric space X is a CAT(k) space if and only if it is a geodesic space
and if, for any geodesic triangle △ in X, the Aleksandrov angle at any vertex
is not greater than the corresponding angle in a comparison triangle △ ⊂ X2

k

(see [5], chapter II.1, page 161). If X is CAT(k), then it is also CAT(k′) for
every k′ > k (see [5], chapter II.1, page 165).

There is a unique segment between any two points of a CAT(k) space (see
[5], chapter II.1, page 161). Hence, since strongly convex metric spaces are
contractible and locally contractible (see [14]), so are CAT(k) spaces.

The first proof given to the paper’s main result will make frequent use of
Aleksandrov’s lemma which is given below (for the proof see [5], chapter I.2,
page 25).

Lemma 1.1. Let a, b, c, d be points in the Euclidean plane R
2 such that a

and c are in different half-planes with respect to the line bd. Consider a triangle
△(a′, b′, c′) in R

2 such that d(a, b) = d(a′, b′), d(b, c) = d(b′, c′), d(a, d) +
d(d, c) = d(a′, c′) and let d′ be a point on the segment [a′c′] such that d(a, d) =
d(a′, d′).

Then ∠d(a, b) + ∠d(b, c) < π if and only if d(b′, d′) < d(b, d). In this case,
one also has ∠a′(b′, d′) < ∠a(b, d) and ∠c′(b

′, d′) < ∠c(b, d).
And ∠d(a, b) + ∠d(b, c) > π if and only if d(b′, d′) > d(b, d). In this case,

one also has ∠a′(b′, d′) > ∠a(b, d) and ∠c′(b
′, d′) > ∠c(b, d).

A triangle is a 2-simplex isometric to a 2-simplex in R
2. The unit 2-hexagon

J is isometric to a regular hexagon in R
2 with edges of length one. We call a

unit 2-hexagon simply a hexagon.
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We define a hexagonal 2-complex by mimicking the definition of a simplicial
2-complex, using hexagons instead of simplices.

A 2-dimensional hexagonal complex K is the quotient of a disjoint union
of hexagons L =

⋃

Λ Jλ by an equivalence relation ∼. The restrictions pλ :
Jλ → K of the natural projection p : L → K = L|∼ are required to satisfy:

1. for every λ ∈ Λ, the map pλ is injective;

2. if pλ(Jλ)
⋂

pλ′(Jλ′) 6= ∅, then there is an isometry hλ,λ′ from a face
Tλ ⊂ Jλ onto a face Tλ′ ⊂ Jλ′ such that pλ(x) = pλ′(x′) if and only if
x′ = hλ,λ′(x).

We note that the intersection of any two cells in a hexagonal 2-complex is
either the empty set, or a single common vertex, or a single common edge.

There are many interesting examples of cell 2-complexes all of whose 2-cells
also have six 1-dimensional faces, but which do not satisfy all the conditions
of the above definition. We use the term hexagon 2-complex to describe this
larger class of complexes and introduce it below.

A convex Xn
k -polyhedral cell C is the convex hull of a finite set of points

in Xn
k . The support of a point x ∈ C, denoted supp(x), is the unique face of

C containing x in its interior.
Let (Cλ : λ ∈ Λ) be a family of convex Xn

k -polyhedral cells and let L =
∪λ∈Λ(Cλx{λ}) denote their disjoint union. Let ∼ be an equivalence relation
on L and let K = L|∼. Let p : L → K be the natural projection and define
pλ : Cλ → K by pλ(x) := p(x, λ). K is called an n-dimensional Xn

k -polyhedral
complex if:

1. for all λ ∈ Λ, the restriction of pλ to the interior of each face of Cλ is
injective;

2. for all λ1, λ2 ∈ Λ and x1 ∈ Cλ1
, x2 ∈ Cλ2

, if pλ1
(x1) = pλ2

(x2) then there
is an isometry h : supp(x1) → supp(x2) such that pλ1

(y) = pλ2
(h(y)) for

all y ∈ supp(x1).

A 2-dimensional hexagon complex is a 2-dimensional X2
k -polyhedral com-

plex whose 2-cells have six 1-dimensional faces. We note that the intersection
of any two cells in a hexagon 2-complex is either the empty set, or at most
six common vertices, or / and at most six common edges. So in a hexagon
2-complex such intersection may be a union of faces.

