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MODULE STRUCTURES ON ITERATED
DUALS OF BANACH ALGEBRAS

A. Bodaghi, M. Ettefagh, M. Eshaghi Gordji, A. R. Medghalchi

Abstract

Let A be a Banach algebra and (A", ) be its second dual with first
Arens product. We consider three (A", )-bimodule structures on forth
dual and four (A”,)-bimodule structures on fifth dual of a Banach al-
gebra. This paper determines the conditions that make these structures
equal. Among other results we show that if A” is weakly amenable with
some conditions, then A is 3 -weakly amenable.

1 Introduction

Let A be a Banach algebra and let X be a Banach A-module, that is X is a
Banach space and an A-module such that the module operations (a, x) — a-x
and (a,z) — x-a from A x X into X are jointly continuous. The dual space
X’ of X is also a Banach A-module by the following module actions:

(- fix)=(f,x-a), (f-az)=(fa x), (acA, zeX, feX)

We set X" = (X')’, and so on, and we regard X as a subspace of X” in
the standard way. Also X" = (X"),...
Let X be a Banach A-module. Then a continuous linear map D : A — X is
called a derivation if

D(ab) =a-D(b) + D(a) - b (a,b € A).
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For x € X we define 6, : A — X as follows:
dz(a) =a-x—x-a (a € A),

it is easy to show that §, is a derivation. Such derivations are called inner
derivations. A is called amenable, if every derivation D : A — X' is inner,
for each Banach A-module X. If every derivation from A into A’ is inner, A
is called weakly amenable. Let n € N. A Banach algebra A is called n-weakly
amenable if every derivation from A into A is inner [4], where A(™) is the
n-th dual of A that is a Banach A-module. We regard A as a subspace of A"
by canonical embedding “: A — A”;a +— a. We write A as the image of A
under this mapping.

Let X,Y and Z be normed spaces and let f: X XY — Z be a continuous
bilinear map. Then the adjiont of f is defined by

2 xX =Y (f'iZ,2)y) = flz,y) (FeZ zeXyeY).

Since f’ is a continuous bilinear map, this process may be repeated to define
"= :Y"xZ — X', and then f"" = (f") : X" xY"” — Z". The
map f" is the unique extension of f such that X" — Z"; 2" — f"' (2", y")
is weak* — weak™ continuous for all " € Y and Y — Z"; 4" — "' (x,y")
is weak* — weak* continuous for all x € X. Let now f*:Y x X — Z be the
transpose of f defined by fi(y,z) = f(x,y) for all x € X and y € Y. Then f*
is a continuous bilinear map from Y x X to Z, and so it may be extended as
above to (f')"” :Y" x X" — Z". The bilinear map f is called Arens reqular
it f7 = ((fY)")? (see [1, 2, 7, 8] and [13]). Let 2”7 € X" and 3" € Y”. Then
there exist nets (z,) C X and (ys) C Y with Z, — 2" and 35 — 3. We
have

f///(x//7 y//) = ]jlin lién f@ﬁ)»

—

((ft)”’)t(x”,y//) = héllllgl f(xaayﬁ)'

Let A be a Banach algebra, and let 7 : A x A — A denote the product
of A, so that m(a,b) = ab (a,b € A). for F and G in A”, we denote 7" (F,G)
and ((*)"")!(F, G) by symbols FOG and FOG, respectively. These are called
first and second Arens products on A”. These products are defined in stages
as follows. For every F, G € A", f € A and a,b € A, we define f-a,a- f,G- f
and f - F in A’; FOG and FOG in A" by

<f'a7b>:<fvab>7 (a-f,b>:<f7ba>,

(G- fa)=(G.f-a), (f-Fa)=(Fa-f),
(FOG, ) =(F.G - [),  (FOG,[) = (G, [-F).