Let K be a cell complex. |K| denotes the underlying space of K, and K(k)

denotes the k-skeleton of K.
Let α be an i-cell of K. If β is a k-dimensional face of α but not of

any other cell in K, then we say there is an elementary collapse from K

to K ′ = K \ {α, β}. We denote an elementary collapse by K ց K ′. If
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K = K0 ⊇ K1 ⊇ ... ⊇ Kn = L are cell complexes such that there is an
elementary collapse from Kj−1 to Kj , 1 ≤ j ≤ n, then we say that K collapses
to L.

A closed edge is an edge together with its endpoints. An oriented edge
of K is an oriented 1-cell of K, e = [v0, v1]. We denote by i(e) = v0, the
initial vertex of e, by t(e) = v1, the terminus of e, and by e−1 = [v1, v0], the
inverse of e. A finite sequence α = e1e2...en of oriented closed edges in K

such that t(ei) = i(ei+1) for all 1 ≤ i ≤ n− 1, is called an edge-path in K. If
t(en) = i(e0), then we call α a closed edge-path or cycle. We denote by |α| the
number of 1-cells contained in α and we call |α| the length of α.

Let σ be a cell of K. The star of σ in K, denoted St(σ,K), is the union
of all cells that contain σ. The link of σ in K, denoted Lk(σ,K), consists of
all cells in the star of σ in K which are disjoint from σ and which, together
with σ, span a cell of K.

A subcomplex L in K is called full (in K) if any cell of K spanned by a
set of vertices in L, is a cell of L. A full cycle in K is a cycle that is full as
subcomplex of K. The systole of K is given by

sys(K) = min{|α| : α is a full cycle in K}.

A cell 2-complex has the k-property if the link of each of its vertices is a
graph of systole at least k, k ∈ {6, 8, 12}.

2 Hexagonal 2-complexes are CAT(0) spaces

In this section we give a first proof for the fact that simply connected hexagonal
2-complexes are strongly convex. Namely, we will study the existence of a
CAT(0) metric on a hexagonal 2-complex by showing that such complex has
the 12-property. It is therefore non-positively curved at any of its points except
for its exterior vertices. We investigate further the curvature of the complex
at these vertices and show that it is strictly bounded above by zero. A similar
proof was given in [9] ([12]) for the fact that any CAT(0) simplicial 2-complex
remains, after performing an elementary collapse on it, non-positively curved.
Any simply connected hexagonal 2−complex is hence a CAT(0) space and
therefore strongly convex.

Lemma 2.1. Any hexagonal 2-complex K has the 12−property.

Proof. Let v be an interior vertex of K. Since any two 2-cells in a hexago-
nal 2-complex can intersect each other along at most one 1-cell of the complex,
there must exist at least three 1-cells e1, e2 and e3 adjacent to v. So there must
exist at least three 2-cells σ1, σ2 and σ3 such that σ1 and σ2 intersect each
other along e1, σ2 and σ3 intersect each other along e2, and σ3 and σ1 intersect



HEXAGONAL 2-COMPLEXES HAVE A STRONGLY CONVEX METRIC 11

each other along e3. So the link of v in K contains at least 12 edges. Thus K
has the 12-property.

Because the intersection of any two 2-cells of a hexagon 2-complex may
be a union of faces, hexagon 2-complexes do not necessarily have the 12-
property. Take, for instance, two 2-cells and glue them along three of their
six 1-dimensional faces. Because the resulting complex has interior vertices
whose links in the complex contain less than 12 edges, it does not have the
12-property.

Since hexagonal 2-complexes are, according to their definition, endowed
with the standard piecewise Euclidean metric, the above lemma implies that,
except for their exterior vertices, these spaces are everywhere non-positively
curved. We investigate further the curvature of a hexagonal 2-complex at its
exterior vertices.

Lemma 2.2. Let K be a hexagonal 2-complex. Let e be an edge of K
such that exactly two 2-cells σ1 and σ2 of K intersect each other along e and
nowhere else. Let r be a point that belongs to σ1, and let p and q be two
distinct points that belong to σ2. The points p, q and r are chosen such that at
most one of them coincides with one of the endpoints of e. Then the geodesic
triangle △(p, q, r) in |K| satisfies the CAT(0) inequality.

Proof. We denote by s the intersection point of e and [p, r], and by t the
intersection point of e and [q, r].

Let △(r, s, t) be a comparison triangle in R
2 for the geodesic triangle

△(r, s, t) in |K|. Let △(s, t, q) be a comparison triangle in R
2 for the geodesic

triangle △(s, t, q) in |K|. The comparison triangles △(r, s, t) and △(s, t, q) are
placed such that the points r and q lie in different half-planes with respect to
the line through s and t. Let △(r, s, q) be a comparison triangle in R

2 for
the geodesic triangle △(r, s, q) in |K|. Let △(p, s, q) be a comparison triangle
in R

2 for the geodesic triangle △(p, s, q) in |K|. The comparison triangles
△(r, s, q) and △(p, s, q) are placed such that the points r and p lie in differ-

ent half-planes with respect to the line through s and q. Let t ∈ [r, q] be a
comparison point for t ∈ [r, q].
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Figure 1

Because σ1 is a CAT(0) space, the geodesic triangle △(r, s, t) in |K| fulfills
the CAT(0) inequality.

Because t ∈ [r, q], the CAT(0) inequality implies π = ∠t(r, q) ≤ ∠t(r, s) +
∠t(s, q) ≤ ∠t(r, s)+∠t(s, q). Hence, since ∠t(r, s)+∠t(s, q) ≥ π, according to

Aleksandrov’s lemma, we have dR2(s, t) ≤ dR2(s, t). Hence ∠r(s, t) ≤ ∠r(s, t).
The CAT(0) inequality implies that ∠r(s, t) ≤ ∠r(s, t). So it follows that

∠r(s, t) ≤ ∠r(s, t). (1)

Let △(r∗, p∗, q∗) be a comparison triangle in R
2 for the geodesic triangle

△(r, p, q) in |K|. Let s∗ ∈ [r∗, p∗] be a comparison point for s ∈ [r, p].
Because s ∈ [r, p], the CAT(0) inequality implies π = ∠s(r, p) ≤ ∠s(r, q) +

∠s(q, p) ≤ ∠s(r, q)+∠s(q, p). Aleksandrov’s lemma further implies ∠r(s, q) ≤
∠r∗(s

∗, q∗) and hence, according to (1), we have

∠r(s, t) ≤ ∠r∗(s
∗, q∗). (2)

Aleksandrov’s lemma also implies that dR2(s, q) ≤ dR2(s∗, q∗). Hence, since
dR2(s, q) = d(s, q), we have

∠p(s, q) ≤ ∠p∗(s∗, q∗). (3)

One can similarly show that

∠q(p, r) ≤ ∠q∗(p
∗, r∗). (4)
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The inequalities (2), (3) and (4) guarantee that the geodesic triangle △(p, q, r)
in |K| satisfies the CAT(0) inequality.

Lemma 2.3. Let K be a hexagonal 2-complex. Let v be an exterior vertex
of K such that exactly two 2-cells σ1 and σ2 of K intersect each other at v

and nowhere else. Let r be a point that belongs to σ1, and let p and q be two
distinct points that belong to σ2. The points p, q and r are chosen such that
none of them coincides with v. Then the geodesic triangle △(p, q, r) in |K|
satisfies the CAT(k) inequality for any real number k < 0.

Proof. We note that the segment [r, p] ([r, q]) is the concatenation of the
segments [r, v] and [v, p] ([r, v] and [v, q]).

Let △(p, q, r) be a comparison triangle in R
2 for the geodesic triangle

△(p, q, r) in |K|. Let v1 ∈ [r, q] be a comparison point for v ∈ [r, q], and
let v2 ∈ [r, p] be a comparison point for v ∈ [r, p]. Let △(v, p, q) in R

2 be a
comparison triangle for the geodesic triangle △(v, p, q) in |K|.

Figure 2

We note that ∠r(p, q) = 0 and hence, since the points p, q and r differ from
the point v, the following strict inequality holds ∠r(p, q) < ∠r(p, q). Because
the geodesic triangle △(v, p, q) in |K| satisfies the CAT(0) inequality, we have
∠q(v, p) ≤ ∠q(v, p). Since the point r differs from the point v, elementary Eu-

clidean geometry guarantees that ∠q(v, p) < ∠q(v2, p). So ∠q(r, p) < ∠q(r, p).
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One can similarly show that ∠p(r, q) < ∠p(r, q). Hence the geodesic triangle
△(p, q, r) in |K| satisfies the CAT(0) inequality. Furthermore, since all com-
parison inequalities are strict, the geodesic triangle △(p, q, r) in |K| satisfies
the CAT(k) inequality for any real number k < 0.