MODULE STRUCTURES ON ITERATED DUALS OF BANACH ALGEBRAS 65

A" is a Banach algebra with (above) Arens products. In fact

FOG = w* — limw* —lifrgna/ab\g

FOG = w* —liénw* flima/ab\g,

where F' = w* — lim, @, and G = w* — limg ZB- The algebra A is Arens
regular whenever the map 7 is Arens regular that is, whenever the first and
second Arens products of A” coincide. Recall that a Banach algebra A is said
to be dual if there is a closed submodule Ay of A’ such that A = A’ .

Definition 1.1. The Banach algebra A has strongly double limit property
(SDLP) if for each bounded net (a,) in A and each bounded net (fg) in A’,
lim, limg(fg, aa) = limg lim, (f3, aa) , whenever both iterated limits exist.

This definition has been introduced in [14]. Medghalchi and Yazdanpanah
in [14] showed that every reflexive Banach algebra has (SDLP). We know that
reflexivity is equivalent with double limit property [3, Theorem A.3.31], so the
(SDLP) is equivalent with reflexivity. Now suppose that the Banach algebra
A has (SDLP), then for each f € A’ and bounded nets (aq), (bg) in A, we
have

liénlim<blg “fraq) = limlién<b3 - f,aq),

which means that for each f € A’, the map a > a.f, A — A’ is weakly
compact by [3, Theorem 2.6.17], i.e., A is Arens regular. Hence (SDLP) is
stronger than Arens regularity. On the other hand this two are not equivalent
in general. We know C([0,1]) is an Arens regular Banach algebra. If we
consider the sequence (f,,,) in C([0,1]) defined by fn(z) = 51 for 0 <2 <1

and f,,,(0) = 0 for all m € N, and assume that sequence () is in M([0,1]) =
C([0,1])* ( the set of all regular Borel measures on [0,1]), where pu, is the
point mass at %, for all n € N. Then, we easily see that

lim Um (g, frm) =0 # 1 = lmlim{p,, fi)-

Therefore C([0,1]) has not (SDLP). Also there are Arens regular Banach
algebras which are not reflexive as Banach spaces. For example, the disc
algebra A(D) is Arens regular [16] but not reflexive [15].

One may consider the question of how A inherits the amenability or weak
amenability of A”. For amenability the answer is positive (see [12]). So for
weak amenability, this problem was considered by few authors and a positive
answer has been given in each of the following cases:
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A is a left ideal in A" [12].
A is a dual Banach algebra [11].
A is Arens regular and every derivation from A into A’ is weakly compact

A has (SDLP) [14].

e A is aright ideal in A” and A”A = A" [9].

In section two of this paper, we put many module structures on forth dual
A® and show that these module structures are not always equal, and we show
when these module structures are equal. By using part two, we make four
module structures on A®). This is done in section three, where these module
structures on A®) are not always equal. In section four we show that with some
module structures on A®) | weak amenability A” implies weak amenability A.
This is a question that if A” is 3 -weakly amenable, is A 3-weakly amenable?
We show that the 3 -weak amenability of A" implies the 3 -weak amenability
of A if D"(A") - A®) C A, for each derivation D : A —» A”. Tt is known
that every (n + 2)-weakly amenable Banach algebra is n-weakly amenable
for n > 1 [4]. In particular the 3-weak amenability of A implies the weak
amenability of A. Does weak amenability imply 3 -weak amenability? The
answer is negative. Yong Zhang [19] gave an example of a weakly amenable
Banach algebra that it is not 3-weakly amenable, but he had showed in [20]
that if A is weakly amenable with a left (right) bounded approximate identity
such that it is a left (right) ideal in A", then A is (2n+1)-weakly amenable
for n > 1. A different proof are provided by Dales, Ghahramani and Grgnbaek
in [4] in which A is an ideal in A”. Finally we put some conditions on A and
A" such that if A is weakly amenable, then A is 3-weakly amenable. For the
remainder of this paper, A" is regarded as a Banach algebra with respect to
the first Arens product .

2 A”- bimodule structures on forth dual of a Banach al-
gebra

A" has two A”-bimodule structures. First we regard A", as the dual space
of A", (A" = (A”)) and so A" can be made into an A”-bimodule by the
following actions

(\-F,G) = (\,FOG), (F-\G)=(\GOF), (\eA”;F,GeA").

In the second way, A", as the second dual of A, (A" = (A’)"), can be an
A”-bimodule by the following formula. For A € A" and F' € A”, we have

L —

—_—
Ao F=w*—limw" —lim f; - an, Fol=w"—Ilimw"—lima, - f;
3 03 [e3% 3
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where ' = w* — lim, d, in A”and \ = w* — limiﬁ» in A", such that
(aq) and (f;) are nets in A and A’ respectively. In fact Ao F and F o A are
extensions of module actions (f,a) — f-a (A" x A — A’) and (a, f) —
a-f (AxA — A).

These two A”-bimodule structures on A"’ are considered in [10] and have
been shown that two right A”-bimodule actions on A"’ always coincide but
left A”-bimodule structures on A"’ are not always equal. Now the Banach
algebra A has three A”-bimodule structures.

(a) We consider A® = (A”)" in which A" = (A")", so A® can be an
A’-bimodule by following actions

(FoA X)) =(A Mo F), (Ao F, M)y = (A, Fo))

where F e A7 A€ A” and A € AW,
(b) We consider A = (A" in which A" = (A"), so A® can be an
A”-bimodule by following right and left module actions

(F-A\) = (A \-F), (A-F,\) = (A, F-\)

where F € A7 A€ A” and A € AW,
(c) Let A = (A”)" be as the second dual of A”. Take A € A® | F € A"

and bounded nets (F,) C A", (ag) C A with Fy 5 A and ag » F. Two
module actions are defined by

FOA:w*—limlima??,JK AOF:w*—limliénmg.

Hence F o A and A e F are extensions of module actions (a,F) — a -
F (AxA" — A”) and (F,a) — F-a (A" x A — A").

We show that these three A”-bimodule structures on A®) are not always
equal. Suppose that A € A® X\ € A”, F € A” and bounded nets (G,) C

A" (fy) C A, (ag) C A by Go w—*>A,J?V SN and ag w—*>F, then
(Ao F,A) = (A, Fol)
= lim(Gy, F o \)
=lim(F -\, Gy)

= lim lim lim(Ga, ag - f),
im Tim 1£n< ag - fr)
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and

= lim lim<ﬁ,GaDF>
a

= lmlim(Ga, F - f).
a

For structure (c), we have

(Ao F,\) = lim 1ién<6f~\aﬁ, )

[e3

= lim 11;11()\, G - ag)

= lim lim lim(f,,, G -
im lin lim £y ag)

[e3

= hénhgnhgl(Ga,aﬁ “fy)-

We see two right actions in parts (a) and (c) are equal and different from
the action of (b). For left actions, suppose that A € A4 | X e A" F ¢ A"

and bounded nets (G,) C A”,(fy) C A, (ag) C A with Go 5 A,ﬁ S
and ag LN F', then

(FoA,N)=(A Ao F)
= lim(Gy, Ao F)
=lim{(\ o F, G,)

= liénlif/nlién<Ga, Iy -ag),



MODULE STRUCTURES ON ITERATED DUALS OF BANACH ALGEBRAS 69

and
(F-A ) =(AN-F)
= li;n<éa, A F)
= lim (), FOG.)
= lim 1131@, FOG,,)
= limlim(F, G - f,)
= lign li£n lién@ﬁ, Ga - fy)
= licryn li£n lién<Ga, fy - ag).
For the structure (c), we have
(F o)) =lin lim(as - Ga, b")
= lién li£n<A, ag - Gq)
= limli(gnli}{n<ﬁ, ag - Go)

= lim lim lim(G, f; - ag).
B @

We see that left actions in parts (a) and (b) are equal and different from the

action of (¢). We put some conditions on A and show that with this conditions

all A”-bimodule structures on A are equal. First we bring some simple, but

useful lemmas.