Lemma 2.4. Let K be a hexagonal 2-complex. Let v be an exterior vertex
of K such that exactly three 2-cells σ1, σ2 and σ3 of K intersect each other at
v and nowhere else. Let p be a point that belongs to σ1, let q be a point that
belongs to σ2, and let r be a point that belongs to σ3. The points p, q and r are
chosen such that none of them coincides with v. Then the geodesic triangle
△(p, q, r) in |K| satisfies the CAT(k) inequality for any real number k < 0.

Proof. We note that the segment [r, p] ([r, q]; [p, q]) is the concatenation
of the segments [r, v] and [v, p] ([r, v] and [v, q]; [p, v] and [v, q]).

Figure 3

Let △(p, q, r) be a comparison triangle in R
2 for the geodesic triangle

△(p, q, r) in |K|. We note that ∠r(p, q) = 0, ∠p(r, q) = 0 and ∠q(p, r) = 0.
Hence ∠r(p, q) < ∠r(p, q), ∠p(r, q) < ∠p(r, q) and ∠q(p, r) < ∠q(p, r). So the
geodesic triangle △(p, q, r) in |K| satisfies the CAT(k) inequality for any real
number k < 0.
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Lemma 2.5. Let K be a hexagonal 2-complex. Let v be an exterior vertex
of K and let e be an edge of K such that v is one of its faces, such that exactly
two 2-cells σ1 and σ2 of K intersect each other along e and nowhere else, and
such that exactly two pairs of 2-cells (σ1 and σ3; σ2 and σ3) of K intersect
each other at v and nowhere else. Let p be a point that belongs to σ1, let r be a
point that belongs to σ2, and let q be a point that belongs to σ3. The points p, q
and r are chosen such that none of them coincides with v. Then the geodesic
triangle △(p, q, r) in |K| satisfies the CAT(k) inequality for any real number
k < 0.

Proof. We note that the segment [r, q] ([p, q]) is the concatenation of the
segments [r, v] and [v, q] ([p, v] and [v, q]).

Figure 4

Let △(p, q, r) be a comparison triangle in R
2 for the geodesic triangle

△(p, q, r) in |K|.
We note that ∠q(p, r) = 0. Hence, since the point q differs from the points

v, ∠q(p, r) < ∠q(p, r). Lemma 2.2 implies that the geodesic triangle △(p, v, r)
in |K| satisfies the CAT(0) inequality. Because the points p, q and r differ from
the point v, arguing as in the proof of Lemma 2.3, we get ∠r(p, q) < ∠r(p, q),
∠p(r, q) < ∠p(r, q). So the geodesic triangle △(p, q, r) in |K| satisfies the
CAT(k) inequality for any real number k < 0.
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The Lemmas 2.3, 2.4 and 2.5 imply the following theorem.

Theorem 2.6. Let K be a hexagonal 2-complex. Then K has curvature
strictly bounded above by zero at any of its exterior vertices.

The above theorem guarantees that a hexagonal 2-complexes is non-positively
curved at any of its exterior vertices. So, because a hexagonal 2-complex is,
according to its definition, endowed with the standard piecewise Euclidean
metric, Lemma 2.1 ensures that a hexagonal 2-complex is everywhere non-
positively curved. Hence, since finite, simply connected, non-positively curved
spaces are CAT(0) spaces (see [5], chapter II.4, page 194), the main result of
the paper follows.

Corollary 2.7. Any simply connected hexagonal 2-complex is a CAT(0)
space. In particular, it has a strongly convex metric.

3 Hexagonal 2-complexes have a strongly convex metric

In this section we give a second proof for the fact that finite, simply con-
nected hexagonal 2-complexes have a strongly convex metric. Because hexag-
onal 2-complexes have the 12-property, finite, simply connected hexagonal
2-complexes are, according to [10], collapsible. The essential step of the proof
will be therefore to show that collapsible hexagonal 2-complexes are strongly
convex. The proof of this step is based on a lemma proven by W. White in
[16]. We start by presenting this lemma.