Lemma 2.1. If A is Arens regular, then, for the bounded nets (F,) and

(Gg) in A",
(w* — lim, Fp)O(w* — limg Gg) = w* — lim, w* — limg(F,0GR) = w* —
limg w* — lim,, (F,OGpg). [

Lemma 2.2. Let the Banach algebra A with one of the following condi-
tions

(i) The map ¢ : A’ x A — A';((f,a) — f - a) is Arens regular,

(i) The map ¢ : A" — A”;(G — GOF) is weak-compact for every
FeA,

(i) The map ¢ : A” — A”; (G — GOF) is w*-w-continuous for every
Fe A"

Then for each bounded net (ay) in A and X € A",

O (w* — limg @) OF) = lima (A, G.0F) (1)
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Proof. (i) Let A = w* —limg f:g, where (fg) is a bounded net in A’, then
we have

O (" = lim@e)OF) = lim((w — lima,)OF, fs)
= lign lién@aDF, fs)
= liénli01}1<F, VRS,
= (" = limw’ —lim f - aa, F)
= (0 —limw” fliénm’fw
= lim(w" ~lim fs,a,0F)

= lim(\, 3, O0F).

(ii) From the double limit property of weak compact operator ¢, we see
limﬁ lima <ZJ,\O(|:|F'7 fﬁ> = 1ima limg <Zl\oé|:|F, f5>,

hence
A\ (w* — liénaa)DF> = lién<(w* - liénaa)DF, f3)
= lign li£n<EaDF, fa)
= liin lién(aaDF, fa)
= li£n<A,6aDF>.
(iii) Equation (1) is a consequence of w* — w—continuity of ¢. [ |

Lemma 2.3. If for every G € A" the map p : A" — A"; (F — GOF)
is w¥-w-continuous, then for every bounded net (Fj) in A"

<)\7 GD(w* — limj Fj)> = limj <)\, GDFJ>, ()\ €
A///).

Proof. Tt is similar to part (iii) of Lemma 2.2. [ |

Lemma 2.4. Let A be an Arens regular Banach algebra. If the map ¢ :
A" — A" (F — GOF) is weak-compact or w*-w-continuous for every G €
A", then
(A, w*—lim, w*—lim; (a,0F;)) = lim, lim; (A, @, 0OF;).(2)
for all X € A", bounded nets (an) and (F;) in A and A", respectively.
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Proof. Let (f3) be a bounded net in A’ such that fs " X. Then

(A w* = limw* — lim(a,0F})) = lién<(w* - lign w* — li;qn(aaDFj), fa)

a j
= lién lim lim(a,OF}, f5)
a
= lim lim liﬁm@aDFja fa)
a

= lim lim(\, @, OF}).
a
Since ¢ is w* — w—continuous, the equation (2) is obtained immediately. Bl

Proposition 2.5. Let A be a Banach algebra. If one of the following
conditions holds, then the two A”-module actions in (a), (c) coincide.

(i) The Banach algebra A and the map ¢ : A’ x A — A’;((f,a) —
f - a) are Arens regular and the map ¢ : A — A" (F — FOG) is w*-w-
continuous for every G € A”.

(ii) The Banach algebra A is Arens reqular and the map ¢ : A —
A" (F — FOG) is weak-compact for every G € A”.

(iii) For bounded nets (Go), (fy) and (ag) in A", A" and A, respectively,
we have

liénli’gnlién<Ga, fvy-ag) = lilrinliénli’ryn<Ga, fvy - ag).

Proof. We know that the two right A”-module actions on A”" in (a) and
(c) are equal to
lim,, limg lim (G4, ag - fy),
in which (G,), (fy) and (ag) are bounded nets in A", A’ and A, respec-
tively. For left A”-module actions on A" it is enough to show the following
equality

lim lim lim({(G,, f- - = limlim lim{Gy, f- - ag).
im lim 1[1311( as [y - ag) im lim 131( as vy - ag)
(i) By Arens regularity of the map ¢ we have

1iﬂr{nli/gn<Ga,f,y.a5> = liéﬂli}l;ﬂ(Ga,f,y.am.

Now suppose that A = w* — limg fg, by Lemma 2.1 and Lemma 2.4 we
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have

li(inli’gnlilran<Ga, fvy-ag) = liénliénli’ryn<Ga, fy-ag)

= limlim lm(fy, as0G,)
a v
= lim 1ién<)\,?1\5DGa>

=\ w" —limw* — lién(aﬂDGa))

«

=\ w* — lién w* —lim(ag0G,))
= liénlior[nliﬂgn<Ga, fy - ag).
(ii) By weak compactness of ¢, we have
im im(Gla, f, - ag) = lim 1i/§n<ﬁ,aﬁDGa> = lim 1151<J§,aBDGa>.

It is easy to check that the map ¢ is w* — w—continuous, and so the rest
of the proof is the same as the proof of part (i).
(iii) It is clear. [ |

3 A”- bimodule structures on fifth dual of a Banach al-
gebra

Let A be a Banach algebra. We consider four A”- bimodule structures on
A®),

(I) We consider A®) = (A™®)" in which A® has an A”-bimodule structure
as in part (c) in Section 2. Therefore A®) is the dual space of A®), by the
following actions

(FeW,A)=(T,AeF), (TPeF A)=(U,FeA)

where F € A7 A € A® and ¥ € A®). In this case we have A®) = ((A")")'.
(IT) We consider A®) = (A®)" in which A® has an A”-bimodule struc-
ture as in part (b) in Section 2, so the left action A" on A®) = (((A")")') is
defined by
(F-W,A)=(V,A-F),

(A-F,\) = (A, F -\,
(F-\G) = (\GOF).

where F,G € A", A e A" A€ A® and ¥ € A®). The right action is defined
in a similar way.
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(III) Let A®) = (A")" be as the second dual of A" in which A" =
((A")) is an A-bimodule. Take ¥ € A®) | F € A” and bounded nets (\,) C

A" (ag) C A" with No 5 W and ag % F. Two module actions is defined
by
FoW¥ =w"—limlimag - A\ \IIOF:w*—limlién)\a-aB.

In fact F o ¥ and ¥ o F' are extension of module actions (a,\) — a -
A (AxA” — A"y and (N\,a) — X-a (A" x A — A").

(IV) We consider A®) = (A®)" in which A®) has an A”-bimodule struc-
ture as in part (a) in Section 2, hence the A”-module actions on A®) are
defined by

(FxWU,A)=(V,Ao F), (U x F,A) = (U, FoA),

where F e A”,A € A® and U € A®),
Suppose that ¥ € A®) | A € AW, F ¢ A” and bounded nets (\,) C

A" (GL) C A" (ag) C A" by Ag 5 U, G, 5 A and Gg > F, then
(FeW, A)= (U, Ao F)
= lim@a,AOF)

= liénli’gnlién@a, G, - ag),

and
(Fow, A) = lim lim(ag - Aa, A)
= limlim lim<CA¥7, ag - Aa)
a Y

= liénliorlnli'rynO\a, G, - ag),

so F oW and F e U are not always equal. But
(Wo F,A) = limlim(X, -az, A)
= lim lim 1im<éfy, Ao - Gg)

a B
= limlimlim{A, ag - G
By < B 7>

=lim(F e A, \,)
=(T,FeA)
=(TeF A).
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Hence the two right A”-bimodule structure parts (I) and (IIT) on A®) always
coincide. Also we can show that left (right)A”-module action on A®) in part
(1) is