Lemma 3.1. Suppose that X ∪ σ is a metric space and that X ∩ σ = τ

is a segment. Let d be a strongly convex metric for X and let T be a concave
collection for d that contains τ . Suppose abcde is a triangle with vertices at
a, d, and e, and let ϕ : abcde → σ be a homeomorphism such that ϕ(bc) = τ

and d(ϕ(x), ϕ(y)) = dR2(x, y) for every x, y ∈ bc. Then there is a strongly
convex metric d′ for X ∪ σ such that:

d′(x, y) =











d(x, y) for all x, y ∈ X,

dR2(ϕ−1(x), ϕ−1(y)) for all x, y ∈ σ,

minz∈τ{d
′(x, z) + d′(z, y)} for all x ∈ σ, y ∈ X or x ∈ X, y ∈ σ,

and T ∪ {ϕ(ab), ϕ(cd), ϕ(de), ϕ(ea)} is a concave collection for d′.

The above lemma implies the following result.

Theorem 3.2. Let X be a finite hexagonal 2-complex and let d be a
strongly convex metric on X. Let T be a concave collection for d which covers
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|X(1)|. Let σ(2) and τ (1) be two cells such that τ is a free face of the hexagon
σ. We consider the hexagonal 2-complex X ′ = X ∪ {σ, τ} such that X ′ ց X

is an elementary collapse. Then |X ′| has a strongly convex metric d′ such that
d′(x, y) = d(x, y) for all x, y ∈ |X|, and there exists a concave collection T ′

for d′ which covers |X ′(1)|.

Proof. Let X∩σ(2) = {τ
(1)
1 , τ

(1)
2 , τ

(1)
3 , τ

(1)
4 , τ

(1)
5 }. Because the concave col-

lection T for d covers |X(1)|, the segments τ1, τ2, τ3, τ4 and τ5 belong to T . We
consider a subtriangulation [u0, u1], [u1, u2], ..., [uk−1, uk] of {τ1, τ2, τ3, τ4, τ5}
and note that the segment [ui−1, ui] belongs to an element of T , 1 ≤ i ≤ k.
On τ we choose the points vi,mi, wi, 1 ≤ i ≤ k, and ni, oi, qi, 1 ≤ i ≤ k − 1,
ordered as follows:

u0, v1,m1, w1, n1, o1, q1, v2,m2, w2, n2, o2, q2, ...,

vk−1,mk−1, wk−1, nk−1, ok−1, qk−1, vk,mk, wk, uk

.

Figure 5

Figure 6
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We denote by σi the quadrilateral with vertices at ui−1, ui, wi and vi that
is contained in σ, 1 ≤ i ≤ k. We note that σi intersects X along the segment
[ui−1, ui] that belongs to an element of T , 1 ≤ i ≤ k. Lemma 3.1 therefore
implies that X1 = X∪(∪k

i=1σi) has a strongly convex metric d1 such that T1 =
T∪{[v1, u0], [u1, w1], [w1,m1], [m1, v1], ..., [vk, uk−1], [uk, wk], [wk,mk], [mk, vk]}

is a concave collection for d1 which covers |X
(1)
1 |. We note that the segment

[vi, wi] with respect to the metric d1 is the concatenation of the segments
[vi, ui−1], [ui−1, ui] and [ui, wi], 1 ≤ i ≤ k.

We will show that the metric d1 can be extended by induction to a strongly
convex metric d′ on the rest of |X ′| = |X ∪σ|. For 2 ≤ i ≤ k, let δi denote the
triangle whose boundary contains the points wi−1, ui−1 and vi. For 2 ≤ i ≤ k,
let Xi = X1 ∪ (∪k

i=2δi) and let

Ti = T1 ∪ (∪k
i=2{[wi−1, ni−1], [ni−1, oi−1], [oi−1, qi−1], [qi−1, vi]}).

Suppose that for some j ∈ {1, ..., k}, there exists a strongly convex metric
dj on Xj such that dj(x, y) = d1(x, y) for all x, y ∈ X1, and such that Tj is a

concave collection for dj which covers |X
(1)
j |.

Figure 7

We note that the segment [wj , vj+1] with respect to the metric dj hits the
segment [uj−1, uj+1]. Similarly, the segment [wj , uj−1] with respect to the
metric dj is the concatenation of the segments [wj , uj ] and [uj , uj−1] while the
segment [vj+1, uj+1] with respect to the metric dj is the union of the segments
[vj+1, uj ] and [uj , uj+1]. So the segment [wj , vj+1] with respect to the metric
dj is the union of the segments [wj , uj ] and [uj , vj+1], j < k.