(F'- U, A) =limlim(\,, G,OF) (¥ - F,A) = limlim(\,, FOG,)),
a a v

hence the A”-bimodule structure part (II) is different from (I) and (III).
For two A”-module action on A®) in part (IV), we have

(F %W, A) =limlim(F o Ay, G), (U F,A) =limlim(\, o F,G,).
a oy a oy

Lemma 3.1. Let A be a Banach algebra. Suppose that the map ¢ : A x
A" — A" ((a,F) — a - F) is Arens regular and the map ¢ : A" —
A" (G — GOF) is w*-w-continuous for every F € A”. Then the two right
A" -module actions on A®)in (IT) and (III) are equal.

Proof. By w* — w—-continuity of 1) we must prove the following equality
limlimlim(Ay, ag - G,) = limlimlim(\,, ag - G), (3)
a B a v B

for bounded nets (A,), (G,) and (ag) in A", A" and A’, respectively. By
Arens regularity of ¢, we have

lim im{Aa, ag - Gy) = lim 1@@?@, Ao) = lim lién<aﬁ,y, Aa),

and so (3) is true. [ |

Lemma 3.2. Let A be a Banach algebra. Assume that the Banach algebra
A and the map ¢ : A" x A" — A" ((F,\) — F - \) is Arens regular and
the map ¢ : A” — A" (G — FOG) is w*-w-continuous for every F € A”.
Then two left A" -module actions on A®)in (II) and (III) are equal.

Proof. By w* — w—continuity of v, it is enough to prove the following
equality for bounded nets (A, ), (G4) and (ag) in A", A" and A’, respectively.

lim lim lién<Aa, G,Oag) = lién lim lim(\, G,0ag). (4)
oy @y

By using Lemma 2.4 we can write
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lign lién<)\a, G, Oag) = lién li}/n<)\a, G,Oag).
Then, by Arens regularity of ¢, we see
lim lim lim(\,, G,0ag) = lim li/'gn lim(\,, G,Oag)
« « ¥

v B
= lim lién<)\a7 (w* —1lim G,)Oag)
@

(03
= lim lim (@ - Ao, (w* — im G, J)
= lién lim(?im, (w* =limG,J)
= lim lim I e, G

im lim lim{a )

= lién lim lim(\,, G,0ag).
a

4 3-weak amenability of the second dual

Let D : A — A" be a derivation. Then D" : A" — A®) = (A")" the
second transpose of D is a derivation (see [3] and [11]), that means that for
every F,G € A"

D"(FOG) = D(F) oG + F o D(G).

But D" : A" — A®) = (A”)" is not always a derivation. In the following
we put other conditions on D such that D" is a derivation (also see Theorem
4.3).

Proposition 4.1. Let A be a Banach algebra and let D : A — A" be a
derivation. Then D" : A" — A®) = (A")" is a derivation if and only if

D”(.A”) CA@ C ;l\/

Proof. Let F,G € A”. Then there are nets (a,) and (bg) in A which
converge to F' and G in the w*- topology of A" respectively. Clearly D" is
w*- continuous. Then

D"(FOG) = w* — limw* — lién D(aqbp)
=w" — li;nw* - li[gnD(aa) “bg +w* — liénw* - lign aq - D(bg)

= D"(F)-G+lima, - D"(G).
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By (5), it is easy to see that D" is a derivation if and only if for every F,G € A"
that F' = w* — lim,, a,, the following equality holds
F-D'(GQ) =w* —limy a, - D" (G) (6).
The relation (6) is true if and only if for every
A c AW (F-D"(G),A) = lim, (aq-D"(G), A)(7).
Also (7) holds if and only if

(D"(G).A, F)y =1lim, (D" (G) - A, aq,) (8).
So (8) holds if and only if D”(G).A : A” — C is w* —w*—continuous. This
means that D”(G).A € A’. [ |

Corollary 4.2 Let A be a Banach algebra such that A" is 3-weakly amenable.
If D"(A")- AW C A/, for each derivation D : A —s A™. Then A is 3 -weakly
amenable. |

Let A be a Banach algebra and let ¢« : A” — A® be an injective map
(((F),\) = (\F)) for F € A” and A € A”. Then ¢ is an A-bimodule
homomorphism . Also ¢ is an A”-bimodule homomorphism with the mod-
ule structures (a) and (b) on A, but it is not always an A”-bimodule
homomorphism with the module structures (c). Therefore the adjoint of ¢
(¢*) is an A”-bimodule homomorphism with the module structures (a) and
(b). Let X be a Banach space. For n € Z*, we denote X+, the subspace
of X7+ apnihilating X, where X271 is the (2n+1)-th dual of X, i.e.
X+t ={\e XC@H). (X x) =0, z¢€ X}. For the Banach algebra A , (A”)*
is clearly w*-closed A”-submodule of A®). Now we get the main theorem of
this paper.
Theorem 4.3. Let A be a Banach algebra such that A" is weakly amenable.
Suppose that one the following conditions holds

(1) D"(A")- AW C A, for each derivation D : A —s A"

(2) Conditions (i) of Lemma 3.1 and Lemma 3.2 are true.

(3) lim, lim, limg(Ay, Fy - ag) = limglim, lim+ (s, Fy - ag), for every
bounded nets (Ay) in A", (Fy) in A" and every net (ag) in A.

Then A is 8 -weakly amenable.
Proof. Suppose that one of conditions (1) or (2) holds, so the two A’-
bimodule structures in parts (IT) and (III) on A®) are equal. We know
(A" = (A") @ (A")+. In other words A®) = (A”)" is a direct sum-
mand of A”— submodules of A®). Let P : (A”)” — (A”) be the projec-
tion defined by the above direct sum. Suppose D : A — A" is a deriva-
tion. Then we can show that P is an A”-module homomorphism. Thus
PoD": A" — (A")" = (A")" — (A")' is a derivation. Since A” is weakly
amenable, there exists 6y € (A”)" such that P o D = dy,. On the other hand
D is the restriction of P o D" to A. Thus D = dg,.

Now assume that the condition (3) holds, then the two A”-bimodule struc-
tures in parts (I) and (IIT) on A®) are equal. Suppose D : A — A" is a
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derivation. Then ¢* o D" : A" — (A" = (AW) — (A") is a deriva-
tion. Due to the weak amenability of A", there exists 6y € (A”) such that
t*oD" = §y,. For every a € A and F € A", we have

(" 0 D"(a), F) = (D"(a),«(F)) = ((F),D(a)) = (D(a), F).

So D is the restriction of t* o D” to A. Thus D = dp,. Therefore A is 3
-weakly amenable. |
By applying Theorem 4.3 we have the following results.
Corollary 4.4. Let A be a Banach algebra such that one of the conditions (1)
up to (4) of Theorem 4.3 holds. If A" is weakly amenable, then A is weakly
amenable.
Proof. It follows immediately from Theorem 4.3 and [4, Proposition 1.2]. H
Corollary 4.5. Let A be a Banach algebra such that one of the conditions
(1) up to (3) of Theorem 4.3 holds. If A" is 3 -weakly amenable, then A is 3
-weakly amenable.
Proof. By Theorem 4.3 and [4, Proposition 1.2], A is 3 -weakly amenable. H
The following Theorem has been proved in [10].
Theorem 4.6. Let A be an Arens regular Banach algebra. Suppose that for
every continuous derivation D : A" — A" and every F in A", D(F) and D
are w*-continuous. If A is weakly amenable , then so is A". |
Let one of the conditions of Theorem 4.3 holds. Then we have
Corollary 4.7. Under assumptions of Theorem 4.6, if A is weakly amenable,
then A is 3-weakly amenable.
Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.6. W
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