Because the segment [vj , wj ] with respect to the metric dj is the concate-

nation of the segments [vj , uj−1], [uj−1, uj ] and [uj , wj ], for any p ∈ Xj \ σj

and for any x ∈ [wj , uj ], we have dj(p, x) = dj(p, uj) + dj(uj , x).
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We show further that Tj ∪ {[wj , vj+1]} is a concave collection for dj which

covers |X
(1)
j |. Let α be a segment in Tj different from [uj , wj ], [wj ,mj ],

or [mj , vj ]. Let x1 and x2 be two distinct points on [wj , vj+1] such that
dj(x1, x2) = dj(x1, uj) + dj(uj , x2) and let y1 and y2 be two distinct points
on α. Let xm, ym and x′

m be the midpoints of the segments [x1, x2], [y1, y2]

and [uj , x2]. We note that dj(xm, x′

m) = 1
2dj(x1, uj). Besides we note that

dj(x1, y1) = dj(x1, uj) + dj(uj , y1). Because the segments [y1, y2] and [uj , x2]
belong to Tj , we have:

dj(ym, x′

m) ≤ 1
2 [dj(y1, uj) + dj(y2, x2)].

Altogether we have:

dj(xm, ym) ≤ dj(xm, x′

m) + dj(x
′

m, ym) ≤

≤ 1
2 [dj(x1, uj) + dj(y1, uj) + dj(y2, x2)] =

= 1
2[dj(x1, y1) + dj(y2, x2)].

The above relation implies that Tj ∪{[wj , vj+1]} is a concave collection for dj .
One can similarly show that, if α is [uj , wj ], [wj ,mj ], or [mj , vj ], Tj ∪

{[wj , vj+1]} is a concave collection for dj which covers |X
(1)
j |.

We note that the segment [wj , vj+1] with respect to the metric dj is the
union of the segments [wj , uj ] and [uj , vj+1], and that Tj ∪ {[wj , vj+1]} is

a concave collection for dj which covers |X
(1)
j |. Lemma 3.1 therefore implies

that there exists a strongly convex metric dj+1 on Xj+1 such that dj+1(x, y) =
d1(x, y) for all x, y ∈ Xj+1 and such that Tj+1 is a concave collection for dj+1

which covers |X
(1)
j+1|.

It follows by induction that there exists a strongly convex metric d′ = dk
on |X ′| = |Xk| such that d′(x, y) = dk(x, y) for all x, y ∈ |X ′| and such that
T ′ = Tk is a concave collection for d′ which covers |X ′(1)|.

The above theorem implies the following corollary.

Corollary 3.3. Any collapsible hexagonal 2-complex has a strongly con-
vex metric.

Since hexagonal 2-complexes have the 12-property, they are, if their fun-
damental group vanishes, collapsible (see [10]). The above corollary therefore
implies the main result of the paper.

Corollary 3.4. Any finite simply connected hexagonal 2-complex has a
strongly convex metric.
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Because strongly convex metric spaces are contractible and locally con-
tractible, the following holds.

Corollary 3.5. Any finite simply connected hexagonal 2-complex is con-
tractible and locally contractible.

We note that, due to their collapsibility, it was already clear that finite,
simply connected hexagonal 2-complexes are contractible.
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[9] I.-C. Lazăr, CAT(0) simplicial complexes of dimension 2 are collapsible,
Proceedings of the International Conference on Theory and Applications
of Mathematics and Informatics (Eds.: D. Breaz, N. Breaz, D. Wainberg),



HEXAGONAL 2-COMPLEXES HAVE A STRONGLY CONVEX METRIC 21

Alba Iulia, September, 9−11, 2009, Acta Universitatis Apulensis, Special
Issue, pages 507− 530, 2009.
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[12] I.-C. Lazăr, The study of simplicial complexes of nonpositive curva-
ture, Ph.D. Thesis, Cluj University Press, 2010 (http://www.ioana-
lazar.ro/phd.html).

[13] K. Menger, Untersuchungen ueber allgemeine Metrik, Math. Ann., 100,
75-163, 1928.

[14] D. Rolfsen, Characterizing the 3-cell by its metric, Fund Math, 68, 215−
223, 1970.

[15] D. Rolfsen, Strongly convex metrics in cells, Bull. Amer. Math. Soc., 74,
171-175, 1968.

[16] W. White, A 2-complex is collapsible if and only if it admits a strongly
convex metric, Fund. Math., 68, 23-29, 1970.
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